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Key Points: 13 

 Streamflow intermittence at more than 1.5 million European reaches was estimated for 14 

every month during 1981-2019. 15 

 18.7% of the European river network length and 3.8% of all reach-months are 16 

intermittent, predominantly with 30-31 no-flow days.  17 

 15 arc-sec monthly streamflow obtained by downscaling the output of a global 18 

hydrological model serves as input to Random Forest modeling. 19 

 20 

  21 

mailto:p.doell@em.uni-frankfurt.de)


manuscript submitted to Water Resources Research 

2 

 

Abstract 22 

Knowing where and when rivers cease to flow provides an important basis for evaluating riverine 23 

biodiversity, biogeochemistry and ecosystem services. We present a novel modeling approach to 24 

estimate monthly time series of streamflow intermittence at high spatial resolution at the 25 

continental scale. Streamflow intermittence is quantified at more than 1.5 million river reaches in 26 

Europe as the number of no-flow days grouped into five classes (0, 1-5, 6-15, 16-29, 30-31 no-27 

flow days) for each month from 1981 to 2019. Daily time series of observed streamflow at 3706 28 

gauging stations were used to train and validate a two-step Random Forest modeling approach. 29 

Important predictors were derived from time series of monthly streamflow at 73 million 15 arc-30 

sec (~500 m) grid cells that were computed by downscaling the 0.5 arc-deg (~55 km) output of the 31 

global hydrological model WaterGAP, which accounts for human water use. Of the observed 32 

perennial and intermittent station-months, 97.8% and 86.4%, respectively, are correctly predicted. 33 

Interannual variations of the number of intermittent months at intermittent reaches are 34 

satisfactorily simulated, with a median Pearson correlation of 0.5. While the spatial prevalence of 35 

intermittent reaches is underestimated, the number of intermittent months is overestimated in dry 36 

regions of Europe where artificial storage abounds. Our model estimates that 3.8% of all European 37 

reach-months and 17.2% of all reaches were intermittent during 1981-2019, predominantly with 38 

30-31 no-flow days. Although estimation uncertainty is high, our study provides, for the first time, 39 

information on the continent-wide dynamics of intermittent rivers and streams. 40 

 41 

Plain Language Summary 42 

Even in wet climates, small streams can seasonally dry up. In drier areas, large rivers might not 43 

carry water for weeks or months. However, as streamflow observations are lacking for most drying 44 

rivers, we know little about when, where, and how long rivers experience such a streamflow 45 

intermittence that is crucial for both river life and human water supply. We developed and applied 46 

a novel approach to estimate, for the first time, the temporal dynamics of streamflow intermittence 47 

across European rivers and streams, including small ones. This approach combines the output of a 48 

global hydrological model with streamflow observations and other data. We refined the global 49 

model output available for 50 km cells to monthly streamflow in 500 m cells. We then applied a 50 

machine learning model to predict the number of days without water flow in each month during 51 

the period 1981-2019 for over 1.5 million river segments. We found that 17% of all European 52 

segments and 4% of all months at all segments experienced at least one day without flow. In the 53 

future, the model will be used to estimate the impact of climate change on streamflow 54 

intermittence. 55 

1. Introduction 56 

It has recently been estimated that most rivers and streams on Earth have reaches that naturally 57 

cease to flow or dry at least one day per year (Messager et al., 2021). Natural streamflow 58 

intermittence is most prevalent in semi-arid and arid regions, where it may occur even in large 59 

rivers, but it is also widespread in smaller headwater streams across humid regions. For example, 60 

25–40% of the total length of streams and rivers in France are estimated to be intermittent (Snelder 61 

et al., 2013). In most basins, the likelihood and degree of streamflow intermittence, i.e., the fraction 62 

of no-flow days, increases with decreasing mean streamflow or upstream area (Datry et al., 2014; 63 
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Messager et al., 2021). Waterways can also cease to flow without being dry due to freezing 64 

conditions, so intermittent streams are a significant feature of cold landscapes as well (Buttle et 65 

al., 2012;  Shanafield et al., 2021). Anthropogenic alterations of the natural flow regime resulting, 66 

for example, from human water abstractions or the operation of artificial reservoirs, can increase 67 

or decrease the number of no-flow days (Richter, 1997). 68 

While streamflow intermittence can be monitored by measuring streamflow at gauging stations, 69 

these measurements come with numerous limitations (Zimmer et al., 2020) and only cover a very 70 

small part of all reaches, being particularly sparse where intermittent conditions prevail (Sauquet 71 

et al., 2021b; Krabbenhoft et al., 2022). In addition, streamflow observations are insufficient to 72 

derive projections of future changes in intermittence due to anthropogenic drivers, including 73 

climate change as well as artificial reservoirs and land and water use (Sauquet et al., 2021a; Döll 74 

& Müller Schmied, 2012). Therefore, comprehensive analyses of streamflow intermittence and its 75 

effects on water resources for humans and other biota require a modeling approach.  76 

Large-scale modeling of streamflow intermittence is necessary for assessments of biodiversity, 77 

ecosystem functions and ecosystem services of rivers and streams at national to global scales. Until 78 

now, however, continental- or global-scale modeling studies on streamflow intermittence have 79 

either provided a static classification of river reaches into intermittent or perennial at high spatial 80 

resolution (15 arc-sec, ca. 500 m; Messager et al., 2021) or time series of intermittent streamflow 81 

conditions at a low spatial resolution (0.5 arc-deg, ca. 50 km; Döll & Müller Schmied, 2012). 82 

