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Abstract 34 

This study evaluated the forecast performance of neural network (NN)-based radiation 35 

emulators with 300 and 56 neurons developed under the cloud-resolving simulation. These 36 

emulators are 20–100 times cheaper to employ than the original parameterization and express 37 

evolutionary features well for 6 hrs. The results suggest that the frequent use of an NN 38 

emulator can improve not only computational speed but also forecasting accuracy in 39 

comparison to the infrequent use of original radiation parameterization, which is commonly 40 

used for speedup but can induce numerical instability as a result of imbalance with other 41 

processes. The forecast error of the emulator results was much improved in comparison with 42 

that for infrequent radiation runs with similar computational cost. The 56-neuron emulator 43 

results were even more accurate than the infrequent runs, which had a computational cost five 44 

times higher. The speed and accuracy advantages of radiation emulators can be utilized for 45 

weather forecasting. 46 

 47 

Key Points 48 

- A neural network (NN)-based radiation emulator was developed and evaluated at a cloud-49 

resolving scale. 50 

- Radiation emulators with 300 and 56 neurons are 20–100 times faster than the original 51 

scheme. 52 

- Frequent emulator results can be more accurate than infrequent calculations of original 53 

radiation scheme. 54 

 55 

Plain Language Summary 56 

Radiative transfer calculations in weather and climate models often impose computational 57 

challenges because of the complexity of radiation processes. Neural network (NN)-based 58 

emulators have been developed to mimic radiation parameterization while reducing the 59 

computational time requirements and costs involved. However, no one has provided a 60 

standard for evaluating the performance of the emulator in terms of both speed and accuracy. 61 

The emulators developed in this study reduce the computational time required by factors of 62 

20–100 while maintaining reasonable forecast accuracy. The use of such emulators is 63 

beneficial in terms of both computational speed and accuracy, in comparison to conventional 64 

infrequent use of radiation parameterization. The speed and accuracy advantages of NN-65 

based radiation emulators make them useful for weather forecasting. 66 

67 



1. Introduction 68 

Radiation is a fundamental energy source that drives weather and climate systems, so 69 

appropriate representation of radiative processes plays an important role in weather and 70 

climate prediction. The direct approach using a line-by-line radiative model (e.g., Clough et 71 

al., 1992 and 2005), can compute radiation processes precisely but is prohibitively expensive. 72 

To address the computational cost, numerical weather/climate prediction models that employ 73 

approximate radiation parameterization (e.g., Iacono et al., 2008; Gu et al., 2011; Baek, 2017) 74 

have been developed and heuristically turned to the line-by-line model. Radiation 75 

parameterization is still computationally expensive, compared to other schemes, because of 76 

the complexity of the underlying physical system. To circumvent the computational cost, 77 

radiation parameterizations have been computed less often than the time step of weather 78 

prediction model. However, this approach can lead to significant error in accumulated 79 

discrepancies in interaction with other dynamic/physical processes over time (Xu and Randall, 80 

1995; Pauluis and Emanuel, 2004; Pincus and Stevens, 2013). 81 

The necessity of a trade-off between speed and accuracy in radiation calculations has 82 

resulted in the search for alternative approaches, such as data-driven radiation emulator based 83 

on neural networks (NN) which achieves considerable improvement in speed with reasonable 84 

accuracy. Chevallier et al. (1998 and 2000) first developed NN-based longwave radiation 85 

emulators for the European Centre for Medium-Range Weather Forecasts (ECMWF) models. 86 

The NN-based longwave/shortwave emulators have been also developed for the Community 87 

Atmosphere Model (CAM), the Climate Forecast System (CFS), and the Super-88 

Parameterized Energy Exascale Earth System Model (SP-E3SM) in various studies 89 

(Krasnopolsky et al., 2005; Krasnopolsky and Fox-Rabinovitz, 2006; Krasnopolsky et al., 90 

2008a and 2008b; Krasnopolsky et al., 2010; Belochitski et al., 2011; Pal et al., 2019; 91 

Boukabara et al., 2019). Krasnopolsky et al. (2010) presented impressive results for an 92 



emulator for the Rapid Radiative Transfer Model for General Circulation Models (RRTMG; 93 

Clough et al., 2005 and Iacono et al., 2008), which improved computational speed by 16–60 94 

times in comparison to the original scheme, while preserving long-term (17-yr) stability. Pal 95 

et al. (2019) achieved a tenfold improvement in computational speed and 90–95% accuracy 96 

using a deep neural network (DNN), indicating a greater computational burden in the case of 97 

