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Abstract10

Four previously identified patterns of meso-scale cloud organization in the trades – called11

Sugar , Gravel , Flowers and Fish– are studied using long-term records of ground-based12

measurements, satellite observations and reanalyses. A neural network trained to detect13

these patterns is applied to satellite imagery to identify periods during which a partic-14

ular pattern is over the Barbados Cloud Observatory. Surface based remote sensing at15

the observatory is composited and shows that the patterns can be distinguished by dif-16

ferences in cloud macro-physical structures. Variations in total cloudiness among the pat-17

terns are dominated by variations in cloud-top cloudiness. Cloud amount near cloud base18

varies little. Each pattern is associated with a distinct atmospheric environment whose19

characteristics are traced back to origins that are not solely within the trades. Sugar air-20

masses are characterized by weak winds and of tropical origin. Fish are driven by con-21

vergence lines originating from synoptical disturbances. Gravel and Flowers are most22

native to the trades, but distinguish themselves with slightly stronger winds and stronger23

subsidence in the first case and greater stability in the latter. These results suggest that24

due to the tight bound of the patterns to wind and air-mass origin, the patterns with25

the higher cloud fraction, Flowers and Fish, will be disfavoured in a warming climate26

with more equable sea-surface temperatures and fewer mid-latitudinal disturbances.27

1 Introduction28

The organization of deep convection has long been recognized to influence the dis-29

tribution of moisture and as a consequence the climate. Shallow convection, as is com-30

mon in the trades for instance, is usually not thought of being organized. Rather, in the31

mind’s eye of many researchers, trade-wind clouds were randomly distributed have lit-32

tle vertical development and their role in the climate system was, at best, taken for granted33

in early studies. Over the past twenty years however, the out-sized role of maritime shal-34

low convection on Earth’s radiation budget and discrepancies in how models predict their35

changes with warming (Bony & Dufresne, 2005), have made a determination of processes36

controlling their coverage a central focus of climate science. During this period, obser-37

vational studies such as RICO (Rauber et al., 2007) and the emergence of satellite im-38

agery with spatial resolution on the hecta-meter scale began emphasizing how shallow39

clouds in the trades adopt different forms of organization, often in association with pre-40

cipitation development and the formation of cold pools (Zuidema et al., 2012; Seifert &41
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Heus, 2013; Seifert et al., 2015). More recently, studies have shown that shallow convec-42

tion can be categorized into several (four) large scale patterns (Stevens et al., 2020) and43

the form of organization influences the net cloud radiative effects and thus may influ-44

ence Earth’s climate sensitivity (Bony et al., 2020).45

As reviewed by Nuijens, Louise and Jakob, Christian (2020), the classification of46

clouds into types and patterns has a long tradition. Categorization and classification help47

to break a complex problem down, into more manageable pieces, and thereby help to nav-48

igate natures’ complexity in ways that open it to our understanding and perception. In49

contrast to classifications based on particular cloud types, as defined in the International50

Cloud Atlas (WMO, 2017), or to classifications based on mean properties, recent work51

has emphasized the large-scale patterns defined by the tiling of mesoscale elements as52

a basis for categorizing trade-wind cloud regimes (Stevens et al., 2020), similar to what53

has been done in the past to characterize cloud fields forming in association with cold-54

air outbreaks, or over land, or in regions where stratocumulus clouds predominate (Agee,55

1987; Atkinson B. W. & Wu Zhang J., 1996; Young et al., 2002).56

Following this tradition, Stevens et al. (2020) identified four patterns – which they57

called Sugar , Gravel , Flowers and Fish– based purely on visual satellite imagery in the58

vicinity of the Barbados Cloud Observatory. Of these only Sugar fit the prevailing view59

of the trades being covered by random dustings of cumulus humilis atop the background60

of a dark ocean. A follow-up study by Rasp et al. (2020) showed that these four patterns61

can be identified not only in the region of the North-Atlantic trades studied by Stevens62

et al. (2020), but they form in trade-wind regimes in every ocean basin. As mentioned63

above, the four patterns also differ in their net cloud radiative effects. This raises the64

question as to whether in a warmer climate, changes in cloudiness might be manifested65

by a different balance in their form of organization (Bony et al., 2020).66

Motivated by the potential impact on climate sensitivity and the striking differ-67

ences in the visual appearance of the four patterns identified by Stevens et al. (2020),68

we are interested in better understanding the basic features of these four patterns, and69

the factors that influence their emergence. More specifically, we aim to answer the ques-70

tions:71

1. How do the four patterns differ in terms of the observed cloud macro-physical prop-72

erties?73
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2. Are the different patterns associated with different large-scale environments.74

3. To what extent are these large-scale differences reflective of different air mass ori-75

gins?76

To answer these questions we collocate the four cloud patterns of meso-scale or-77

ganization as automatically detected in satellite measurements with observations made78

at the Barbados Cloud Observatory. This contextualization of the high-resolution ground-79

based cloud measurements within the meso-scale patterning enables us to get deeper in-80

sights about their characteristics in ways that are not possible using satellite measure-81

ments alone.82

The methods adopted and the data used are described in Section 2. A character-83

ization of the cloud patterns with a focus on the macro-physical properties and how it84

fits with our preconceptions as derived from the satellite images is given in Section 3.85

Further, we analyse in Section 4 the meteorological conditions under which the patterns86

occur and the extent to which they can be distinguished. Finally, we address the ques-87

tion about the evolution of the air masses giving rise to the patterns by using back-trajectories,88

analyzing the seasonal distribution and synoptic (large-scale weather patterns) influences89

in Section 5. We conclude with Section 6.90

2 Method91

2.1 Pattern detection of shallow convection92

A crucial part of this study is the detection of the four patterns of shallow convec-93

tion. We base our approach on the neural network architecture described in Rasp et al.94

(2020), which has been trained with 10 000 manually labeled satellite images. While these95

manual classifications were performed for 10 years of visible imagery captured by the Mod-96

erate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the satellites97

AQUA and TERRA, the neural network used in this study is trained with the infrared98

counterpart. Use of the infrared imagery was adopted to capture the patterns on a sub-99

daily time-scale as they do not necessarily preserve their organization throughout the100

day. Using infrared data lets us apply the neural network on the infrared images cap-101

tured at night, but also at much higher frequency using measurements from the geosta-102

tionary satellite GOES16. While the GOES16 Advanced Baseline imager can capture103

images every minute for pre-selected regions, here we use only the brightness temper-104
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atures in the clean infrared long-wave window (channel 13; 10.46 µm) at a temporal res-105

olution of 30 minutes.106

The training of the neural network in the infrared is straight forward. Instead of107

using the visible images during training, the infrared imagery has been used while keep-108

ing the manual classifications the same as if the classifications were made on the infrared109

imagery. The mean pixel agreement between the infrared and visible neural network clas-110

sifications for AQUA daylight overpasses on the north Atlantic domain used in Rasp et111

al. (2020) is 0.4, 0.5, 0.5, 0.2 for Sugar , Gravel , Flowers, and Fish, respectively. The to112

some degree lower agreement in case of Fish can mostly be attributed to the cloud-top113

height information that the infrared neural network uses to reduce false classifications114

of cirrus clouds that occasionally can be a carbon copy of Fish.115

To attribute one of the four patterns to the observations made at the Barbados Cloud116