Messager et al. (2021) used Random Forest modeling to estimate which river reaches cease to flow 83 

at least one day per year or for at least thirty days per year; this was achieved for 23.3 million km 84 

of mapped rivers and streams across the globe (except Antarctica) whose long-term average 85 

naturalized discharge exceeds 0.1 m3/s. Despite its fine resolution, such a static classification of 86 

reaches as either perennial or intermittent fails to characterize the temporal structure of flow 87 

intermittence (e.g., the number of no-flow days or seasonality of intermittence) which is required 88 

for analyzing the biodiversity and ecosystem functions of intermittent streams and rivers (Datry et 89 

al., 2018). By contrast, daily streamflow time series simulated by global hydrological models such 90 

as the WaterGAP model used in Döll and Müller Schmied (2012) do represent the temporal 91 

dynamics of streamflow intermittence. However, these coarser models overlook headwater stream 92 

reaches with small drainage basins, which are more prone to intermittence than larger downstream 93 

reaches and comprise the majority of global river length (Messager et al., 2021).  94 

Simulating daily streamflow in small headwater streams requires small computational grid cell 95 

sizes (e.g., 500 m or less). Such small grid cells can easily be implemented in hydrological models 96 

if the drainage basin of study is small (Mahoney et al., 2023). However, this is not feasible across 97 

large geographic extents like entire continents or the world due to the lack of high-resolution 98 

climate data at these scales and computational constraints resulting from the large number of small 99 

(high-resolution) grid cells (Bierkens et al., 2015, Döll et al., 2016). A 0.5 arc-deg grid cell, typical 100 

for global hydrological models, contains 14,400 individual 15 arc-sec grid cells; in Europe alone 101 

(without Russia and Turkey), for example, there are about 73 million 15 arc-sec cells. Furthermore, 102 

hydrological models are often less successful in simulating low flows than mean flows (Zaherpour 103 

et al., 2018). Most hydrological models are process-based, i.e., they attempt to estimate water 104 

storage and fluxes across the different compartments of the terrestrial part of the hydrological cycle 105 

with sets of mathematical equations (Telteu et al., 2021). However, a satisfactory process-based 106 

simulation of low-flow, and particularly no-flow conditions, is very difficult even at small scales, 107 
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in part because the simulation of two-way exchange flows between surface water bodies and 108 

groundwater bodies requires coupling of a hydrological model with a gradient-based groundwater 109 

model (Döll et al., 2016). To help advance the science and management of freshwater ecosystems 110 

globally, new approaches are thus needed to produce large-scale high-resolution models of 111 

streamflow intermittence that provide information on the frequency, duration and timing of flow 112 

cessation across the entire river network, from the headwaters to river mouths.  113 

Machine learning methods such as Random Forest (RF) have the advantage over process-based 114 

models that they do not require detailed knowledge of the processes underlying the phenomenon 115 

of interest and are thus a promising tool to produce large-scale high-resolution predictions of no-116 

flow conditions. However, to achieve temporally explicit predictions, these models require 117 

temporally explicit predictors. The respective strengths of global hydrological models and machine 118 

learning methods can hence be combined by using the dynamic output of the former as an input 119 

predictor for the latter to achieve large-scale high-resolution modeling of the temporal structure of 120 

streamflow intermittence. 121 

Here, we present such a combined modeling approach for computing monthly time series of 122 

streamflow intermittence conditions at the continental scale for river reaches that can be defined 123 

with a spatial resolution of 15 arc-sec. Our RF modeling approach combines temporally explicit 124 

predictor variables derived from the low resolution (LR, 0.5 arc-deg) state-of-the-art global 125 

hydrological model WaterGAP 2.2e (Müller Schmied et al., 2021) with several high-resolution 126 

(HR, 15 arc-sec) static predictor variables (e.g., drainage area and irrigated area). As part of this 127 

approach, WaterGAP LR output is spatially downscaled to derive HR monthly time series of 128 

streamflow. While all predictors used in the model are based on globally available data, the 129 

approach was developed using time series of daily streamflow observed at 3706 gauging stations 130 

throughout Europe (resulting in more than 1 million station-month with information on the number 131 

of no-flow days). It was then applied to estimate streamflow intermittence in Europe.  132 

Section 2 presents the data and methods of this study. In section 3, the downscaled HR monthly 133 

streamflow time series are compared to observations at all gauging stations that were used to set 134 

up and calibrate the RF model. RF model performance and results of the RF application are 135 

presented in section 4. Section 5 provides validation and discussion of the streamflow 136 

intermittence modeling approach, while conclusions are drawn in section 6. 137 

2. Methods and data 138 

Below, we first explain the downscaling method applied to derive HR time series of streamflow 139 

from the LR output of the global hydrological model WaterGAP (Section 2.1). We then describe 140 

the compilation of the dataset of observed daily streamflow in Europe that was used for both 141 

validating the HR streamflow and for deriving the target data of the RF modeling approach 142 

(Section 2.2). This is followed by the description of the RF modeling approach, which consists of 143 

two sequential RF models (Section 2.3) and the definition of European river reaches for which 144 

model predictions are made (Section 2.4).In Section 2.5, performance metrics are explained. 145 

The hydrographic dataset applied throughout this study is the global HR drainage direction map 146 

of HydroSHEDS v1 (Lehner et al., 2008; www.hydrosheds.org). This dataset represents, for each 147 

15 arc-sec grid cell on land, the direction in which water would flow from that cell to its 148 

neighboring cells given topography. It serves to downscale LR outputs from WaterGAP, to co-149 

http://www.hydrosheds.org/
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register streamflow gauging stations, to delineate river reaches for which the RF model produces 150 

predictions and to quantify predictors that are aggregated over the upstream areas of stations and 151 

reaches. In this study for Europe, HydroSHEDS was modified in three drainage basins (each about 152 

200 km2) in Finland, Hungary and Croatia due to their use as case study basins in the related 153 

DRYvER project (see Döll et al., 2023a and https://www.dryver.eu/about/case-studies.   154 

2.1. Downscaling of LR WaterGAP output to obtain time series of monthly HR streamflow 155 

2.1.1. WaterGAP  156 

WaterGAP is a global water resources and use model that covers all continents except Antarctica 157 

(see Müller Schmied et al., 2021, for details). It computes time series of water use for irrigation, 158 

livestock, manufacturing, cooling of thermal power plants and households, distinguishing 159 

groundwater and surface water sources. It also simulates water flows (e.g., evapotranspiration and 160 

runoff) and water storages (e.g., in soil and groundwater), taking into account the impact of net 161 

abstractions from groundwater and surface water bodies as well as of artificial reservoirs. 162 