DNN. Similarly, various emulators have been developed for idealized frameworks (e.g., 98 

Krasnopolsky et al., 2013, Brenowitz and Bretherton, 2018; Rasp et al., 2018) as well as for 99 

convection (Gentine et al., 2018), the planetary boundary layer (Wang et al., 2019), dynamics 100 

(Scher, 2018). 101 

Previously developed radiation emulators were applied to climate simulations at coarse 102 

temporal (1–3 hr) and horizontal (100–300 km) resolutions. Although Pal et al. (2019) tried 103 

to develop the radiation emulator under the super-parameterized cloud simulation; it is not 104 

pure cloud-resolving simulation with high nonlinearity because they applied the results to 1-105 

degree horizontal resolution. The performance evaluation of emulator under the cloud-106 

resolving scale (i.e., less than a few km) is essential to be applied to weather forecasting 107 

models. Furthermore, all radiation emulator studies did not provide quantitative criteria for 108 

evaluating the accuracy of emulator, though they provided statistical similarity to the original 109 

radiation parameterization on a climatic scale. However, because the infrequent use of 110 

radiation scheme with a substantial speedup is often for rapid forecasting in meso-scale 111 

weather prediction models, the radiation emulator is meaningful in weather forecasting when 112 

it gives benefits both in speedup and accuracy in comparison to the conventional infrequent 113 

radiation runs. 114 

Therefore, this study sought to evaluate the accuracy improvement achieved with a 115 

frequently used radiation emulator in comparison to the infrequent original scheme with 116 

similar computation cost under the idealized cloud-resolving framework. This evaluation 117 



approach is strongly recommended for the future development of radiation emulators. To 118 

achieve this goal, we developed an NN-based emulator for radiation parameterization for use 119 

with the Korea Local Analysis and Prediction System (KLAPS; Kim et al., 2002), which is an 120 

operational short-range weather forecast model used by the Korea Meteorological 121 

Administration (KMA). Although this study only involved evaluations in an ideal 122 

environment, it is expected that application of the proposed method to actual weather 123 

forecasting will yield many advantages in terms of speedup and accuracy. 124 

 125 

2. Training Data and Methods 126 

A two-dimensional idealized squall line simulation was performed with KLAPS, which is 127 

based on the Advanced Research Weather Research and Forecasting (WRF-ARW) model. 128 

This is a popular cloud simulation for development of microphysics schemes, as well as for 129 

understanding cloud-precipitation processes (e.g., Lim and Hong, 2010; Song et al., 2017; 130 

Bae et al., 2019). In this experiment, we considered the RRTMG-K radiation (Baek, 2017) 131 

and WRF Double Moment 7-Class (WDM7) microphysics (Bae et al., 2019) schemes, which 132 

are available in WRF version 4.1. The RRTMG-K scheme, a two-stream correlated-k 133 

approach, optimizes a Monte Carlo independent column approximation and calculates 134 

radiative fluxes and heating rates over the longwave (LW) with 140-g points for 16 bands 135 

(within 820–50000 cm
-1

) and shortwave (SW) with 112-g points for 14 bands (within 10–136 

3000 cm
-1

). The control run was integrated at every model/radiation time step, every 3 s, on 137 

201 horizontal grids (at 0.25-km intervals) and 39 vertical layers (up to 50 hPa) for 6-hr 138 

periods (from noon to sunset), which is equivalent to half of a daytime solar cycle. Note that 139 

the squall line experiment is suitable for up to 7 hrs of simulation (e.g., Lim and Hong, 2010, 140 

Bae et al., 2019). The RRTMG-K scheme is responsible for 86.47% of the total computation 141 

cost in the current simulation and is 9% faster than the RRTMG. 142 



The training sets used to develop the NN-emulator were random samples of 20% of a full 143 

data set from the control run. Although part of the control run included the training sets, this 144 

study was focused on a limited framework for cloud simulation rather than on developing a 145 

general NN-emulator. The NN-emulator inputs for RRTMG-K (196) are as follows: vertical 146 

pressure, temperature, water vapor, ozone, cloud fraction, surface temperature, solar constant 147 

(G), cosine solar zenith angle (cos θ), and forecast time (i.e., accumulated time steps). The 148 

microphysics variables (cloud liquid/ice/snow effective radius and water path) were excluded 149 

from the input data for the purpose of increasing the computational speed, although coupling 150 

between radiation and microphysics schemes was inherently allowed (Bae et al., 2016; Bae 151 

and Park, 2019), and thus cloud effects were expressed only by cloud fraction. The inclusion 152 

of microphysics variables did not significantly improve accuracy, despite doubling 153 

computational cost in comparison to the developed NN-emulator (not shown). The outputs 154 

