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Introduction

Text S1 provides derivation of the simple dry model used in the main text (Equations

(1)–(4)). In Text S2, we show the formulation of the time-invariant heat sources and initial

MRG structure given to the model. Text S3 explains the methodology of ray tracing of

MRGs. Figure S1 presents the relationship between low-level MRG convergence and

MJO2 initiation in the Indian Ocean, and Figures S2–S4 supplementarily display the

structure and evolution of MRGs for the model and MJO2.
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Text S1. Detailed derivation of the simple dry model

We here derive the simple dry model utilized in the main text, which starts with the

three-dimensional Boussinesq system on the equatorial β-plane (Majda, 2003):

DU

Dt
+ βyU⊥ = −∇P + ŜU (1)

∇ ·U +
∂W

∂z
= 0 (2)

∂P

∂z
= g

Θ

θref
(3)

DΘ

Dt
+W

dθ

dz
= Ŝθ (4)

where U = (U(x, y, z, t), V (x, y, z, t))T is the horizontal wind vector; U⊥ = (−V, U)T ; W

is vertical velocity; P is pressure including density; Θ is potential temperature anomalies

from the basic state (= θref + θ(z) where θref is constant); g is gravitational acceleration;

and Ŝθ and Ŝu is the heat and momentum source, respectively. ∇ is the horizontal gradient

operator (∂/∂x, ∂/∂y), and the material derivative (D/Dt) is

D

Dt
=

∂

∂t
+ U · ∇+W

∂

∂z

Equations (1)–(4) with dimensions are then nondimensionalized by the scaling introduced

in Stechmann, Majda, and Khouider (2008), which leads to the following equations:

DU

Dt
+ yU⊥ = −∇P + ŜU (5)

∇ ·U +
∂W

∂z
= 0 (6)

∂P

∂z
= Θ (7)

DΘ

Dt
+W = Ŝθ (8)

where all variables, forcing, and operators in (5)–(8) have no dimensions.
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Imposing the rigid lid conditions at the surface and at the top of the troposphere (i.e.,

W = 0 at z = 0, H; in nondimensional units, z = 0, π), we expand the variables and

sources in (5)–(8) in terms of the vertical eigenmodes (Cj, Sj) as follows:

U(x, y, z, t) =
∞∑
j=0

uj(x, y, t)Cj(z), W (x, y, z, t) =
∞∑
j=0

wj(x, y, t)Sj(z)

P (x, y, z, t) =
∞∑
j=0

pj(x, y, t)Cj(z), Θ(x, y, z, t) =
∞∑
j=0

θj(x, y, t)jSj(z) (9)

ŜU(x, y, z, t) =
∞∑
j=0

Suj
(x, y, t)Cj(z), Ŝθ(x, y, z, t) =

∞∑
j=0

Sθj(x, y, t)Sj(z)

where the vertical modes Cj, Sj are defined as

C0 = 1, Cj =
√

2 cos(jz), Sj =
√

2 sin(jz) (j = 1, 2, 3...)

and for those eigenfunctions, the inner product is defined as

〈F (z), G(z)〉 =
1

π

∫ π

0
F (z)G(z)dz

For a set of equations (9), we assume that the variables and sources are decomposed by the

barotropic mode (j = 0) and/or first and second baroclinic modes (j = 1, 2), because they

can capture the main structure of equatorial waves (e.g., Takayabu et al., 1996; Haertel

& Kiladis, 2004; Kiladis et al., 2009). That is,

U = u0 + C1u1 + C2u2, W = w0 + S1w1 + S2w2

P = p0 + C1p1 + C2p2, Θ = S1θ1 + 2S2θ2 (10)

Ŝu = Su0 + C1Su1 + C2Su2 , Ŝθ = S1Sθ1 + S2Sθ2

Here, the vertical modes for W are restricted by the following arguments. If we substitute

the decomposed U and W into the continuity equation (6) and then compute the inner
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product with C0, we obtain

∇ · u0 +
∂w0

∂z
= 0 (11)

Integration of (11) from z′ = 0 to z′ = z derives

∫ z

0
(∇ · u0)dz

′ + w0(z)− w0(0) = 0,

so using w0(z
′ = 0) = 0, we can rewrite this as w0(z) = −z(∇·u0). Because the boundary

condition w0(π) = 0 should be satisfied, ∇ · u0 = 0 is necessary. Hence, the barotropic

mode for W must vanish:

w0 = 0 (12)

Under the vertical decomposition in (10) and (12), equations (5)–(8) are projected onto

the barotropic and/or first and second baroclinic modes. As an example, we now derive

the momentum equation with the barotropic mode. Substitution of (9) into (5) leads to