However, only operation of the globally largest 1109 artifical reservoirs (including regulated lakes) 163 

is simulated explicitly in WaterGAP, while smaller reservoirs only add to the fraction of each LR 164 

cell that is made up by of so-called local lakes, thus affecting evapotranspiration and flow 165 

dynamics in a very coarse way only. In WaterGAP, daily water flows and storages of 10 storage 166 

compartments are simulated in each LR grid cell. Total runoff from land is partitioned into fast 167 

(surface) runoff and groundwater recharge. Surface runoff from within a grid cell reaches surface 168 

water bodies (wetlands, lakes, reservoirs and rivers) on the same day, while groundwater recharge 169 

flows from the soil into the groundwater, which then releases groundwater discharge to surface 170 

water bodies as a function of groundwater storage. Only one river is assumed to exist within each 171 

LR grid cell, and the streamflow computed by WaterGAP refers to the outflow from the LR grid 172 

cell to the next downstream grid cell, which is prescribed by the LR drainage direction map 173 

DDM30 (Döll & Lehner, 2002). Groundwater discharge to surface water bodies may become zero 174 

in case of groundwater depletion, but loss of streamflow to the groundwater cannot be simulated. 175 

The LR WaterGAP output used in this study was computed by forcing version 2.2e of WaterGAP 176 

with the climate data set GSWP3-W5E5 (Müller Schmied et al., 2023a) for the time period 1901-177 

2019. The model was calibrated against long-term mean annual streamflow observations observed 178 

at 1509 gauging stations globally (with a drainage area of at least 9,000 km2) by adjusting 1-3 179 

model parameters. 180 

2.1.2. Downscaling approach 181 

A number of approaches for generating time series of high-resolution streamflow from the output 182 

of global hydrological models were recently developed (Lin et al.; 2019, Kallio et al., 2021; 183 

Chuphal and Mishra, 2023). Our approach for downscaling the LR output of a global hydrological 184 

model to HR streamflow is based on the conceptual framework developed by Lehner and Grill 185 

(2013) which was globally applied, for example, in Linke et al. (2019). In this study, we 186 

generalized and adapted the approach, including some simplifications, to enable a computationally 187 

efficient generation of HR time series of monthly streamflow. As a distinct feature, the 188 

downscaling approach does not simply disaggregate and then route the sum of LR surface runoff 189 

and groundwater recharge (i.e., total runoff from land) along the HR river network, as this would 190 

disregard water retention in the groundwater and in surface water bodies, evaporation from surface 191 

water bodies and as well as  human water use. Instead, our approach uses both surface runoff and 192 

https://www.dryver.eu/about/case-studies
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groundwater discharge estimates from the LR model and projects the results onto the HR river 193 

network using geospatial interpolation methods. Considering the original LR groundwater 194 

discharge estimates allows for better representation of HR streamflow variability because it takes 195 

into account the storage capacity of surface water bodies and groundwater aquifers that smoothen 196 

and delay the streamflow signal. Further corrections take into account the LR net cell runoff of 197 

WaterGAP, which, in addition to surface runoff and groundwater discharge, takes into account the 198 

dynamics of surface water bodies and human water use.  199 

Here, we only describe the core elements of the downscaling method; for details see 200 

Supplementary Information Text S1. The sum of LR monthly surface runoff and groundwater 201 

discharge (expressed as specific volume flow per unit area, i.e., m3 s-1 km-2) is first interpolated 202 

from 0.5 arc-deg to an intermediate resolution of 0.1 arc-deg to avoid abrupt changes in streamflow 203 

at the edges between LR cells. This is performed using an inverse distance interpolation with a 204 

power of 2 and taking into account the nearest 9 LR data points. A maximum interpolation radius 205 

of 1.8 arc-deg is allowed to extend data into areas where land cells are represented in the HR 206 

hydrography but not in the LR river network. This is the case in coastal regions and in missing 207 

cells within large lakes of the LR model. In the next step, the 0.1 arc-deg values are disaggregated 208 

to the 15 arc-sec HR grid cells by assigning the same 0.1 arc-deg value to all respective 15 arc-sec 209 

cells, assigning null values to HR cells outside of the continental boundaries of HydroSHEDS. 210 

This disaggregated “runoff” dRLi,Hj of HR cell j located within LR cell i, expressed as volume flow, 211 

is then corrected to integrate information from the routing routine of the LR model, in particular 212 

about the impact of surface water bodies and human water use on streamflow. Finally, HR 213 

streamflow QLi,Hj in each month is computed by accumulating the sum of dRLi,Hj  and a weighted 214 

correction term along the HR drainage direction, with 215 

𝑄𝐿𝑖,𝐻𝑗 = 𝑓𝑙𝑜𝑤𝑎𝑐𝑐(𝑑𝑅𝐿𝑖′,𝐻𝑗′ + 𝐶𝐿𝑖′ ∗ 𝑊𝐿𝑖′,𝐻𝑗′) (1) 216 

𝐶𝐿𝑖 = 𝑛𝑐𝑅𝐿𝑖 − ∑ 𝑑𝑅𝐿𝑖,𝐻𝑗
14400
𝑗=1  (2) 217 

𝑊𝐿𝑖,𝐻𝑗 =
𝑓𝑙𝑜𝑤𝑎𝑐𝑐(𝑑𝑅𝐿𝑖,𝐻𝑗)

1

14400
∗∑ 𝑓𝑙𝑜𝑤𝑎𝑐𝑐(𝑑𝑅𝐿𝑖,𝐻𝑗)14400

𝑗=1

    (3) 218 

where CLi is correction term for each LR cell i (Equation 2), WLi,Hj is the correction weight to 219 

apply the correction term for each HR cell j within LR cell i (Equation 3), flowacc() represents 220 

the flow-accumulated variable computed by summing the values of all HR grid cells (Li’,Hj’) 221 

upstream of and including cell Li,Hj. The net cell runoff of LR grid cell i, ncRLi, is calculated as 222 

the streamflow of LR grid cell i minus the streamflow of all upstream LR grid cells, and is 223 

corrected for the different land masks (i.e., ocean-continent boundaries) of WaterGAP and 224 