(86) consist of heating rate profiles for the LW and SW, as well as six LW and two SW 155 

fluxes. For the LW fluxes, there were total/clear sky upward fluxes at the top of the 156 

atmosphere (TOA) and the surface, respectively, and total/clear sky downward fluxes at the 157 

surface. Total sky upward SW fluxes at the TOA and surface were also considered. However, 158 

the total/clear sky downward SW fluxes at the TOA were directly expressed by G × cos θ, 159 

and clear sky upward SW fluxes at the TOA and surface were expressed by linear regressions 160 

with respect to G × cos θ because of their strong dependency on the solar cycle. The 161 

total/clear sky downward SW fluxes at the surface were replaced by total/clear sky upward 162 

SW fluxes divided by a constant surface albedo (0.2). These replaced components should be 163 

included in real-case simulations in the future. Additional redundant constant variables (e.g., 164 

trace gases and aerosols) were excluded to avoid additional noise in advance. 165 

The single-layer NN method described by Krasnopolsky et al. (2010) was used in this 166 

study to develop the RRTMG-K emulator. For any given inputs, the NN-emulator provides 167 



approximated outputs without the use of the complex processes in the original 168 

parameterization. The approximating function (Eq. 1) and related coefficients are learned 169 

from the training sets. 170 

Yq = B2q + ∑ W2qj ∙ tanh(B1j +∑ W1ji ∙ Xi)
n
i=1

k
j=1                  (1) 171 

Here, n and m indicate the number of inputs and outputs; Xi denotes the input and output 172 

vectors; Yq is the predicted output vector for q=1,2,…, m; W1 and W2 are the matrices of the 173 

weights from input to hidden layers [n, k] and from hidden to output layers [k, m], 174 

respectively; B1 and B2 indicate the bias vectors from input to hidden layers and hidden to 175 

output layers, respectively; and tanh is used for the nonlinear activation function. The 176 

accuracy of NN emulation can be tuned by increasing the number of hidden neurons (k), 177 

whereas its speedup is inversely proportional to the numerical complexity; k×(n+m+1)+m, as 178 

given by Krasnopolsky et al. (2010). The values obtained for the coefficients (W1, W2, B1, 179 

and B2) are implemented in the NN-emulator. The NN-emulator replaces combined LW and 180 

SW radiations all at once, not separately, and hence, it has an advantage in speedup related to 181 

the reduction of the W1 and B1 arrays, because LW and SW radiation share the majority of 182 

inputs. The NN-emulators with 300 and 56 neurons (hereinafter referred to as NN300 and 183 

NN56) were applied to the 6-hr simulation, which corresponds to 7,200 accumulated 184 

model/radiation time steps at increments of 3 s. As mentioned previously, the main goal in 185 

this study is to investigate the applicability of NN-radiation emulator to weather forecasting 186 

model. For this purpose, frequent uses (i.e., every time step) of NN300 and NN56 are 187 

equivalent to infrequent uses of the original radiation scheme by 20 and 100 times (WRF20 188 

and WRF100, with 60-s and 300-s radiation time steps, respectively) in terms of 189 

computational cost (Note that KLAPS over Korea is performing with the infrequent use of 190 

radiation scheme by 15 times). The accuracy of theses simulations was evaluated by 191 

considering the WRF control run to be true. 192 



3. Results 193 

The trained heating rate and flux results are shown in Fig. 1. Although the NN training 194 

was designed to identify an optimized convergence solution for all given input-output pairs, 195 

the explanation obtained from the inputs may vary depending on the characteristics of the 196 

outputs. We note that the training results (in terms of R
2
) for the heating rate profiles 197 

(0.941516 for LW and 0.926777 for SW) are less accurate than those for the single-level 198 

fluxes (0.999748 for LW and 0.997313 for SW), implying that vertical profiles involve 199 

greater uncertainty than single-level products. The SW results exhibit lower R
2 

and higher the 200 

root mean squared error (RMSE) for fluxes than those of the LW. These results suggest that 201 