Observatory, each classification of the neural network is evaluated at the location of the117

observatory. Because the site can be at the edge of a classification and we wish to in-118

clude only clear and long-lasting patterns, a 6 h time period is associated with a specific119

pattern if for at least half of the time (3 h) a specific pattern prevails. The three win-120

ter seasons (November through March) 2018-2020 during which GOES16 data, with its121

higher-resolution infrared imager, are available are used for our analysis. Because the122

patterns occur not equally likely, the number of detected cases differs as indicated in Tab. 1,123

with 42 % of the 6 h windows being associated with one of the four patterns. The remain-124

ing periods were grouped together as Others.125

Table 1. Number of time windows that contain robustly identified patterns in the winters of

2018 (JFM), 2019 (NDJFM) and 2020 (NDJFM)

pattern # of 6h windows % of total

Sugar 125 9

Gravel 282 19

Flowers 77 5

Fish 138 9

Others 846 58
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For the detection of the seasonal cycle of the patterns and the trajectory analysis126

we use a different approach. First, because the GOES16 Advanced Baseline Imager does127

not cover the complete North Atlantic, we base this part of the analysis on the patterns128

detected in images captured by MODIS during daytime AQUA overpasses. Second, be-129

cause this analysis is based on MODIS the longer time-record of AQUA can be used to130

improve the sampling. For this purpose we use the 10 year period between 2010 and 2020131

inclusive.132

2.2 Back-trajectories133

To analyze the origin of the patterns and the evolution of the air mass in which they134

are found, we calculate back-trajectories following the framework of Eastman and Wood135

(2016). Vertical winds are assumed to be negligible compared to the horizontal compo-136

nents, such that the trajectories are followed near the top of the sub-cloud (boundary)137

layer and kept constant at the initial height of 925 hPa. These boundary-layer trajec-138

tories are calculated using winds from the 5th European Center Reanalysis of meteoro-139

logical observations (ERA5) (Hersbach et al., 2020) on a 6-hourly time step.140

The back-trajectories are initialized at the center of each classification within the141

domain 10◦N-24◦N and 61◦W-40◦W and most closely to the AQUA overpass time. The142

analysis covers the winter months (November through March) of 2010-2020. Trajecto-143

ries are calculated for an 84 h period and atmospheric properties along the trajectory are144

extracted at each 12-hour time-step coinciding with a MODIS Aqua overpass. Reanal-145

ysis variables are taken from a 1x1 degree latitude-longitude grid, with averages produced146

for all boxes with centers that fall within 100 km of trajectory sampling points.147

2.3 Surface observations148

Surface observations in the trades, where these meso-scale patterns occur, are sparse,149

especially those beyond standard meteorological reports from ships and buoys. The Bar-150

bados Cloud Observatory (BCO) is one exception and studies have shown that the at-151

mosphere it samples at the most windward tip of Barbados is representative for the mar-152

itime conditions in the downwind trades more generally (Stevens et al., 2016; Medeiros153

& Nuijens, 2016).154
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The BCO uses advanced remote sensing instrumentation to measure the undisturbed155

marine subtropical atmosphere (Stevens et al., 2016). In this study, we use simultane-156

ous measurements from the CORAL Ka-band cloud radar and Raman lidar to charac-157

terize clouds and their thermodynamic environment, especially the surrounding humid-158

ity structure of the clouds. These advanced remote-sensing measurements are comple-159

mented by soundings of the nearby Grantley-Adams airport to improve the statistics above160

clouds, which can quickly attenuate the lidar signal and make a retrieval inside and above161

clouds impossible. Radiosondes are launched once or twice a day, usually an hour or so162

of their 0 UTC and 12 UTC report times.163

To detect only hydro-meteors with the cloud radar and no sea-salt aerosols, we ap-164

ply a threshold of −50 dBZ as used in Klingebiel et al. (2019).165

In addition to the standard surface meteorological measurements from a Vaisala166

WXT-520, we use the rain rate measurements from a micro-rain radar (MRR). Due to167

its larger sampling area compared to the also available acoustic rain sensor, it detects168

more reliable light and/or short rain events. However, this comes at the cost of measur-169

ing the rain rate above the surface (325 m) rather than at the surface – which likely over-170

estimates rain amount, particularly for light rain.171

2.4 Cloud entity classification172

The identifications of meso-scale patterns of shallow convection are supplemented173

with cloud-type classifications derived from the BCO measurements.174

Macro-physical properties of clouds down to single cloud entities are retrieved based175

on the segmentation of the radar reflectivity. Individual clouds are identified by testing176

the connectivity of radar retrievals in height and time. Since a main part of this study177

focuses on stratiform layers, we use a running window of 100 s in time and only direct178

connections in the vertical to account for the fact, that the stratiform layers can be so179

thin that they are not continuously detected by the radar. To exclude false classifica-180

tions as much as possible due to slanted cumulus clouds that can be falsely detected as181

stratiform clouds, we consider only clouds with a pass time of 2 min or more for the cloud182

entity analysis.183
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Figure 1. Example of cloud-type classification based on radar reflectivity

Similar to Lamer et al. (2015) we classify individual clouds by their cloud base heights184

(CBH). Stratiform layers are defined as clouds that have a frequent CBH above 1 km up185

to 2.5 km. If the CBH is in general below 1 km the cloud is classified as originating from186

the cumulus gene. An example of the radar reflectivity and the derived cloud-type clas-187

sifications is shown in Fig. 1. It illustrates, that also a mixture of cumulus with an at-188

tached stratiform layer may exist. These cases are actually classified as “StSc+Cu” in189

the case the stratiform layer exists for at least 20 % within a cumulus cloud-entity.190