HydroSHEDS. 225 

The GHM WaterGAP computes streamflow not only by routing surface runoff and groundwater 226 

discharge. It additionally considers the impacts of reservoirs, lakes and wetlands as well as human 227 

abstractions of groundwater and surface water within each LR grid cell. These impacts are included 228 

in ncRLi. This is why the disaggregated runoff is corrected by CLi, i.e., the difference between the 229 

LR ncRLi and the sum of HR dRLi,Hj within the LR cell (Equation 2). For example, if human water 230 

use leads to a streamflow reduction in the LR cell, net cell runoff is lower than the sum of surface 231 

runoff and groundwater discharge (𝑛𝑐𝑅𝐿𝑖 < ∑ 𝑑𝑅𝐿𝑖,𝐻𝑗
14400
𝑗=1 ), such that CLi becomes negative and 232 

HR streamflow is reduced, too.  233 
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Further correction terms are added to CLi as computed by Equation 2 in specific grid cells, such as 234 

HR endorheic sinks, outflow cells of lakes and reservoirs, or cells containing large rivers with a 235 

drainage area of more than 50,000 km2 (see Supporting Information Text S1). The final correction 236 

term is applied in a spatially weighted way to the HR grid cells. With the help of the correction 237 

weight WLi,Hj, a greater share of the total correction occurs in the downstream HR grid cells within 238 

each LR cell, which reflects the assumption that downstream HR cells are more affected by surface 239 

water bodies and human water use than upstream cells within the LR. The downscaling approach 240 

was implemented in Python. 241 

2.2. Compilation and processing of measured streamflow for the computation of target 242 

observations and for the validation of simulated HR streamflow 243 

Long-term historical information on the number of no-flow days per month in waterways, the 244 

target for the RF modeling, can only be derived consistently from continuous daily observations 245 

of streamflow at gauging stations. We collected most of these observations from the Global Runoff 246 

Data Centre (GRDC; https://www.bafg.de/GRDC) and the Global Streamflow Indices and 247 

Metadata archive (GSIM; Do et al., 2018; Gudmundsson et al., 2018), the largest existing global 248 

repositories of streamflow gauging station data. Altogether, daily streamflow records for 2930 249 

GRDC and GSIM stations are available through these datasets for Europe. However, most of the 250 

GRDC and GSIM stations are on perennial streams, without any no-flow days in their record, 251 

which reflects the global underrepresentation of streamflow gauging stations on intermittent river 252 

reaches (Krabbenhoft et al., 2022). Therefore, we used metadata on gauging stations with flow 253 

intermittence in 19 European countries from the SMIRES meta-database (Sauquet, 2020) to obtain 254 

daily streamflow time series directly from national streamflow data providers for 375 additional 255 

gauging stations listed in the database. As flow intermittence in Europe is most prevalent in 256 

Mediterranean regions, we additionally retrieved daily streamflow data for a total of 55, 648 and 257 

1031 gauging stations from governmental websites for Corsica (https://www.sandre.eaufrance.fr/), 258 

Italy (http://meteoniardo.altervista.org/) and Spain (https://ceh.cedex.es/anuarioaforos/ 259 

demarcaciones.asp), respectively.  260 

From this compiled streamflow dataset, records suitable for deriving target observations were 261 

selected for subsequent analyses. We first checked whether each gauging station was correctly 262 

located on the updated 15 arc-sec HydroSHEDS drainage direction map by comparing the 263 

upstream area given in the metadata with the upstream area of the HR cell where the station was 264 

located. Confirmatory checks also involved inspecting high-resolution satellite imagery and 265 

comparing the river and station names provided in the metadata to topographic maps (ESRI 266 

ArcGIS basemaps). If the drainage areas deviated by more than 10%, the stations were manually 267 

relocated to a suitable HR grid cell with a deviation of less than 10% and/or associated to a river 268 

or stream with the correct name in topographic maps (if provided in the metadata). If this was not 269 

possible, the station was excluded from the RF modeling. For the remaining stations, we excluded 270 

all station-months with any missing or suspicious daily flow values following the approach of 271 

Gudmundsson et al. (2018). We then excluded all stations that had less than 36 station-months of 272 

daily streamflow data. Finally, we labeled all days with a mean streamflow of 0.001 m3 s-1 or less 273 

as no-flow days and computed, as the target of the RF modeling, the number of no-flow days per 274 

month and station (i.e., per station-month). The maximum period with observed no-flow days and 275 

streamflow per station-month is 1981-2019 (468 months).  276 

In total, data on streamflow at 3706 stations during 1981-2019 were used for calibrating and 277 

http://meteoniardo.altervista.org/
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validating the RF models, corresponding to 1,166,944 station-months (26 years of useable data per 278 

station on average). While 2.8% of the station-months were intermittent, 24% of the stations had 279 

at least one no-flow day. In addition, daily streamflow values were aggregated to monthly values 280 

for the same station-months to serve for the validation of the simulated HR streamflow (Section 281 

2.1). 282 

2.3. Random Forest modeling approach 283 

2.3.1. Overview 284 

The supervised machine learning method RF is well suited for both classification and regression 285 

tasks (Breiman et al., 2001). RF modeling has already been used for hydrological classification 286 

problems, i.e., for predicting classes of hydrological characteristics including intermittence 287 

(global: Messager et al., 2021; Australia: Bond and Kennard, 2017; France: Snelder et al., 2013). 288 

Tyralis et al. (2019) provide a review of RF methods with a focus on hydrological applications.  289 