SW processes are more complex than LW processes at the cloud-resolving scale. Some of the 202 

uncertainty is presumed to be related to the excluded microphysics variables. However, 203 

because the inclusion of microphysics variables did not show advantages in the significant 204 

increase of accuracy despite of doubling computation cost in this study, its benefits need to be 205 

comprehensively examined in the future real case simulation. 206 

Figure 2 shows the vertical distribution of the horizontal (50 km) mean cloud fraction and 207 

heating rate (LW and SW) with the accumulated forecast time for the WRF control run, 208 

NN300, and WRF20. The experiment simulated a vertically developing cloud by initial 209 

forcing of warm bubble heating at the lower center of the domain, following precipitation. 210 

Hence, the cloud fraction as a key factor in determining radiative processes in this experiment. 211 

Until about 20 min had elapsed, the negative LW and positive SW values were clearly 212 

detected as the cloud grew to 9 km (Figs. 2b and c). Although initial cloud forcing occurred 213 

mainly near the center of the domain, it was also identified in the 50-km mean feature 214 

because of its strength. The cloud top, regarded as a 10% cloud fraction, developed up to 12 215 

km for 2 hrs, but after that, the cloud top height decreased to 9 km (Fig. 2a). Areas with more 216 

than 90% cloud fractions were present at an altitude of approximately 9 km on average at 2 217 



hrs but lowered further to approximately 6.5 km after 6 hrs. Evolutionary features of the LW 218 

and SW heating rate profiles, the main outputs of the radiation parameterization, are shown in 219 

Figs. 2b and c. The strongest LW cooling area, above the high cloud fraction, was located 220 

over 9–12 km for 3 hrs but fell to 7–9 km within 6 hrs (Fig. 2b). The strongest SW warming 221 

was also found over the LW cooling area for the first 3 hrs (Fig. 2c). Similar LW cooling and 222 

SW warming feature responses to the cloud fraction were reported by Zhang et al. (2017). 223 

Although the LW cooling trend lasted up to 6 hrs, the SW warming weakened rapidly after 3 224 

hrs because of reduced solar insolation at an increased zenith angle. Weak LW warming also 225 

appeared below the cloud layer, as well as near the surface, after 2 hrs. 226 

The evolutionary feature of NN300, equivalent to twenty times speedup, exhibited good 227 

agreement with the control run, even during the latter part of the forecast time (middle row of 228 

Fig. 2). In relation to the upward development of clouds, the LW cooling and SW warming 229 

features within the first 30 min were accurately simulated (Figs. 2e–f). The strong LW 230 

cooling area present over 9–12 km within 3 hrs and 7–9 km at 6 hours was well represented 231 

in NN300 (Fig. 2e). The weak LW warming below the cloud and over the surface (Fig. 2e) 232 

and the strong SW warming area above 3 K day
-1

 (Fig. 2f) were also represented well. The 233 

WRF20 exhibited similar performance to the NN300 for large-scale features (Figs. 2g–i). 234 

However, Table 1 shows that the NN300 results agreed better with the control run (i.e., lower 235 

RMSE and higher R
2
) than did the WRF20 results. Note that the mean biases were both close 236 

to zero, so the RMSE results may be the most appropriate measure of accuracy. We observed 237 

that, in terms of the RMSE, the accuracy of NN300 was improved by 19% for LHR, 22% for 238 

SHR, and 25% for the cloud fraction, relative to WRF20. The NN56, equivalent to a 239 

hundredfold speedup, yielded RMSE improvements of 24% for the LW heating rate, 11% for 240 

the SW heating rate, and 42% for the cloud fraction, in comparison to WRF100. Surprisingly, 241 

the NN56 results were even more accurate than the WRF20, despite the huge difference in 242 



computation cost (i.e., a factor of 100 vs. 20 in speedup). These results suggest that the 243 

frequent use of a radiation emulator can be beneficial in terms both computational speed and 244 

accuracy, relative to the infrequent use of the original scheme, especially for severe weather 245 

forecasting for which radiative processes at the cloud-resolving scale are important. 246 

The upper panel of Fig. 3 shows evolutionary features in the horizontal domain (x) for 247 

LW/SW fluxes, surface temperature (Ts), and precipitation for the control run. The total sky 248 

LW upward flux at the TOA (LWUPT) exhibited a high value under the clear sky in the early 249 

stages but rapidly decreased in relation to horizontally spread clouds (Fig.2a). Unlike the 250 

LWUPT, total sky SW upward fluxes at the TOA (SWUPT) were greatly increased by cloudy 251 

conditions but then gradually decayed until sunset. The LW and SW fluxes at the surface 252 