Based on the single cloud entities the macro-physical properties like stratiform ex-191

tent, rain flag and the mean thickness of the stratiform layer are calculated and asso-192

ciated with each entity.193

3 Surface based characterization of cloudiness and precipitation194

The four patterns identified by Stevens et al. (2020) – Sugar , Gravel , Flowers, Fish–195

are purely defined by their visual impression from space, predominantly the spatial dis-196

tribution of cloudiness. The cloudiness is therefore the closest physical quantity to the197

subjective definition of these patterns. Among the physical differences that may accom-198

pany these patterns, aspects of cloudiness that go beyond the spatial arrangement of re-199

flectivity as seen from above will be important to characterize, especially in so far as it200

influences the cloud radiative effect.201

An overview of these patterns and the ground based observations linked to them202

is shown in Fig. 2. Differences in cloudiness are readily apparent, and conform to what203
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has been previously noted in the literature. Sugar is identified with a fine dusting of clouds,204

Gravel with cloud features arranged around arc-like structures. Flowers and Fish are205

composed of elements that are yet larger in scale and show a clearer separation between206

cloudy and clear-sky areas. For Flowers the clouds show a more isotropic distribution,207

while they are usually elongated – roughly West to East – in the case of Fish.208

From these illustrations, which add to the examples shown in Stevens et al. (2020),209

it is natural to develop preconceptions about differences in the three dimensional struc-210

ture of the boundary layer associated with the patterns. For example, Gravel is gener-211

ally thought to be associated with precipitation due to the visible cold pool signature212

in the cloud field, and Flowers are thought to be composed of stratiform clouds with sup-213

pressed convection around them. Assessing whether such preconceptions are supported214

by the data, rather than manifestations of extreme and unrepresentative cases, is one215

of the goals of this section.216

We first focus on the characteristics of the cloudiness in terms of their macro-physical217

and geometric properties. Thereafter we analyse the precipitation signatures of the pat-218

terns, as they might help to gain a process understanding on how these different patterns219

form.220

3.1 Cloudiness221

The cloud cover at the Barbados Cloud Observatory is shaped by the ubiquitous222

appearance of cumulus humilis – i.e., cumulus clouds of very limited vertical extent. Cu-223

mulus humilis are not the only cloud type measured at the site. Even in the northern224

hemispheric winter, when the Intertropical Convergence Zone is furthest away from Bar-225

bados and the region experiences strong subsidence, the measured cloud fraction is not226

solely caused by non-precipitating cumulus humilis. This is demonstrated by an anal-227

ysis of the mean echo fraction profile ( a combination of cloud- and rain-fraction) shown228

in Fig. 3. Echoes are detected extending to depths above 3 km.229

Looking at the mean echo fraction profiles of Sugar , Gravel , Flowers and Fish and230

also the overall wintertime mean echo fraction, suggests that all but Fish are some breed231

of shallow convection, with very small echo fractions (less than 3 % at 4 km) extending232

much above 2.5 km. Fish appears distinct. Its echo fraction is larger than the seasonal233
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Figure 2. Time-series of each cloud pattern as identified by scientists participating in the

EUREC4A campaign (top to bottom: Sugar , Gravel , Flowers, Fish). Water vapor measurements

from the Raman lidar overlayed by radar reflectivity shown in upper panels, while rain rates mea-

sured at 325 m are shown in the lower panels. The according MODIS images from the TERRA

satellite overpass are shown on the right. Missing values are colored grey.
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Figure 3. Echo-fraction measured at the Barbados Cloud Observatory and grouped by de-

tected pattern indicating the combination of cloud- and rain-fraction (upper panel). The height

integral, echo coverage, is shown in the bottom panel. The overall mean of the analysed winter

seasons is shown in grey. Shading indicates standard error of mean.

mean, also above the moist cloud-layer usually identified with the region below the max-234

imum echo-fraction between 2.0 km to 2.5 km.235

Differences near the lifting condensation level (i.e., associated with a local maxi-236

mum in the echo fraction near 750 m) are less pronounced. Here, independent of the cloud237

pattern, and more general independent of any observed cloud distribution, echo fractions238

are more similar. The lack of variability of cloud amount at the cloud-base height was239

emphasized by Nuijens et al. (2014). The variations that exist can largely be attributed240

to rain events, i.e., differences below 500 m – which are a signature of precipitation – are241

similar to those at 700 m. This implies that the non-raining cloud-base echo fraction dif-242

fers little among the patterns and is similar to the seasonal mean. That Flowers would243

have a similar echo fraction at cloud-base after the rain correction as Sugar was not some-244

thing we would have guessed from the satellite imagery. It shows that an abundance of245

clouds near cloud-base under the cloud shield compensates for an absence of shallow-cloudiness246

in the cloud-free part of the Flowers pattern.247
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Fig. 3 further suggests that cloudiness aloft, in the layer between 1.5 km to 2.5 km,248

explains a large part of the differences in the satellite imagery which gives rise to the dif-249

ferent patterns. For instance Flowers, with its cloudy patches of high reflectivity paired250

with the sheet-like structure anticipate a strong stratiform component in the cloud frac-251

tion compared to Sugar and Gravel , as is indeed evident in the echo-fraction profiles.252

Fish has high echo-fractions throughout the cloud layer, but are less obviously dominated253

by a stratiform component as compared to simply more cloudiness, which often extends254

much more deeply through the lower troposphere. In the case of Gravel , a local max-255

imum in cloudiness aloft is hardly evident and completely missing for Sugar . It is there-256

fore the cloudiness aloft, that varies most with about 15 % at 1.7 km and distinguishes257

the cloud fraction profiles of the patterns.258

Looking at the cloudiness of the patterns as a whole, we recognize, that the echo259

fraction of Gravel has the strongest similarity to the seasonal mean echo fraction, which260

is the average of all 6 h windows independent of any pattern. This is consistent with Gravel261

being the most common pattern detected in this study (about 19 % of all regarded time262

windows and 45 % of the windows with any dominant pattern). Further, it also suggests,263

that a large portion of the more uncertain and mixed time-windows contains cloudiness264

similar to the Gravel pattern. Sugar , in contrast, occurs rather more seldom. This might265

seem to contradict Rasp et al. (2020) who found that Sugar is actually more often iden-266

tified than Gravel . However, similar to Stevens et al. (2020), who were looking for dom-267

inating patterns on a fixed domain, we look for dominating patterns within a fixed time-268

period. Both methods register only patterns that are persistent for a long time or cover269

a large area, both of which de-emphasize Sugar . The cloud pattern with randomly dis-270

tributed clouds of little vertical extent occurs frequently, but is often not dominant and271

thus not picked out by our analysis.272

In the following, we decompose the cloudiness further into individual cloud enti-273

ties. Each of those cloud entities is then classified, as described in Sec. 2.4, into the tra-274

ditional cloud genes: cumulus, stratus, or as a combination of those in case they are con-275

nected. This way, we analyze whether the patterning has an influence on the distribu-276

tion, frequency and composition of cloud types. For instance, based on the above, one277

would immediately expect stratiform clouds to dominate for Flowers and be absent for278