With less than 3% of all observed station-months in our European streamflow dataset being 290 

intermittent (Section 2.2), the dataset of target observations used for training the model is highly 291 

imbalanced, which can severely bias the resulting predictions (Japkowicz and Stephen, 2002). To 292 

mitigate this problem, two RFs are set up sequentially in our modeling approach. The first RF is 293 

developed to predict months with and without no-flow days (intermittent station-month and 294 

perennial station-months, respectively) in a binary way. The second RF is trained only with data 295 

for intermittent station-months to predict the number of no-flow days in four classes. The two 296 

calibrated RFs were then successively applied to predict the occurrence of five intermittence 297 

classes (0, 1-5, 6-15, 16-29 and 30-31 no-flow days per month) for each of the 468 months from 298 

1981 to 2019 at more than 1.5 million river reaches in Europe (without Russia and Turkey, see 299 

Section 2.4 for the definition of reaches). 300 

In this study, we used a derivative of the standard RF algorithm for making probabilistic 301 

predictions of class membership (Malley et al., 2012), which is included in the ‘ranger’ R package 302 

(Wright & Ziegler, 2017) that we used for the RF modeling. The ‘ranger’ R package is a fast 303 

implementation of RF suited for high-dimensional data (Tyralis et al., 2019). The two consecutive 304 

RF models were trained and optimized by cross-validation, i.e., calibrated, by relating observations 305 

of the number of no-flow days per station-month at streamflow gauging stations (target of RFs) to 306 

23 predictors, 9 of them temporally-explicit (i.e., dynamic). For the RF training, each streamflow 307 

station is assigned to a HR grid cell. For RF predictions, each European river reach is assigned to 308 

the HR cell containing its downstream end.  In the following two sections, the compilation and 309 

processing of the predictor variables and the 2-step RF modeling approach are explained. 310 

2.3.2. Predictors 311 

A total of 23 predictor variables were used in both RFs (Table 1). We selected predictors based on 312 

their potential causal influence on streamflow intermittence. In contrast to multiple regression 313 

analysis, RF can leverage information from highly correlated predictors while producing unbiased 314 

predictions (Tyralis et al., 2019). Five HR dynamic predictors were derived from the WaterGAP 315 

HR monthly streamflow time series and indicate the streamflow conditions in each HR stream 316 

reach (represented by its respective most downstream HR cell) in the current month and past 3 and 317 

12 months. Prior to computing these predictors, streamflow was converted into area-specific 318 

streamflow by dividing it by the drainage area of the HR cell (i.e., the area of the upstream drainage 319 

basin). This is done because the spatial variation of streamflow is mainly due to the area that drains 320 
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to the point of the streamflow observation and streamflow intermittence is expected to depend on 321 

area-specific streamflow. In addition, drainage area of the HR cell was included as a static 322 

predictor (Table 1). Of the 2 LR dynamic predictors, one is the ratio of diffuse groundwater 323 

recharge to total runoff from land for each month as computed by WaterGAP; a higher ratio of 324 

delayed groundwater discharge is expected to decrease the likelihood of no-flow days. The other 325 

LR dynamic predictor is the average number of days with substantial precipitation (i.e., >2.5 326 

mm/d) per month according to the WaterGAP climate forcing; a low number of days with 327 

substantial precipitation in a month may lead to an increased likelihood of no-flow days. For both 328 

LR dynamic predictors, the average value over the upstream basin of each HR grid cell was 329 

computed assuming that the values in all upstream HR cells are identical within a given LR cell. 330 

The 5 HR and 2 LR dynamic predictors vary between the 468 months of the study period. Three 331 

of the 16 static HR predictors vary with the calendar month, the two predictors that quantify the 332 

interannual variability of monthly streamflow and the aridity index, which is included as the long-333 

term mean values for the 12 calendar months. Interannual variability was computed from the HR 334 

monthly time series of area-specific streamflow as either the standard deviation or the coefficient 335 

of variation of all streamflow values of each of the 12 calendar months for the period 1981-2019 336 

(Table 1).   337 

In addition to drainage area, the other 12 HR static predictors include the dominant potential 338 

natural and actual land cover class in the upstream basins and the average slope, glacier fraction 339 

and lake fraction in the upstream basin. These static HR predictors are selected from the set of 340 

globally important predictors from Messager et al. (2021). Additional static predictors include five 341 

suspected anthropogenic drivers of streamflow intermittence and two newly developed karst-342 

related predictors derived from the World Karst Aquifer Map (WOKAM) of karstifiable areas 343 

(Table 1). In the case of the static predictors of karst status and degree of regulation, the value for 344 

the HR grid cell for which the number of no-flow days is to be predicted (target cell) is used as a 345 

predictor. In the case of the anthropogenic drivers irrigated area fraction and human population, 346 

two sets of predictor values are taken into for each: one set of values computed by aggregating 347 

over the (total) upstream basin and the other computed by aggregating over the immediate 348 

upstream basin, which only encompasses upstream HR grid cells that drain directly into the 349 

respective stream reach (see Linke et al., 2019, for additional descriptions of these spatial units).  350 

To train the RF models, the values of these predictors were assembled for each of the 1,166,944 351 

station-months for which daily streamflow observations are available, i.e., for the 3706 HR grid 352 

cells that contain a gauging station. For model application, the predictor values for each reach (i.e., 353 

for the most downstream HR grid cell of each reach) were computed to predict the occurrence of 354 

one of the five intermittence classes for each reach-month.  355 
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Table 1 356 

 Predictors Used in RF Modeling, with their Abbreviations, Units and Data Sources  357 

Category 
Predictor 

type 
Predictor 

Abbrevation 

(unit) 
Source 

Hydrology 

 

Monthly 

time 

series HR 

Monthly area-specific streamflow  Q (m3 s−1 km−2) Downscaled 

WaterGAP 

2.2e 

Hydrology Minimum monthly area-specific 

streamflow of the past 12 months 

Q_min_p12 

(m3 s−1 km−2) 

Downscaled 

WaterGAP 

2.2e 

Hydrology Mean monthly area-specific 

streamflow of the past 12 months 

Q_mean_p12 

(m3 s−1 km−2) 