(LWUPB, LWUPBC, LWDNB, LWDNBC, and SWUPB) developed into a horizontally 253 

asymmetric pattern tilted in the positive x direction that decreased toward sunset. These 254 

features are thought to be intimately related to Ts. Precipitation was mainly distributed over 255 

the ±10- km area corresponding to the center of the clouds and appears to have been biased 256 

toward the negative x direction after 5 hrs. 257 

Both NN300 and WRF20 represent characteristic features found in the control run, 258 

although difference exists from point to point (Fig. 3). Although the developed NN-emulator 259 

inevitably includes the discrepancies, their differences are within reasonable limits, as listed 260 

in Table 1. The NN300 exhibited improvements of 28% in LW fluxes and 20% in SW fluxes, 261 

in terms of RMSE, compared to the WRF20. The improvements were mainly associated with 262 

LWUPT, LWDNB, LWDNBC, SWUPT, and SWUPB, with the results for these exhibiting 263 

the largest discrepancies with respect to the control run. In particular, NN56 exhibited a 23% 264 

lower RMSE, compared to the LW fluxes of WRF20, implying advantages in both speed and 265 

accuracy. The NN300 reasonably simulated areas with Ts greater than 298 K for up to 3 hrs 266 

as well, but WRF20 does not provide this feature. Compared to WRF20, the Ts results from 267 



NN300 and NN56 represent significant reductions in RMSE, i.e., 43% and 34%, respectively, 268 

as well as more accurate pattern correlations, i.e., 0.94 and 0.92, respectively. Precipitation is 269 

a bottleneck in prognostic forecasting since it is difficult to simulate accurately under 270 

conditions of higher uncertainty and complexity (relatively lower R
2
 values in Table 1). 271 

Nevertheless, the NN300 results effectively represented the precipitation pattern, which was 272 

mainly concentrated at ±10 km in the control run (Fig. 3). However, WRF20 exhibited a 273 

heavy rainfall area up to the 20-km point, resulting in a huge difference with respect to the 274 

control run, especially after 4 hrs. For precipitation, the NN300 and NN56 results represented 275 

improvements of 25% and 21% in terms of reduced RMSE, in addition to an enhanced R
2
 276 

(0.58), in comparison to WRF20. 277 

 278 

4. Summary and Conclusion 279 

This study evaluated the forecast performance of NN-based radiation emulators at the 280 

cloud-resolving scale. For this purpose, NN-based RRTMG-K radiation emulators were 281 

developed with 300 and 56 neurons (NN300 and NN56) and implemented in the WRF model 282 

in the framework of an idealized two-dimensional squall-line simulation with 250-m spacing. 283 

A combined algorithm for LW and SW radiation was introduced for speedup and was 284 

integrated over 6 hrs at a 3-s time step. The emulator results appeared to reproduce well 285 

vertical evolutionary features of the LW/SW heating rate related to the cloud fraction. The 286 

prognostic features of LW/SW fluxes, surface temperature, and precipitation were also well 287 

simulated with the emulators. The NN300 and NN56 results were compared with those 288 

obtained from infrequent uses of RRTMG-K by 20 and 100 times with 60-s and 300-s 289 

radiation time steps (WRF20 and WRF100), equivalent to the same computational cost for 290 

NN300 and NN56, respectively, with the results for a WRF control run at a 3-s radiation time 291 

step considered to be true. The accuracy improvement achieved with NN300 (NN56), in 292 



terms of RMSE, were 19% (24%) for LW heating rate, 22% (11%) for SW heating rate, 25% 293 

(42%) for cloud fraction, 28% (23%) for LW fluxes, 20% (16%) for SW fluxes, 43% (34%) 294 

for surface temperature, and 25% (21%) for precipitation, compared to those obtained with 295 

WRF20 and WRF100, respectively. The NN56 results were even more accurate than the 296 

WRF20 results, despite a 80% lower consumption of computational resources. 297 

Since all previous studies on radiation emulators have applied to the climate simulations 298 

at horizontal resolutions of 100–300 km, the results of this study are particularly meaningful 299 

in that they represent the first attempt to evaluate the forecast performance of radiation 300 

emulators at the cloud-resolving scale, corresponding to strongly nonlinear condition. In 301 

particular, the validity of radiation emulation at the cloud-resolving scale is essential to 302 

forecasting severe weather accompanied by complex cloud systems. Furthermore, the 303 

evaluation method developed in this study (which achieves better performance than the 304 

infrequent use of the original radiation scheme, equivalent to similar speedup condition) 305 

provides insights that will be useful in the future development of radiation emulators. This is 306 