Sugar .279
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The entity analysis shows the cloud base height (CBH) of cumulus, which to a first280

approximation is the same as the lifting condensation level of near surface air, is at about281

650 m to 700 m with cloud tops about 160 m higher. Stratus are about 130 m thick on282

average, with an average CBH between 1600 m to 1850 m. The stratiform layers that are283

connected to a convective core during the time of observation have a CBH between 980 m284

to 1050 m and a cloud top height between 1240 m to 1370 m, which is somewhat lower285

than for Stratus.286

Looking at single entities of the clouds detected within the classified 6 h analysis287

periods, we found no evidence, that the properties of the cloud elements were influenced288

by the pattern. We had imagined that stratiform clouds formed by Gravel might form289

more from convective outflow, and those forming in Flowers may form more in-situ, so290

that the stratiform cloud elements they incorporate would differ. To the extent such dif-291

ferences exist they were not detectable. What this means is that independent of the meso-292

scale organization, a stratiform layer, when it forms, has similar macro-physical prop-293

erties across patterns e.g., for both Flowers and Sugar . The only differences are that it294

occurs more rarely for Sugar and that the size of the stratiform components (”StSc”; ”StSc+Cu”)295

increases from Sugar (24 km; 56 km) via Gravel (30 km; 84 km) to Fish (32 km; 181 km296

and Flowers (47 km; 151 km)). The average of the upper 5th percentile is given in brack-297

ets for the two stratiform categories as this can be assumed to better capture the char-298

acteristic length of the stratiform cloud decks by excluding very small entities and en-299

tities whose path length is much smaller than the actual characteristic length as clouds300

rarely drift over the observatory with the latter. The measurement time has been trans-301

lated into length by assuming a mean wind speed of 10 m s−1 at cloud top.302

As an alternative way to look for the signature of different cloud-controlling pro-303

cesses, Fig. 4 presents a Contoured Frequency by Altitude Diagram (CFAD) for the dif-304

ferent patterns. It thus illustrates the frequency of occurrence of a specific reflectivity305

at a certain height composited on different patterns.306

Some features can be identified across multiple patterns. For instance an arc-like307

mode, extending upward from low-reflectivities (−30 dBZ) near cloud base (0.7 km) to-308

ward higher reflectivities (15 dBZ) at about 2 km is identified with the imprint of the non-309

precipitating cumulus humilis (Lonitz et al., 2015). These can be found across all pat-310
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Figure 4. Contoured frequency by altitude diagram (CFAD) for the four patterns of shal-

low convection and less clear patterns gathered in the group Others. The colors indicate the

frequency of occurrence of a reflectivity-height tuple within a specific pattern.

terns and contribute to a large extent to the total cloud cover of Sugar and Gravel , which311

is about 0.3 and 0.4, respectively (Fig. 3).312

Besides the robustness of the cloudiness near cloud-base, Fig. 4 also shows that the313

vertical extent of clouds are more or less strongly capped at a particular height. Sugar314

echoes diminish upward with very little signal at the expected top of the moist layer, Flow-315

ers echoes are clearly capped at about 2.2 km. Fish echoes and Others frequently ex-316

tend to 3 km and deeper with little evidence of strong capping.317

The capping is not the only difference between Flowers and Fish. Despite a sim-318

ilar cloud cover of about 0.5, the stratiform layer differs in these cases. Whereas Flow-319

ers show a second distinct reflectivity maximum at about 2.2 km and near −5 dBZ, the320

distribution is more monomodal for Fish. This two-layer structure suggests that Flow-321

ers are only sporadically connected by higher cumulus convection whereas for Fish, clouds322

aloft appear to be deeper and as a more continuous extension of clouds near cloud base.323

More like a more active and deeper distribution of Gravel . The deeper echoes for Fish324

are also evident in a stronger precipitation feature (i.e., 25 dBZ near surface mode).325

3.2 Rainfall326

To assess, how important precipitation might be for different patterns, we charac-327

terize its frequency and strength in the following. From the example time-series shown328

in Fig. 2 and the results from the previous section, we expect a clear separation of the329

precipitation characteristics among the patterns: from the lack of rain during the occur-330
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rence of Sugar , to frequent showers in the case of Gravel , to yet stronger rain events for331

Fish.332

To test this expectation, we take a look at the precipitation measurements from333

the BCO within the same 6-hour time windows used in the section above. First, we quan-334

tify how many analysis windows contain any rain event. With the exception of Sugar ,335

in more than 50 % of the identified cases, rain is present. For Sugar precipitation can336

be detected in only 35 % of the cases.337

a b

Figure 5. Rain statistics of each pattern averaged over a 6-hour period. The average rain

amount (left) and the average maximum rain rate of each window (right) are shown with their

standard error.

This absence of rain events in case of Sugar is even more evident in the quantifi-338

cation of the mean near-surface rainfall (Fig. 5a). Rain amounts are similar for Flow-339

ers and Gravel , consistent with the frequency of near surface echoes evident in Figs. 3340

and 4, nearly twice as large for Fish. We also quantify rain intensity by averaging the341

maximum rain-rates within each analysis window for each of the patterns. Among the342

precipitating patterns rain intensities do not differ as substantially. In all of these cases343

the precipitation is intense (approach 10 cm a day), and well above the threshold (1 mm h−1
344

to 2 mm h−1) that past studies have associated with the formation of cold-pools (Barnes345

& Garstang, 1982; Drager & van den Heever, 2017).346

By applying the threshold of 1 mm h−1 to the maximum rain events, the number347

of cases with significant rainfall decreases to 12 % in case of Sugar and about 35 % for348

the other patterns. 35 % might not seem to be a lot, but it has to be kept in mind, that349

these patterns are of meso-scale extent and even a 6 h-period cannot capture the com-350

plete variability. This is especially the case for the Fish pattern, where a 6 h-period might351
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only capture the clear-sky part of the Fish and therefore the importance of precipita-352

tion can be underestimated for a single 6 h-period, especially under the assumption, that353

the clear-sky part depends on the dynamics in the cloudy part and cannot exist inde-354

pendently. Sugar , Gravel and Flowers all consist of several individual cloud patches, while355