Downscaled 

WaterGAP 

2.2e 

Hydrology Minimum monthly area-specific 

streamflow of the past 3 months 

Q_min_p3 

(m3 s−1 km−2) 

Downscaled 

WaterGAP 

2.2e 

Hydrology Mean monthly area-specific 

streamflow of the past 3 months 

Q_mean_p3 

(m3 s−1 km−2) 

Downscaled 

WaterGAP 

2.2e 

Hydrology Monthly 

time 

series LR 

Ratio of diffuse groundwater 

recharge to runoff from land, 

mean over uba 

gwr_to_runoff_rat

io (-) 

WaterGAP 

2.2e 

Climate Number of wet days, mean over 

uba 

wet_days (days 

mon-1/100) 

WaterGAP 

2.2e 

Hydrology 

 

Interannual variability of monthly 

area-specific streamflow, per 

calendar month, in terms of 

standard deviation  

Q_iav_sd 

(m3 s−1 km−2) 

Downscaled 

WaterGAP 

2.2e 

Hydrology Interannual variability of monthly 

area-specific streamflow, per 

calendar month, in terms of 

coefficient of variation 

Q_iav_cv (-) Downscaled 

WaterGAP 

2.2e 

Climate Static  

HR 

Aridity index (long-term average 

P/PET), per calendar month, mean 

over uba 

P_to_PET_ratio 

(1/10000) 

Global-

AI_PET_v3c 

Land cover  Potential natural vegetation 

classes (ranges: 1-15), spatial 

pot_nat_vegetatio

n (-) 

EarthStatd 
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majority in uba 

Land cover Land cover classes (ranges: 1-22), 

spatial majority in uba 

land_cover (-) GLC2000e 

Land cover Glacier area fraction in uba glacier_frac (%) GLIMSf 

Physiography Drainage area drainage_area 

(km2) 

HydroSHEDS
g 

Physiography Terrain slope, mean over uba slope (deg/100) EarthEnv-

DEM90h 

Geology Fraction of karst area in uba karst_frac (%) WOKAMi 

Geology Occurrence of karst (1 if karst, 0 

if not) at HR grid cell 

karst_status (-) WOKAMi 

Anthropogenic 

drivers 

Fraction of area equipped for 

irrigation in uba 

irri_frac (% /100) HID v1.0j 

Fraction of area equipped for 

irrigation in iubb   

irri_frac_im (% 

/100) 

HID v1.0j 

Population density in uba pop_dens  

(people km-²) 

WorldPopk 

Population density in iubb  pop_dens_im 

(people km-²) 

WorldPopk 

Degree of regulation (total 

upstream artificial reservoir 

storage volume / annual 

streamflow volume) at HR grid 

cell 

dor (% /10) HydroSHEDS
g & GranDl 

Lakes Fraction of lake area in uba lake_frac_(% 

/100) 

HydroLAKES
m 

Note. Area-specific streamflow is streamflow at the HR grid cell divided by upstream drainage area. The units are 358 
those for the data sets used as input to the RF modeling, in which the integer values were partly multiplied by 10, 100 359 
or 10000 to increase the precision. aub: HR upstream basin. biub: HR immediate upstream drainage basin, refers to all 360 
the HR grid cells that drain directly into the respective stream reach. cZomer et al. (2022). dRamankutty and Foley 361 
(1999). eBartholomé and Belward (2005). fGLIMS & NSIDC (2012). gLehner et al. (2008). hRobinson et al. (2014). 362 
iChen et al. (2017). jSiebert et al. (2015). kBondarenko et al. (2020). lLehner et al. (2011). mMessager et al. (2016). 363 

  364 
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2.3.3. Two-step RF modeling approach 365 

The first RF model in our approach (Figure 1, step 1) results in a binary classification of station-366 

months as either intermittent or perennial, whereas the second RF model (step 2) was only applied 367 

to intermittent station-months and classified them into four ordinal intermittent classes: 1-5, 6-15, 368 

16-29 and 30-31 no-flow days per month. We performed a classification into four classes based 369 

on a previous study with a two-step RF model (with less target observations and slightly different 370 

predictors) where the performance for six classes was not satisfactory (Döll et al., 2023a). The four 371 

classes were defined such that they are informative for biodiversity and ecosystem function studies 372 

while keeping the number of observations per class approximately balanced. Following model 373 

training and validation for each of the RFs (Figure 1, left-hand side), we sequentially applied the 374 

calibrated models (right-hand side) to predict monthly streamflow intermittence for all reaches in 375 

Europe derived from the HR drainage direction map (see Section 2.4).  376 

 377 

 378 

Figure 1. RF modeling workflow for simulating monthly time series of streamflow intermittence 379 

on river reaches, i.e., the number of no-flow days per reach-month in five classes (0, 1-5, 6-15, 16-380 

29, 30-31 no-flow days). Each of the two RF models is first set-up, by calibrating it such that the 381 

observed targets are best simulated; this includes the tuning of three hyperparameters in a non-382 

spatial cross-validation (left-hand side of schematic). The intermittence status of each month and 383 

reach in Europe during 1981-2019 is calculated with the two calibrated RFs by applying first the 384 

step 1 RF for all reach-months and then the step 2 RF for all intermittent reach-months (right-hand 385 

side of schematic).  386 

 387 

Despite implementing the two-step approach, class imbalance persists in each step of the modeling 388 

process, with many more perennial station-months than intermittent ones in step 1 and a relatively 389 
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large number of station-months with 30-31 no-flow days in step 2.Therefore, we applied standard 390 

oversampling of the minor class (intermittent) in step 1 by a factor of 34.68, the ratio of perennial 391 

to intermittent months. In step 2, the three minor classes were oversampled such that, for each 392 

minority class, the number of training observations in that class was equal to the number of 393 

observations in the majority class (30-31 no flow days). 394 

Unlike hydrological models, RF models, which are ensembles of classification trees, do not have 395 

parameters that represent properties of the modeled system. However, they have hyperparameters 396 

that determine how the RF algorithm exactly works, which can be tuned to maximize predictive 397 

accuracy while minimizing overfitting. RF hyperparameters are 1) the sample fraction, i.e., the 398 

fraction of the training data that is randomly sampled without replacement for generating each 399 

individual tree, 2) the number of predictors that are sampled from the full set of predictors and 400 

considered by each tree when splitting each node (MTRY) and 3) the minimum number of 401 

observations that a terminal node can contain, which influences the depth of the trees (i.e., when 402 

tree construction stops). Model performance increases asymptotically with the number of decision 403 

trees. In this study, the number of decision trees was set to 800 to limit run times.  404 

