Dean Henze

and 6 more

In-situ measurements of the trade cumulus boundary layer turbulence structure are compared across large-scale circulation conditions and cloud horizontal organizations during the EUREC4A-ATOMIC campaign. The vertical structure of turbulent (e.g. vertical velocity variance, total kinetic energy) and flux (e.g. sensible, latent, and buoyancy) quantities are derived and investigated using the WP-3D aircraft stacked level legs (cloud modules).The 16 cloud modules aboard the P-3 were split into three groups according to cloud top height and column-integrated TKE and vertical velocity variance. These groups map onto qualitative cloud features related to object size and clustering over a scale of 100 km. This grouping also correlates to the large scale forcings of surface windspeed and low-level divergence on the scale of a few hundred km. The ratio cloud top to trade inversion base height is consistent across the groups at around 1.18. The altitude of maximum turbulence is 0.75-0.85 of cloud top height. The consistency of these ratios across the groups may point to the underlying coupling between convection, dissipation, and boundary layer thermodynamic structure. The following picture of turbulence and cloud organization is proposed: (1) light surface winds and turbulence which decreases from the sub-cloud mixed layer (ML) with height generates clouds with generally uniform spacing and smaller features, then (2) as the surface winds increase, convective aggregation occurs, and finally (3), if surface convergence occurs, convection and turbulence reach higher altitudes, producing higher clouds which may precipitate and create colds pools. Observations are compared to a CAM simulation is run over the study period, nudged by ERA5 winds and surface pressure. CAM produces higher column integrated turbulent kinetic energy and larger maximum values on the days where higher cloud tops are observed from the aircraft, which is likely a factor that influences the development of deeper clouds in the model. However, CAM places the peak turbulence 500 m lower than observed, suggesting there may be a bias in CAM representation of turbulence and moisture transport. CAM also does not capture the large LHFs seen for two of the days in which lower cloud tops are observed, which could result in insufficient lower free tropospheric moistening in the model during this type of cloud organization. A large and consistent bias between the model and observations for all cloud groups is the negative SHFs produced in CAM near 1500 m. This is not observed in the measurements. This leads to a net negative buoyancy flux not observed and provides evidence of a specific shortcoming that can be addressed as part of the needed improvement in the representation of clouds by large-scale models.

Dean Henze

and 1 more

The prevalence of mixing vs. precipitation processes in biomass burning aerosol (BBA) laden air over the southeast Atlantic is assessed during three intensive observation periods during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign. Air in the lower free troposphere (FT) and marine boundary layer (MBL) are treated as separate analyses, although connections are made where relevant. The study, centering on aircraft in-situ measurements of total water heavy isotope ratios, has two main objectives. The first is to gauge whether the atmospheric hydrology, and in particular precipitation, can be constrained primarily through visual assessment of the aircraft isotope ratio data plotted against total water concentration, similarly to several previous studies. However, regression of the data onto a simple model of convective detrainment is also used and alludes to the possibility of a precipitation data product derived from isotope ratios. The second objective is to connect variations in aerosol concentrations to the hydrology as diagnosed by the isotope ratio measurements, and determine whether aerosol variations are attributable to wet scavenging. First, joint water concentration (q) and H2O/HDO isotope measurements (δD) in the lower FT are combined with satellite and MERRA-2 data into simple analytical models to constrain hydrologic histories of BBA-laden air originating over Africa and flowing over the southeast Atlantic. We find that even simple models are capable of detecting and constraining the primary processes at play. Further, a strong correlation between isotopic evidence of precipitation in lower FT air masses and an in-situ indicator of wet scavenging of black carbon – the ratio of black carbon to carbon monoxide (BC/CO) – is shown. In comparison, the correlation between BC/CO and the water concentration itself is low. Since wet scavenging is the primary removal mechanism of black carbon, these findings suggest that isotope measurements could support studies constraining the lifetime of black carbon in the FT. Next, the ability of measurements interpreted with simple analytical models in (q, δD) space to distinguish cloud-top entrainment vs. precipitation signals in the MBL is tested. This proves more difficult than the lower FT analysis since signals are smaller. We find that the largest obstacle to this goal is the (q, δD) values of the entrained airmass at cloud-top. We also compare cloud condensation nuclei (CCN) concentrations in the sub-cloud layer to the isotopic measurements. In 2016 and 2018 IOPs, lower CCN concentrations coincide with isotope ratio evidence of precipitation, indicating aerosol scavenging. However, a more complex model simulating water, isotope ratios, and aerosols would be necessary to achieve more definitive conclusions. For the 2017 IOP, with the highest sub-cloud CCN concentrations, there is no connection between precipitation signals and CCN concentrations.

Dean Henze

and 1 more

The NASA ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) project provides an extensive data set of aircraft in-situ meteorological, aerosol, and total water heavy isotope ratio measurements in the southeast Atlantic (SEA) lower troposphere over the months of Sept. 2016, Aug. 2017, and Oct. 2018. These months are during southern hemisphere spring, which is the agricultural burning season in subtropical southern Africa. During this season, biomass burning aerosol (BBA) loaded air in the African planetary boundary layer is carried out over the SEA by lower troposphere easterly flow. The goal of ORACLES was to study the effects of aerosol loading in the lower troposphere and as they mix into the semi-permanent cloud deck over the SEA. During ORACLES, water isotope ratio measurements D/H and 18O/16O were taken using Picarro brand cavity ring-down spectroscopic analyzers integrated into our Water Isotope System for Precipitation and Entrainment Research (WISPER). With over 300 hrs (~140,000 linear km at the typical aircraft speed) of 1 Hz sampling between 22°S to the equator and from 70 m to 6 km, this is a large and vertically resolved isotope dataset. In this presentation, we first use the coupled measurements of total water concentration and its heavy isotope ratio D/H to distinguish BBA plumes which have experienced prior precipitation vs those which have not. The findings are supported with lagrangian back-trajectories, MERRA surface temperatures and moisture, and isoCAM surface isotope values, which are combined to constrain simple isotope models. We find that BBA air sampled in 2016 experienced almost no precipitation, while BBA air and moisture in 2017 follow a model of convective outflow and most of the moisture loss is due to precipitation. Finally, we show the strong agreement between D/H evidence of precipitation amount and an indicator of aerosol removal via precipitation: the ratio of black carbon to carbon monoxide. In contrast, no correlation between total water concentration and aerosol removal is found, demonstrating the additional information contained in the isotope ratio measurements. This also provides an example of isotope ratio measurements supplementing other variables during a multifaceted field project to address science questions.

Bjorn Stevens

and 291 more

The science guiding the \EURECA campaign and its measurements are presented. \EURECA comprised roughly five weeks of measurements in the downstream winter trades of the North Atlantic — eastward and south-eastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, \EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or, or the life-cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso (200 km) and larger (500 km) scales, roughly four hundred hours of flight time by four heavily instrumented research aircraft, four global-ocean class research vessels, an advanced ground-based cloud observatory, a flotilla of autonomous or tethered measurement devices operating in the upper ocean (nearly 10000 profiles), lower atmosphere (continuous profiling), and along the air-sea interface, a network of water stable isotopologue measurements, complemented by special programmes of satellite remote sensing and modeling with a new generation of weather/climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that \EURECA explored — from Brazil Ring Current Eddies to turbulence induced clustering of cloud droplets and its influence on warm-rain formation — are presented along with an overview \EURECA’s outreach activities, environmental impact, and guidelines for scientific practice.