Fish is often occurring as a single, large-scale network of clouds that can be separated356

by its equally characteristic wide-spread clear-sky areas by several hundreds of kilome-357

ters.358

Our data does not contain sufficient samples to evaluate to what extent the spatio-359

temporal characteristics of precipitation differs among the patterns. However, by analysing360

the precipitation signature in all 138 6-hourly windows of Fish, there is evidence of a bi-361

modal distribution of rain events, with a second mode consisting of extended periods of362

precipitation (like the one shown in Fig. 2) that is not evident for either the case of Flow-363

ers or Gravel .364

Overall, precipitation events of significant strength occur during Gravel , Flowers365

and Fish periods and suggest to play a role in the patterning process or at least in the366

persistence of these patterns. There is no hint that precipitation is important for Sugar .367

To understand why these patterns are occurring in the first place, we take a look at the368

atmospheric environment these patterns go along with in the next section.369

4 Meteorological environment370

In the previous section we characterized similarities and differences in cloud- and371

precipitation-signatures among the four patterns. Presumable differences among patterns372

are not simply a random selection of different states of self-organization. To the extent373

the patterns are forced, this forcing might be evident in the local meteorological setting,374

or as a transient response to the adjustment from different upstream environments. In375

this section, we address the first possibility and investigate the meteorological settings,376

first at the surface and then within the free troposphere, for the different patterns.377

4.1 Surface measurements378

Near surface (5 m and 25 m above mean sea level) meteorological measurements at379

the BCO are composited by pattern in Fig. 6. Common to all variables shown is a dis-380

tinguished value for at least one of the patterns.381
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Figure 6. Surface meteorology measured at the BCO during the observation of the four pat-

terns. The seasonal mean of the observed time-period independent of any pattern is drawn as

grey line.

Sugar distinguishes itself from other patterns by virtue of its mean temperature382

and low wind-speed. Given that annual cycle of surface temperatures is just over 2 K this383

0.6 K difference is large. While Sugar is associated with unseasonably warm conditions,384

the contrast with the other patterns is due in equal part to them being unseasonally cool,385

which is consistent with Sugar arising during periods with little northerly contribution386

to the mean flow. Gravel is distinguished by the surface winds being unseasonally strong387

and northerly. Flowers are found on the days that are coolest, when surface winds are388

strong, but not so strong as for Gravel , and when the surface pressure is unseasonally389

high (1013.3 hPa). In contrast Fish which are also associated with extensive cloud cov-390

erage (Fig. 3) are found on days with unseasonally low pressure (1011.8 hPa), high hu-391

midity and relatively low but quite variable (in terms of direction) winds, consistent with392

more disturbed conditions and extended periods of precipitation.393

Amongst all analyzed surface observations, wind speed is the best proxy for a spe-394

cific pattern. The lowest mean wind is measured during Sugar situations with 5 m s−1.395

For the other patterns the mean wind speed increases by an increment of 0.5 m s−1 from396

Fish to Flowers to Gravel . The finding that Flowers and Gravel occur in conditions of397

higher winds is consistent with what was found by Bony et al. (2020), but further dis-398

criminates among all patterns rather than two groupings (e.g., Flowers and Gravel as399

high wind-speed and Sugar and Fish as low wind-speed patterns). We gain similar re-400

sults to Bony et al. (2020) when compositing the ERA5 surface data (Fig. S1). On the401

one hand, this finding is indicative that the different methods to detect the meso-scale402

–17–



manuscript submitted to JGR: Atmospheres

organization are in agreement, on the other hand, it also suggests that there may be pro-403

cesses that are not captured by the analysis.404

4.2 Vertical structure405

In this section we extend the previous analysis in the vertical through a compos-406

ite analysis of the Grantley Adams radiosonde data. As compared to temperature and407

humidity profiles derived from the Raman lidar at the BCO, the soundings have the ad-408

vantage that they give meaningful profiles even in case of cloudy situations, where the409

lidar attenuates. The radiosondes also provide wind profiles through the depth of the410

troposphere (the wind lidar at the BCO mostly measured vertical wind, and then only411

in the lowest 1 km). The pattern mean-soundings, and their associated uncertainty es-412

timate, are presented in Fig. 7. Composites are made of the equivalent potential tem-413

perature, potential temperature difference (Θ−Θ, where Θ is the mean sounding across414

all patterns), relative humidity and wind speed.415

Figure 7. Average profiles of equivalent potential temperature, potential temperature differ-

ence to the overall pattern mean and relative humidity from soundings at the Grantley Adams

Airport.

Surface temperature differences measured at the BCO are also evident in the sound-416

ings, and extend through the depth of the moist (lower 3 km) layer. Flowers distinguish417

themselves not only by virtue of lower surface temperatures, but also by a much stronger418

stratification atop the humid layer, showing a strong inversion at about 2.5 km. Sugar419

appears associated with a much shallower cloud layer, also capped by an inversion. The420
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apparent instability (decrease in Θ with height) for the other patterns simply indicates421

that they are less stable on average. The lower-tropospheric stability (LTS) is 16.2± 0.3K422

in case of Flowers and nearly 2 K lower for Fish (14.7± 0.2K), Sugar (14.4± 0.2K) and423

Gravel (14.1± 0.1K). However, in the case of Sugar , the value of Θ at 700 hPa (which424

is used to construct LTS) may miss the shallow stable layer that appears to cap the con-425

vective development of this pattern.426

The relative humidity profile is strongly coupled to the convective activity and hence427

the echo fraction (e.g., Fig. 3) As we have shown in the last section, Sugar is mostly char-428

acterized by cloudiness at cloud-base height with only few clouds reaching up to 1.8 km.429

In agreement, the according moisture profile shows a shallower layer compared to the430

other patterns that more regularly reach the inversion height and distribute moisture.431

Likewise Fish, with echos reaching much more deeply through the lower troposphere is432

also considerably moister than the other patterns above 3 km. These humidity profiles433

also help explain differences in θe, particularly in the upper cloud layer and lower free-434

troposphere. For example as seen by contrasting Fish and Gravel .435

Based on measurements made during RICO, Nuijens et al. (2009) analyzed differ-436

ences in θe similar to those shown in Fig. 7. Consistent with their findings these profiles437

seem to co-vary consistently with surface wind speeds. Stronger surface winds for Gravel438

and Flowers are mostly confined to the moist layer for Gravel , but extend through the439

lower troposphere for Flowers. These winds are one component of what is often thought440

of as an externally imposed large-scale forcing, to which the boundary layer thermody-441

namic profiles relatively quickly equilibrate. Other aspects of this forcing, like the lower442

tropospheric stability and large-scale subsidence are examined in more detail next.443

4.3 Large-scale forcing444

We first examine how the large-scale subsidence (ω500) varies as a function of pat-445

tern. To better judge on which scale the forcing acts, we retrieve ERA5 data in a 20◦×446

20◦ domain centered around each classification of the neural network. Those domains447

are afterwards averaged to one composite that shows the strength of subsidence at the448

center of each pattern, but also in its surrounding.449

Fig. 8 reveals, that all patterns occur during times of subsidence and that this sub-450

sidence is in most cases also similar to the typical subsidence rate of 0.05 hPa s−1 in the451
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Figure 8. Distribution of subsidence strength ω500 relative to identified pattern centers com-

posited by 20x20 degree domains around each identified pattern. Pattern centers are marked with

a cross.