In each step, the RF was tuned and evaluated by twice-repeated three-fold nested cross-validation. 405 

Nested cross-validation, a resampling method that combines two levels of cross-validation loops 406 

(outer and inner loops) separates hyperparameter tuning in the inner loop from model performance 407 

evaluation in the outer loop (Bischl et al. 2012). In each loop, cross-validation uses different 408 

portions of the data to iteratively test and train a model on the different subsets of the data. A three-409 

fold cross-validation means that the RF is trained with a random selection of two-thirds of the 410 

samples (training data), each sample consisting of the predictors and the target for one station-411 

month. The predictive accuracy of the model is then evaluated with the remaining third of the 412 

samples (testing data). In a twice-repeated three-fold nested cross-validation, there are six rounds 413 

of cross-validation in total with different training and test data. Hyperparameter tuning for RF 414 

step1 and step2 was performed through 15 and 55 unique combinations of hyperparameter, 415 

respectively. For each round, hyperparameters were tuned by evaluating the performance of 15 416 

and 55 unique combinations of hyperparameters in the case of the step 1 RF and step 2 RF, 417 

respectively.  418 

Model validation (Sections 4.1 and 4.2) was done using the results of the six rounds of cross-419 

validation, i.e. the results of the six RF models with an optimal combination of hyperparameters 420 

as determined by the inner loop. For each station-months, the two predicted probabilities of 421 

pertaining to a certain class were averaged and the class was assigned. The threshold for assigning 422 

the perennial or intermittent class was set to a probability of 50%, consistent with our efforts to 423 

balance the training data set. 424 

The RF showing the highest balanced accuracy (BACC; Section 2.5) across all six rounds was 425 

used for model application (Section 4.3). This resulted in a calibrated RF model consisting of the 426 

best-performing step 1 RF and the best-performing step 2 RF. For step 1, the optimal values for 427 

sample fraction, MTRY and minimum number of observations for the terminal node were 0.25, 4 428 

and 2, respectively; the corresponding values for step 2 were 0.75, 6 and 10, respectively.  429 

We computed the relative contribution of predictors to the predictive ability of the model, in the 430 

form of the Actual Impurity Reduction (AIR) predictor importance metric. The higher the AIR, 431 

the more important the predictor. The role of predictor variables was also evaluated with partial 432 

dependence plots, which depict the marginal relationship between each predictor variable and the 433 

https://en.wikipedia.org/wiki/Resampling_(statistics)


manuscript submitted to Water Resources Research 

14 

 

probability of a predicted class while holding the rest of the predictors at their respective mean 434 

values. Using 20 processors (Intel Xeon silver 4114 2.2 GHz) in parallel, the run time for setting 435 

up the step 1 RF was about 14 days, and 14 hours for setting up the step 2 RF. 436 

2.4. Definition of stream reaches for model application 437 

It would be computationally too expensive to estimate the streamflow intermittence status for all 438 

HR grid cells in Europe, regarding both computation time and data storage. With 73 million HR 439 

grid cells across Europe and 468 months (1981-2019), more than 34 billion predictions would have 440 

to be computed. Therefore, we applied the two RF models sequentially to predict the streamflow 441 

intermittence status of river reaches rather than individual grid cells. Predictions are made for the 442 

most downstream HR grid cell of each river reach and are assumed to represent the mean 443 

conditions over the whole river reach.  444 

River reaches at the HR resolution of 15 arc-sec are available in HydroSHEDS (HydroRIVERS, 445 

Lehner and Grill, 2013, https://www.hydrosheds.org/products/hydrorivers) but they insufficiently 446 

cover headwater streams for the purpose of our study (Döll et al., 2023a); in addition, we had 447 

slightly modified the HydroSHEDs drainage direction map. Therefore, river reaches were newly 448 

generated from the modified HydroSHEDS HR drainage direction map by applying the following 449 

delineation thresholds: streams were defined to start at all HR grid cells with an upstream drainage 450 

area of more than 2 km2 (instead of 10 km2 in HydroRIVERS) or at a grid cell where the mean 451 

annual downscaled HR streamflow of WaterGAP 2.2e during the period 1981-2019 exceeds 0.03 452 

m3/s (instead of 0.1 m3/s in HydroRIVERS). Decreasing the threshold for streamflow to 0.02 m3/s 453 

would lead to potential "aggregates" of multiple streams in one grid cell in wet areas. Using these 454 

delineation thresholds, the resulting number of reaches in Europe is 1,533,471, with an average 455 

reach length of 2.0 km (standard deviation 1.7 km), representing a total stream network length of 456 

3.06 million km. Accordingly, the European data set of monthly streamflow intermittence status 457 

contains a total of 717,664,428 reach-months covering the period 1981-2019. 458 

The river reaches as derived from the drainage direction dataset may not correspond to actual river 459 

reaches. In particular, river reaches (and therefore the streamflow intermittence status) are also 460 

delineated inside the boundaries of lakes and artificial reservoirs. Users of the streamflow 461 

intermittence dataset may therefore need to mask out simulated reaches as appropriate.  462 