∂

∂t

 2∑
j=0

Cjuj

+
2∑
j=0

Cjuj · ∇

 2∑
j=0

Cjuj

 +

 2∑
j=1

Sjwj

 ∂

∂z

 2∑
j=1

Cjuj

+ y

 2∑
j=0

Cju
⊥
j


= C1∇θ1 + C2∇θ2 +

2∑
j=0

CjSuj
(13)

where Pj = −θj from the hydrostatic equation (7) is used. To extract the barotropic

mode from (13), we compute the inner product between (13) and C0, which derives

∂u0

∂t
+

2∑
j=0

uj · ∇uj −
2∑
j=1

wjuj + yu⊥0 = Su0 (14)

By applying wj = −(1/j)∇ · uj from the continuity equation (6) and operating ”∇×” to

(14), we finally obtain the barotropic vorticity (ζ0) equation:

∂ζ0
∂t

+∇×

 2∑
j=0

uj · ∇uj +
2∑
j=1

(∇ · uj)uj

+ v0 = Sζ0 (15)
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where ζ0 = ∇ × u0, and Sζ0 is the source term for barotropic vorticity. When we adopt

Sζ0 = −ζ0/τu and add the diffusion term, the equation (15) corresponds to the equation

(1) in the main text. Note that (15) (or (1) in the main text) is numerically solved by

predicting a stream function ψ0, which satisfies the Laplace equation ζ0 = ∇2ψ0. Follow-

ing the same procedure as above, we can construct the dry dynamical core completely

with equations (1)–(4) in the main text.

Text S2. Description of the heat sources and initial MRG structure for the

model

1) Formulations of the time-invariant heat sources

The time-invariant heat sources for the first and second baroclinic modes (Sθ1 and Sθ2)

are given by

Sθ1 =



Q1
θ1

cos

(
2π
x− Lx/16

Lx/8

)
exp(−βy2/c)

(
0 ≤ x

Lx
≤ 1

8

)

(Q2
θ1
−Q1

θ1
) +Q2

θ1
cos

[
2π
x− (19/48)Lx

(13/24)Lx

]
exp(−βy2/c)

(
1

8
<

x

Lx
<

2

3

)

(Q3
θ1
−Q1

θ1
) +Q3

θ1
cos

[
2π
x− (5/6)Lx

Lx/3

]
exp(−βy2/c)

(
2

3
≤ x

Lx
≤ 1

)
(16)

Sθ2 =



Qθ2

∣∣∣∣∣cos

(
2π
x− Lx/16

Lx/8

)∣∣∣∣∣ exp(−βy2/c)
(

0 ≤ x

Lx
≤ 1

8

)

Qθ2

∣∣∣∣∣cos

[
2π
x− (19/48)Lx

(13/24)Lx

]∣∣∣∣∣ exp(−βy2/c)
(

1

8
<

x

Lx
<

2

3

)

Qθ2

∣∣∣∣∣cos

[
2π
x− (5/6)Lx

Lx/3

]∣∣∣∣∣ exp(−βy2/c)
(

2

3
≤ x

Lx
≤ 1

)
(17)

where Lx (= 40,000 km) is the zonal extent of the channel and c (= 50 m/s) is the

reference phase speed of gravity waves (Stechmann et al., 2008). Heating amplitudes are
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set at (Q1
θ1
, Q2

θ1
, Q3

θ1
) = (1.0, 1.5, 0.75) K/day, and Qθ2 = 0.226 K/day. As described in

the main text, Qθ2 is the same as that in Yang, Khouider, Majda, and Chevrotière (2019).

2) Formulations of the initial MRG structure

Following Aiyyer and Molinari (2003), we construct the initial MRG structure on the

equatorial β-plane. For the first and second baroclinic modes (j = 1, 2), uj, vj, and θj

associated with MRGs at t = 0 are given by

vj|t=0 = Ajφe
−βy2/2c cos(kx) (18)

uj|t=0 = Ajβy
e−βy

2/2c

k2c2 − ω2
[(ω + ck)φ+ 2ckγφ∗] sin(kx) (19)

θj|t=0 = −Ajβyα
e−βy

2/2c

c(k2c2 − ω2)
[(ω + ck)φ+ 2ωγφ∗] sin(kx) (20)

Here, Aj is an arbitrary amplitude factor; k is zonal wavenumber; ω is frequency;

α ≡ HN2θref/(πg) is potential temperature scale (N2 is buoyancy frequency squared;

see Stechmann et al. (2008)); and (φ, φ∗; γ) satisfies the following relation:

φ = 1F1

(
−γ

2
,
1

2
,
βy2

c

)
, φ∗ = 1F1

(
1− γ

2
,
3

2
,
βy2

c

)
(21)