Atlantic trade-wind regime (Holland & Rasmusson, 1973). However, it also shows that452

some variability in the large-scale forcing exists and stronger subsidence is, contrary to453

expectation, not occurring during Sugar and Flowers cases, but rather during Gravel cases454

(Tab. 2).455

Table 2. Large-scale forcing averaged by pattern from fixed-location sounding data (snd) and

ERA5 data from pattern center

Pattern LTSsnd LTSERA5 ω500,ERA5 freq. of convergence

Sugar 14.4 K 14.8 K 0.046 Pa s−1 28%

Gravel 14.1 K 14.4 K 0.072 Pa s−1 38%

Flowers 16.2 K 16.6 K 0.046 Pa s−1 34%

Fish 14.7 K 16.0 K 0.048 Pa s−1 59%

In the subtropics, particularly in association with stratocumulus, subsidence co-456

varies positively with LTS. On shorter time scales and deeper in the tropics, other fac-457

tors may play a role. In particular the temperatures above the cloud layer are more tightly458

coupled to moisture, so as to homogenize the density temperature on isobaric surfaces.459

This partly explains the stronger temperature inversion for Flowers. It also means that460

boundary layer variability may play a more important role in determining the LTS, con-461

sistent with near-surface temperature differences as illustrated in Fig. 6. These in turn462

may be influenced by the upstream conditions that the patterns sample, something we463

explore with the aid of back-trajectories in the next section.464

–20–



manuscript submitted to JGR: Atmospheres

5 Are the four patterns indicative of specific air masses?465

The four patterns occur preferentially in atmospheric conditions intrinsic to the mar-466

itime trade-wind regions.467

Rasp et al. (2020) showed that globally, the four patterns predominate in the dry468

tropics, regions often associated with the trade winds. The analysis in the previous sec-469

tion identified subtle differences in the environments in which the four patterns form.470

This raises the question as to the origin of these environmental differences, i.e., to what471

extent they arise from subtle variations within the trades, or what one might alterna-472

tively think of as disturbances to or departures from canonical trade-wind conditions.473

We explore this question by analysing the seasonal cycle of the four patterns within our474

North Atlantic study region as well as the air-mass histories of the different patterns by475

compositing reanalysis data along back-trajectories constructed from that same data.476

5.1 Seasonality477

Seasonality is investigated using 10 years of MODIS AQUA daytime overpasses (2010-478

2020). The neural network classification is applied over the Tropical and North Atlantic,479

the results of which (Fig. 9) are presented in the form of spatial histograms of occurrence480

for each pattern for three seasons.481

Considering just the region of the downstream trades, taken to be the tropical North482

Atlantic west of 45◦W, all four patterns prevail. With the exception of Sugar , the ab-483

sence of the four patterns in this region in other seasons supports their association with484

the winter trades. Fish and Gravel seem only to occur in this region in conditions (DJF)485

when the trades are well developed. Flowers are also identified in the upstream trades,486

increasingly so in boreal spring and early summer (AMJ). Sugar shows very little sea-487

sonality. Rather, and consistent with the analysis by Rasp et al. (2020), it appears as-488

sociated with suppressed conditions bordering the ITCZ whose seasonal migration it fol-489

lows. Based on this we hesitate to call Sugar a trade-wind cloud pattern.490

Flowers are even more common in the ‘upper’ trades (east of 45◦W), even more491

so in the April-June period, (e.g., Fig. 9). Such a distribution is consistent with an affin-492

ity for conditions that favor stratocumulus. This distribution is in agreement with the493

analysis in the previous section, which showed that Flowers favor conditions of higher494

–21–



manuscript submitted to JGR: Atmospheres

Figure 9. Seasonal distribution of patterns in the North Atlantic in the dry- (DJF),

transitional- (AMJ) and wet- (ASO) season (top to bottom) detected in infrared imagery (AQUA

MODIS 2010-2020).

lower tropospheric stability, and lower surface temperatures, as compared to the other495

patterns. This supports the idea that Flowers are the downstream manifestation of the496

familiar, but much smaller, closed cellular stratocumulus (Stevens et al., 2020); alterna-497

tively, it may be indicative of a failing of the neural network to distinguish between Flow-498

ers and closed-cells.499

The strong association of Flowers, Fish and Gravel with the down-stream trades500

in winter (when they are most developed), suggests that the origin of their differing en-501

vironmental conditions may have less to do with the intrusion of different regimes, and502

more to do with the nuanced evolution of the winter trades.503

5.2 Lagrangian evolution of air masses by meso-scale organization504

Here we use the back-trajectories, initialized at the center of the classifications fol-505

lowing the boundary layer winds at 925 hPa for 84 h, to investigate possible reasons for506

the environmental differences associated with each pattern.507

Fig. 10 shows that the back-trajectories are consistent with the steadiness that char-508

acterizes the winter trades, with the trajectories aligning well along the general flow of509
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the trades as they come to their point of initialization. They do however differentiate510

themselves as one follows their history back in time. Most notably Fish which originates511

far to the west of the other trajectories. A more tropical influence on Sugar , is also con-512

sistent with its back-trajectories which start furthest south.513

Figure 10. Mean back-trajectories for the different patterns initialized at the center of indi-

vidual classifications within the indicated black box at 925 hPa and calculated for 84 h.

Figure 11. Environmental conditions along the back-trajectory. All values are ERA5 reanal-

ysis properties, except the cloud top height estimate where the cloud top temperature (CTT) is

sourced from MODIS AQUA observations. Shading indicates standard error.

