
Figure 4 (BOTTOM): Mean squared displacement, σ2, in the longitudinal (along y’), transverse 1 and 2 
(ver�cal and horizontal rela�ve to y’ respec�vely) direc�ons. σ2 in direc�on j is:                                           
where        is the average over all par�cles. As VHGR decreases: (a) increased spa�al and temporal vari-
ance is observed in all direc�ons, and (b) late �me longitudinal and transverse 1 σ2 are more subdiffu-
sive and show pre-asympto�c behavior. Sub- and superdiffusion in direc�on j are defined as nonlinear 
scaling of σ2 with respect to time,                    and indicate anomalous transport (left). 
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1. ABSTRACT 2. FLOW & TRANSPORT IN A HETEROGENEOUS ALLUVIAL AQUIFER UNDER VARYING VHGR

CORE QUESTION

     How does varying hydraulic gradient direc�on
     affect anomalous transport and applicability 
     of the advec�on dispersion equa�on (ADE)? 

Fluid flow and contaminant transport in heteroge-
neous porous media is cri�cal in many applica�ons 
from sustainable groundwater quality management 
[1] to radioac�ve waste disposal [2] and water filtra-
�on [3]. Accurate contaminant transport modeling is 
challenged by anomalous (non-Fickian) transport, 
characterized by early breakthrough, long tailing, 
non-Gaussian or mul�peaked plume shapes, and non-
linear scaling of the mean square displacement [4]. 

In regional alluvial aquifers, it is unknown how emerg-
ing nonpoint source contamina�on (e.g., salts and ni-
trates) will interact with aquifer heterogeneity and 
shi�ing hydraulic gradients. Pumping and recharge for 
irriga�on significantly shi� the magnitude and direc-
�on of regional hydraulic gradients but how varia�ons 
in the hydraulic gradients, par�cularly direc�on, 
impact non-Fickian transport remains, to our knowl-
edge, unexplored. We inves�gate the influence of hy-
draulic gradients on non-Fickian transport with a 
simple concept, the ver�cal to horizontal gradient 
ra�o (VHGR): 

Large VHGR is predominately ver�cal flow and flow is 
increasingly horizontal as VHGR decreases toward 1. 

In horizontally stra�fied clas�c sedimentary deposits, 
horizontal K’ is commonly 100 to 10,000 �mes great-
er than ver�cal K’. In these systems, groundwater 
pumping at depth and irriga�on recharge from above 
create very large VHGR (e.g., 100). When pumping 
and/or recharge is decreased, VHGR values typical of 
pre-development condi�ons (e.g., 1 to 10) can pre-
vail. This works shows that the significance of 
non-Fickian transport processes depends greatly on 
these differing hydraulic gradient forcings.

We test three hypothe�cal VHGR scenarios represent-
ing intensive to reduced pumping (VHGR = 100, 10, 1) 
in a highly stra�fied heterogeneous alluvial aquifer 
[5]. We find that lower VHGR in our study site results 
in increased non-Fickian behavior, illustrated by in-
creased spreading in longitudinal and transverse di-
rec�ons, and increased mass holdback and tailing. 
Thus, regional-scale nonpoint source contaminant 
management under reduced pumping and recharge 
may need to account for increased non-Fickian trans-
port (i.e., longer contaminant residence and greater 
spa�al spreading) than previously considered. Con-
versely, under condi�ons of strong ver�cal gradients 
that drive mass more or less straight through confin-
ing beds rather than allowing mass to find preferen-
�al flowpaths around them, the ADE may be a very 
good approxima�on of the transport physics.

VHGR varies by orders of magnitude in heavily managed groundwater systems due to pumping and recharge. We show that decreasing 
VHGR in our study site increases non-Fickian transport, illustrated by increased--and non-Gaussian--mass holdback along the ver�cal di-
rec�on (Figure 3), and increased spreading and preasympto�c behavior in the second spa�al moments of the plume (Figure 4) along the 
mean flow direc�on.  

At high VHGR (100 and 10), strong advec�on forces par�cle trajectories along nearly ver�cal paths (Figure 1) and straight through high 
and low-K zones, evidenced by higher early-�me muddy sand and paleosol propor�ons (Figure 2). 

Significant pumping for irriga�on has depleted global groundwater reserves [8-9], and established strong ver�cal hydraulic gradients due 
to pumping at depth (i.e., high VHGR). Sustainable groundwater management regimes that reduce pumping and increase recharge will 
effec�vely decrease VHGR. Thus, regional-scale groundwater quality models will need to account for increased non-Fickian transport 
(i.e, longer contaminant residence and greater spa�al spreading) under these condi�ons. Conversely, if ver�cal gradients are sufficiently 
strong, the ADE may be a very good approxima�on of physics because the mass may be driven more or less straight through the aqui-
tards. When the ver�cal gradients are weaker, mass can flow around the aquitards, triggering both preferen�al flow through high-K 
pathways and transverse dispersion and diffusion into and out of the aquitards, augmen�ng early- and late-�me tailing.
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3. TRANSPORT IS INCREASINGLY NON-FICKIAN AS VHGR DECREASES
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no flow on sides

Figure 3 (TOP): Mass displacement along the z direc�on at t₂₅, t₅₀ and t₇₅ of the cumula�ve 
breakthrough curve (right). Ver�cal dashed lines are mean mass loca�ons       at �me n predicted 
by the mean ver�cal velocity      via Darcy’s law:                . Mass is increasingly held back with de-
creasing VHGR, resul�ng in greater spreading along the longitudinal and transverse direc�ons 
(Figure 4), and increased tailing measured at a control plane at bo�om of the model (Figure 1). �me
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4. DISCUSSION
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Figure 1 (TOP): From le� to right, 3 
representa�ve par�cle trajectories for 
VHGR = 100, 10, and 1. Par�cle trajec-
tories are colored by the hydraulic 
conduc�vity of the hydrofacies they 
reside in at the �me of the snapshot. 
The alluvial aquifer T-PROGS domain 
[5] connects in 3D via sand and gravel 
lenses. Characteris�c length scales in 
xy are 2-3 orders of magnitude greater 
than those in z. Flow and transport are 
solved with MODFLOW [6] and the 
random walk code RW3D [7]. 

Figure 2 (LEFT): Mean Lagrangian hy-
drofacies propor�ons converge on the 
actual propor�ons (black dashed line) 
over increasing �me scales as VHGR 
decreases. Rela�vely higher muddy 
sand and paleosol propor�ons for 
VHGR = 100 and 10 suggest advec-
�on-dominated transport. As VHGR 
decreases, late �me oscilla�ons in hy-
drofacies propor�on--caused by diffu-
sion-dominated trajectories that ex-
change mass between facies--are in-
creasingly common. Time is rescaled 
by                    where        and      are the 
characteris�c length and mean veloci-
ty along mean flow direc�on y’.
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