γ =
ω3 − c2kβ − c2k2ω − βcω

2βcω
(22)

where 1F1 is a Kummer’s confluent hypergeometric function. Because vj|t=0 should be

vanished at the meridional boundary y = ±Ly in the equatorial β-channel,

1F1

(
−γ

2
,
1

2
,
βLy

2

c

)
= 0 (23)

is required from (18) and (21). γ can be numerically obtained from (23), and then a

solution of ω in (22) can also be found for given k. As the result, we know all parameters

needed to derive the MRG structure from (18)–(20). In this study, the MRG horizontal

and vertical structure for A1 = −3.0 and A2 = 3.0 is used, and it is presented in Fig. S2.
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Text S3. Method of ray tracing for MRGs (Fig. 4h)

We have conducted ray tracing for MRGs in an equatorial x-z space by integrating the

group velocity Cg = (Cgx, Cgz) and time derivative of the wavenumber vector k = (kx, kz),

which are represented by

dgX

dt
≡ Cg (24)

dgk

dt
≡ ∂k

∂t
+ Cg · ∇k = −∇Ω (25)

where X = (X,Z) is the position of a ray; and Ω is the dispersion relation of MRGs.

When a varying zonal flow u(x, z) exists, Ω and Cg ≡ (∂Ω/∂kx, ∂Ω/∂kz) are given by

Ω ≡ ωi + kxu =
ce
2

(
k −

√
k2 + 4β/ce

)
+ kxu (26)

Cgx =
ce
2

1− kx√
k2x + 4β/ce

+ u (27)

Cgz = ∓ ω3
i

N(kxωi + 2β)
(28)

where ωi is intrinsic frequency; ce = N/|kz|; and N is buoyancy frequency. Although the

direction of the vertical phase propagation of MRGs can be both upward and downward,

we assumed upward phase propagation (i.e., kz < 0 for kx > 0 and ωi < 0) because of

the eastward-tilted vertical structure (Fig. S3b). Thus, the minus sign is taken in (27),

which corresponds to the downward energy dispersion for ωi < 0. If initial kx and kz

are given, we can obtain Cg uniquely using (26)–(28) and start the time integration of

(24) and (25) from an arbitrary initial position Xinit. Subsequently, k, Cg, and X is

updated in turn. We use the fourth-order Runge-Kutta scheme with a time step of 30
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min. Background fields (u and N) are calculated by linear and spline interpolation of the

6-hourly ERA-Interim data (7.5◦S–7.5◦N) in space and time, respectively.

As described in the main text (Section 4.2), the initial ray position Xinit is around 49◦E,

300 hPa (∼ 9680 m), and the initial zonal wavelength λx (= 2π/kx) is set to be about 47◦

(see Figs. S3b and S4). Meanwhile, this estimation should include some uncertainties, so

we prepare for 45 initial conditions with slight perturbations for Xinit and λx. Specifically,

we have tried combinations of 5 zonal positions (Xinit = 48◦, 48.5◦, 49◦, 49.5◦, 50◦), 3

vertical positions (Zinit = 9630, 9680, 9730 m), and 3 zonal wavelengths (λx = 46◦, 47◦,

48◦). For each λx and cpx = −17.0 m/s (Fig. S4), kz is determined by the MRG dispersion

relation (26) as

|kz| = N
β/k2x + cipx

(cipx)
2

(29)

where cipx = ωi/kx (= cpx − u) is the intrinsic zonal phase speed. Consequently, initial λz

is calculated as λz = 19.1, 21.4, and 25.8 km for λx = 46◦, 47◦, and 48◦, respectively.
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Figure S1. Horizontal maps of MRG-filtered horizontal convergence (shading) and wind

anomalies (vectors) at 1000–800 hPa and precipitation (contours with 0.75 mm/hr) from 00UTC

17 to 28 November. Letters a–g and A–G′ denote representative convergence/cross-equatorial

flows and corresponding precipitation, respectively (e.g., Convergence ”a” is related to precipi-

tation ”A”, associated with MJO initiation around 17 November).
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Figure S2. (a) Horizontal map of potential temperature (shading) and wind (vectors) anoma-

lies given as the initial MRG structure for an MRG amplitude factor 1.0. (b) Vertical profile of

an MRG amplitude factor for the first and second baroclinic modes (blue and pink) and their

superposition (black).
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Amplifying

Amplifying

Figure S3. Zonal-height sections of equatorial MRG-related meridional wind anomalies (shad-

ing and white contours), background zonal winds (gray and purple contours), and background

zonal convergence (stippling) every 2 day for (a) the model from days 8 to 16 and (b) MJO2 from

8 to 16 November. Definitions of anomalies and background fields follow those in Fig. 3. White

contour interval is 0.5 (0.48) m/s for the model (MJO2). Gray/purple contour interval is 2.5 m/s

from ±5 m/s (purple; −5 m/s), with negative (zero) values broken (bolded). Black-dashed lines

and blue arrows represent the eastward-tilted phase lines and expected direction of MRG energy

dispersion, respectively. Filled marker on 10 November in (b) denotes Xinit for ray tracing.
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13.2deg/day (~17.0m/s)

～23.5deg

Figure S4. As in Fig. 1d, but for 300 hPa.
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