Compositing the large-scale conditions, as given by the ERA5 reanalysis products,514

along the trajectories yields further insight into factors influencing the environmental con-515

ditions associated with each of the four patterns. This analysis is presented in Fig. 11.516

This analysis is largely consistent with what was shown in the previous section, and517

furthermore shows that many of the environmental differences previously documented518

are apparent well in advance (and upstream) of where the pattern was eventually iden-519
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tified. Sugar has warmer sea-surface temperatures, weaker winds and a relatively moist520

free-troposphere along its entire back-trajectory, consistent with a more tropical influ-521

ence. Flowers evolve over cold ocean temperatures throughout the trajectory paired with522

persistently high LTS (despite rising SSTs), a dry free troposphere and stronger low-level523

winds. And differences in LTS among the patterns are robust and in place already 48 h524

earlier.525

The time-evolution of different fields is also indicative of dynamic influences. For526

instance, for Flowers an acceleration of the low-level winds between −24 h to −84 h may527

be driving the strong subsidence at 700 hPa, which in turn would support the anoma-528

lously dry free-troposphere and high LTS. This pattern preceding process may drive the529

differences between Flowers from Gravel with the slight slackening of the winds and the530

decrease of the subsidence nearer the time and place where the pattern is identified, play-531

ing less of a role. In contrast, for Fish a strong temporal evolution within the last 24 h,532

as manifested by a pronounced moistening of the lower troposphere, might be indicative533

of a dynamic disturbance. Sugar seems less representative of a sudden stilling in the winds534

in association with local suppression, if anything recovering from more suppressed con-535

ditions and weaker winds upstream.536

The time-evolution of cloud top height, estimated as the difference between the ERA5537

sea surface temperature and the mean cloud top temperature sourced from MODIS within538

100 km around the trajectory sampling point, can further be an indication of different539

lifetimes of the patterns. Sugar and Gravel seem to set up only shortly before the de-540

tection (-36h) when the cloud top height dropped quickly, which would be indicative of541

a shorter lifetime. In contrast, Flowers and Fish might have persisted longer at the time542

of detection because the cloud top height evolves only little. The diurnality that is pro-543

nounced in a number of fields (wind speed, ω700, SST-CTT) is explored in more depth544

by Vial et al. (submitted).545

In the following, we explore the idea that Fish is more disturbance driven with the546

help of a case study.547

5.3 Extra-tropical disturbances548

Although we focus on the northern hemispheric winter season where the trades are549

well formed, disturbances to the trade-wind mean flow are well documented (Bunker et550
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al., 1949; Riehl, 1945). The earlier literature identifies two types of disturbances, one as-551

sociated with anomalously deep easterlies (which might be associated with active deep552

convection), the other associated with extra-tropical intrusions in the form of trailing553

cold-fronts from extra-tropical cyclones.554

The older literature conceptualized the later (extra-tropical intrusions) as tropi-555

cal incursions of the ‘polar front’. Especially in the boreal winter, when the Intertrop-556

ical Convergence Zone is further south and the Azores high is less well established, frontal557

disturbances can extend equator-ward. By the time they reach the subtropics, their tem-558

perature signature is muted and they become most pronounced in the form of a shear559

line that separates the light easterlies from the stronger north-easterlies and remains (Riehl,560

1945).561

Such a frontal passage can be seen in the surface analysis charts e.g. in association562

with a deepening cyclone over the mid-Atlantic (near 45◦N and 45◦W) on 25th Decem-563

ber 2018. Through the course of six days the cold front, initially supported by the out-564

flow of cold-continental air (a cold air outbreak) from the east-coast of North-America,565

occludes upon reaching the tropics as far south as Barbados (see Fig. 12).566

25/12/2018

29/12/2018

27/12/2018

31/12/2018

Figure 12. Cold air outbreak between 25th of December 2018 and 31th December 2018.

Surface analysis charts from the National Hurricane Center are adapted and overlaid on Terra

MODIS images
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By comparing the surface analysis chart with the satellite image, we recognise that567

the front is visible as a band of convection that we would classify as Fish. In the former568

cold sector, just north of the front, one can also notice on the 29th December cloud struc-569

tures north of the front similar to Flowers (more pronounced to the west) or perhaps570

Gravel .571

We repeat our composite analyses done to create Fig. 8 with surface convergence572

to test, whether the frontal character is typical for Fish and whether other patterns can573

be related to the fronts as well. We find a strong signal of convergence stronger than −1× 10−6 s−1
574

(following Weller et al. (2017)) connected with Fish about 60 % of the identified cases575

(Fig. 13). A clear signature for the other patterns is less pronounced, although the ab-576

sence of convergence for Sugar is consistent with it being more locally suppressed. For577

Fish, the pattern of convergence extents zonally in a way that supports the hypothesis578

of Fish arising in association with disturbances associated with trailing cold-fronts or579

shear-lines from extra-tropical intrusions.580

Figure 13. Distribution of divergence at 950 hPa relative to identified pattern centers com-

posited by 20x20 degree domains around each identified pattern. Counters indicate frequency of

events with convergence larger −1 × 10−6 s−1 (30%: dotted, 45%: dashed, 60%: solid). Pattern

centers are marked with a cross.

6 Discussion and conclusion581

Cloud- and environmental properties associated with four patterns of meso-scale582

organization in the lower trades (50◦W to 60◦W) of the North Atlantic are examined.583

The four patterns follow the Sugar , Gravel , Fish, Flowers taxonomy of Stevens et al.584

(2020) and are identified using a neural-network applied to high-resolution infra-red im-585

agery from the GOES16 satellite.586
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We conditioned surface observations, back-trajectories, and reanalysis data on the587

identification of different patterns to answer three questions: One, do the four patterns588

show physical differences in the cloud macro-physical properties as seen by surface based589

remote sensing? Two, can differences in the large-scale environment associated with dif-590

ferent patterns be discerned? And, three can we identify the origins of discernible en-591

vironmental differences among the patterns.592

Fig. 14 summarizes these results and illustrates, that the four patterns differ in more593

than just their satellite presentation. Cloud coverage and its vertical distribution differ594

and differences in the environment of different patterns are discernible. The thermody-595

namic profiles in Fig. 14 show inter-pattern differences, but also intra-pattern differences596

as measured by radiosondes at points whose position relative to other features within597

a pattern is schematized.598

Many preconceptions from earlier studies, either inferred from snapshots (Stevens599

et al., 2020) or from compositing reanalysis data on values of a cloud-clustering index600

that correlate with different patterns (Bony et al., 2020), are supported by our analy-601

sis. As an example, Flowers, and to some extent Fish, have a stratiform component de-602

tectable from surface-based remote sensing. In the latter this is less distinctly a capping603

stratiform, or stratocumulus layer, as it is associated with more cloudiness throughout604

the cloud layer. Compared to the mean conditions, or the other patterns, LTS is higher605