important because an emulator should provide benefits in speedup or accuracy in comparison 307 

to the infrequent radiation method. No previous research has presented an evaluation of 308 

radiation emulators under such strict conditions, because previous studies on radiation 309 

emulators were focused on imitating the original radiation scheme in climate simulations with 310 

coarse temporal resolutions (1–3 hrs). We acknowledge that the results obtained in this study 311 

apply to very limited ideal condition that cannot be easily generalized when applied to an 312 

actual case. Therefore, it will be necessary to ensure that the forecast performance (especially 313 

for severe weather) is truly improved by applying NN-based radiation emulators to real cases 314 

in the future. 315 

 316 

 317 
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Table 1. Evaluations results for NN-emulators using 300 and 56 neurons (NN300 and NN56) 438 

and infrequent radiation time steps by 20 and 100 times (WRF20 and WRF100) versus the 439 

WRF control run. The statistics in the table are the root mean squared error (RMSE) and the 440 

square of the correlation coefficient (in parentheses) relative to the control run. 441 

Experiments NN300 WRF20 NN56 WRF100 

Speedup of radiation 20.76 20 100.81 100 

Reduced computation time 82.12% 82.03% 85.96% 85.64% 

LW heating rate [K day
-1

] 0.92 (0.92) 1.14 (0.88) 1.03 (0.90) 1.35 (0.83) 

SW heating rate [K day
-1

] 0.40 (0.90 ) 0.51 (0.84) 0.47 (0.86) 0.53 (0.83) 

Cloud fraction [%] 6.04 (0.97) 8.04 (0.95) 6.27 (0.97) 10.86 (0.91) 

LW flux [W m
-2

] 5.68 (1.00) 7.97 (0.99) 6.15 (1.00) 8.03 (0.99) 

LWUPT 10.90 (0.91) 13.55 (0.87) 11.49 (0.87) 15.13 (0.84) 

LWUPTC 1.86 (0.86) 2.85 (0.71) 2.18 (0.80) 3.22 (0.71) 

LWUPB 1.03 (0.85) 1.56 (0.68) 1.13 (0.81) 1.41 (0.76) 

LWUPBC 0.72 (0.97) 1.31 (0.89) 0.96 (0.91) 1.12 (0.94) 

LWDNB 6.84 (0.84) 10.42 (0.66) 7.19 (0.82) 9.42 (0.74) 

LWDNBC 4.78 (0.97) 8.76 (0.88) 6.06 (0.92) 7.44 (0.94) 

SW flux [W m
-2

] 38.58 (0.99) 48.52 (0.99) 46.79 (0.98) 59.36 (0.97) 

SWUPT 53.27 (0.97) 66.70 (0.95) 64.76 (0.95) 81.59 (0.93) 

SWUPB 11.78 (0.96) 16.11 (0.93) 13.62 (0.94) 19.74 (0.90) 

Surface temperature (Ts) [K] 0.92 (0.94) 1.62 (0.83) 1.07 (0.92) 1.78 (0.88) 

Precipitation [mm] 0.19 (0.58) 0.24 (0.36) 0.18 (0.58) 0.21 (0.51) 

 442 

  443 



444 
Figure 1. Comparison of (a) LW heating rate, (b) SW heating rate, (c) LW flux, and (d) SW 445 

flux between the control run and NN emulation with 300 neurons for training datasets. 446 

Heating rates for 39 vertical layers and six LW and two SW fluxes are expressed together in 447 

the figure. The colors in the figure represent the occurrence frequency on a log scale. 448 
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450 
Figure 2. Temporal variation of 50-km mean (a) cloud fraction, and (b) LW and (c) SW 451 

heating rate profiles for the control run. (d–f) Same as (a–c) but for the WRF simulation 452 

using the NN-emulator with 300 neurons (NN300). (g–i) Same as (a–c) but for the WRF 453 

simulation with the infrequent radiation time step by 20 times (WRF20). 454 

  455 

SW heating rateLW heating rateCloud fraction
(b)(a) Control

(e) (f)

(c)

(d) NN300

(h) (i)(g) WRF20



456 
Figure 3. Temporal and spatial variation of LW and SW fluxes, surface temperature (Ts), and 457 

precipitation for the control run (top panel), NN300 (middle panel), and WRF20 (bottom 458 

panel). LW, SW, UP, DN, T, B, and C indicate longwave, shortwave, upward, downward, top 459 

of atmosphere, bottom of atmosphere, and clear sky, respectively. 460 
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