(0.5 K to 1.0 K) for Fish and (2 K) for Flowers.606

Non-precipitating cloud coverage at the the lifting condensation level, as empha-607

sized by Nuijens et al. (2014) for the entirety of trade-wind cloudiness, also holds across608

the four patterns. This came as a surprise given that Flowers and Fish are character-609

ized in part by their cloud free areas. Differences in cloud-base echo fraction largely re-610

flect differences in precipitation, suggesting that to the extent environmental conditions611

demand an increase in the mass flux out of the subcloud layer, for instance as shown by612

George et al. (2020), this is largely associated with the development of deeper clouds and613

precipitation.614

Similar to what was found by (Bony et al., 2020), near surface winds identify Flow-615

ers and Gravel with strong near-surface winds, and Fish and Sugar with light winds.616

Our analysis, further discriminates within these two groups, with Sugar , Fish, Flowers617

and Gravel each being separated by a roughly 0.5 m s−1 increase in surface wind speeds.618

–27–



manuscript submitted to JGR: Atmospheres

Precipitation increases with near surface winds, as previously noted for measurements619

during RICO (Nuijens et al., 2009), with Fish being an outlier whose large rain rates are620

associated with extra-tropical disturbances and anomalous low-level convergence.621

Seasonal variations and back-trajectories provide further insight into the origin of622

differences in the environments of the different patterns. The view of trade-wind clouds623

as cumulus humilis, and hence non-precipitating with little vertical extent, as popular-624

ized by studies based on data from BOMEX (Siebesma & Cuijpers, 1995) and most closely625

associated with Sugar suggests that these are rather uncharacteristic of the trades. Sugar626

is found to favor more suppressed conditions, uncharacteristically (for the trades) weak627

winds, and proximity to deeper convection in the ITCZ.628

As a historical note, the third author recalls that when the large-eddy simulation629

community began focusing on shallow trade-wind convection through simulations of con-630

ditions derived from BOMEX data (Siebesma et al., 2003), Bruce Albrecht admonished631

us that less suppressed and more stratiform capped conditions – as for instance seen and632

simulated in association with the Atlantic Trade-Wind Experiment (Stevens et al., 2001,633

ATEX) and which we might today call Flowers– were more characteristic of the Trades.634

We find confirmation for his point of view, twenty years later, in our data. Given the as-635

sociation of Fish with shear lines from remnant extra-tropical cold fronts intruding deep636

into the sub-tropics, only Gravel is left to add to Flowers as an archetypical form of trade-637

wind convection. Fish and Sugar are intruders.638

Gravel and Flowers differ substantially in their cloud amounts (as seen here) and639

their cloud radiative effects, as shown by Bony et al. (2020). Our analysis suggests that640

this difference can be attributed to slightly weaker winds, and a substantially warmer641

and drier free-troposphere in the case of Flowers. This supports the development of a642

stronger capping inversion, and stronger boundary layer cooling. Based on back-trajectories643

we hypothesize that these conditions arise from an acceleration of the trades and stronger644

subsidence in the upstream flow along Flowers back-trajectories. This hypothesis lends645

itself well to tests with LES, and may even be evident at the somewhat coarser resolu-646

tion now being simulated by a new generation of global storm-resolving models.647

Independent of the formation mechanism, understanding of the conditions favor-648

ing one or the other pattern may help anticipate to what extent climate change, by virtue649

of changes in wind-speeds, or the frequency of extra-tropical disturbances, or changes650
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in the opacity and stability of the free troposphere, will color the frequency of different651

patterns, and thus cloud-radiative effects in the lower trades.652
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Figure 14. Illustration of the cloud field during the four patterns of meso-scale organization

and the associated large-scale forcing (right) including the thermodynamic profiles (left). The

anomaly in forcing to the pattern mean is indicated by grey sliders. Vertical lines indicate the

contrasting positions of the thermodynamic profiles, purple being in the moist part and orange

in the dry area. Thermodynamic profiles are based on soundings during the EUREC4A field

campaign (Stephan et al., 2020)

.

–30–



manuscript submitted to JGR: Atmospheres

References666

Agee, E. M. (1987, January). Mesoscale cellular convection over the oceans. Dynam-667

ics of Atmospheres and Oceans, 10 (4), 317–341. doi: 10.1016/0377-0265(87)668

90023-6669

Atkinson B. W., & Wu Zhang J. (1996, November). Mesoscale shallow convection670

in the atmosphere. Reviews of Geophysics, 34 (4), 403–431. doi: 10.1029/671

96RG02623672

Barnes, G. M., & Garstang, M. (1982, February). Subcloud Layer Energetics of Pre-673

cipitating Convection. Monthly Weather Review , 110 (2), 102–117. doi: 10674

.1175/1520-0493(1982)110〈0102:SLEOPC〉2.0.CO;2675

Bony, S., & Dufresne, J.-L. (2005). Marine boundary layer clouds at the heart of676

tropical cloud feedback uncertainties in climate models. Geophysical Research677

Letters, 32 (20), n/a–n/a. doi: 10.1029/2005GL023851678

Bony, S., Schulz, H., Vial, J., & Stevens, B. (2020). Sugar, Gravel, Fish, and679

Flowers: Dependence of Mesoscale Patterns of Trade-Wind Clouds on Environ-680

mental Conditions. Geophysical Research Letters, 47 (7), e2019GL085988. doi:681

10.1029/2019GL085988682

Bunker, A. F., Haurwitz, B., Bernhard, Malkus, Joanne Starr, & Stommel, Henry683

M. (1949). Vertical distribution of temperature and humidity over the684

Caribbean Sea. PAPERS IN PHYSICAL OCEANOGRAPHY AND ME-685

TEOROLOGY , 11 (1), 82.686

Drager, A. J., & van den Heever, S. C. (2017). Characterizing convective cold687

pools. Journal of Advances in Modeling Earth Systems, 9 (2), 1091–1115. doi:688

10.1002/2016MS000788689

Eastman, R., & Wood, R. (2016, January). Factors Controlling Low-Cloud Evolu-690

tion over the Eastern Subtropical Oceans: A Lagrangian Perspective Using the691

A-Train Satellites. Journal of the Atmospheric Sciences, 73 (1), 331–351. doi:692

10.1175/JAS-D-15-0193.1693

George, G., Stevens, B., Bony, S., Klingebiel, M., & Vogel, R. (2020). Observed im-694

pact of meso-scale vertical motion on cloudiness. J. Atmos. Sci., 1–30.695

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,696
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