2.5. Performance metrics 463 

As the observation data were strongly imbalanced, we evaluated model performance through the 464 

cross-validation of the two RFs based on the BAlanced ACCuracy (BACC). BACC provides a 465 

better indication of the classification performance of imbalanced models than raw accuracy (the 466 

percentage of correctly classified observations). In the binary case of step 1, BACC is the mean of 467 

sensitivity and specificity, with 468 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (4) 469 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
   (5) 470 

where TP: true positive, FN: false negative, TN: true negative and FP: false positive, resulting 471 

from the confusion matrix (Figure S1). In the multiclass case of step 2, we follow the definition of 472 

Urbanowicz & Moore (2015) whereby the mean of sensitivity and specificity is calculated for each 473 
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of the four classes and then averaged over the classes. 474 

Model performance was also evaluated with the Nash-Sutcliffe efficiency (or model efficiency), a 475 

traditional performance metric in hydrological modeling. It provides an integrated measure of 476 

model performance concerning mean values and variability and is computed as 477 

𝑁𝑆𝐸 = 1 −  
∑ (𝑠𝑖𝑚(𝑡)−𝑜𝑏𝑠(𝑡))2𝑛

1

∑ (𝑜𝑏𝑠(𝑡)−𝜇𝑜𝑏𝑠)2𝑛
1

 (6) 478 

where µobs is the mean of observations across all time steps; sim(t) and obs(t) refer to the simulated 479 

and observed values respectively, at time-step t of a total number of time steps n. NSE can range 480 

from -Inf to 1; a value of 0 indicates that the model performs no better than simply using the mean 481 

of the observed data to predict the values, and a value of 1 indicates perfect agreement between 482 

the observed and modeled values. 483 

3. Validation of HR time series of monthly streamflow in Europe 484 

Comparing the downscaled HR monthly streamflow time series to the monthly time series of 485 

observed streamflow at the 3706 gauging stations across Europe yielded a median NSE value of 486 

0.41; NSE exceeds 0 for 69% of the stations, and 25% of stations exceed the value of 0.64 which 487 

indicates a relatively good performance. When NSE is computed with the logarithm of streamflow, 488 

which puts a larger weight on low-flow months of interest for intermittence, NSE exceeds 0 for 489 

63% of stations and 0.57 for 25% of stations. This shows that streamflow during the low-flow 490 

months is also estimated reasonably well. However, the performance of simulated HR streamflow 491 

is very poor in most of Spain, where human activities strongly impact streamflow (Figure 2). 492 

Although the impact of artificial reservoirs as well as groundwater and surface water abstractions 493 

are simulated by WaterGAP, the coarse resolution of the original model calculations (at LR grid 494 

cells) prevents the identification of the specific locations of these impacts in the downscaling 495 

procedures. Also, the HR location of natural surface water bodies, i.e., lakes and wetlands, is not 496 

explicitly taken into account in the downscaling method, causing potential misallocation of their 497 

attenuating effects on HR streamflow. Furthermore, other anthropogenic disturbances such as 498 

weirs are not accounted for in the original WaterGAP estimates. A poorer performance of HR 499 

streamflow in strongly altered streams is therefore due to both downscaling constraints and the 500 

difficulty of simulating human impacts at the LR resolution. 501 
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 502 

Figure 2. NSE of monthly HR streamflow for 3706 gauging stations in Europe.  503 
The continental area considered to belong to Europe in this study is shown in grey. 504 

The performance of the downscaling algorithms can be assessed by comparing the NSE values at 505 

gauging stations with different upstream areas (Figure 3). LR streamflow as computed by 506 

WaterGAP is generally only compared to streamflow observed at gauging stations with upstream 507 

areas of more than 10,000 km2, as a single LR grid cell can cover more than 2,500 km2 (Müller 508 

Schmied et al. 2021). The high uncertainty of the global climate datasets used as the input of 509 

WaterGAP also inherently limits model performance for smaller basins. The performance of 510 

simulated streamflow does not decrease much with decreasing upstream area of the gauging 511 

stations (Figure 3a). For example, the median NSE for drainage basins larger than 10,000 km2 is 512 

0.51, while it is only slightly lower at 0.38 for the smallest drainage basins with areas below 2 km2. 513 

The median NSE of logarithmic streamflow decreases from 0.40 for the basins larger than 10,000 514 

km2 to 0.14 for basins smaller than 2 km2 (Figure 3b). When interpreting the NSE values, it should 515 

be noted that the stations are not equally distributed between the different catchment area classes; 516 

for instance, there are less than 100 stations with an upstream area of less than 10 km2. 517 

Furthermore, this relationship between predictive performance and catchment area is not 518 

consistent among stations on intermittent and perennial waterways. In the case of intermittent 519 

stations (n=885), there is a decline in NSE values from basins with upstream areas of less than 50 520 

km2 to basins larger than 10,000 km2 (Figure S2), whereas the opposite is true for perennial stations 521 
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(n=2821; Figure S3). While small intermittent basins smaller than 2 km2 are characterized by a 522 

median NSE of 0.49 (median NSE for log streamflow: 0.21), the large basins over 10,000 km2 523 

show a very poor performance with a median NSE of less than 0 (Figure S3). This might be due 524 

to the difficulty of simulating the impact of reservoir operations on intermittence. Considering the 525 

size class of 50-500 km2, which include the most stations of both intermittent (>100 stations) and 526 

perennial types (>1000 stations), the median NSE is 0.23 for intermittent stations and 0.43 for 527 

perennial stations (Figures S2 and S3).   528 

529 
Figure 3. NSE of monthly streamflow time series (left) and of the logarithm of monthly 530 

streamflow time series (right) for all 3706 streamflow stations with observations, grouped in size 531 

classes of the upstream area of the streamflow gauging stations. The boxes indicate the 25th, 50th 532 

(median) and 75th percentiles, the whiskers indicate the 5th and 95th percentiles of the samples. The 533 

blue lines of the violin plot show the smoothed distribution of the data points. The “number of 534 

stations not shown” indicates the number of stations with an NSE of less than -1. 535 

 536 

4. RF modeling results 537 

4.1. Model validation 538 

4.1.1. Step 1 RF 539 

The cross-validation of the calibrated step 1 RF resulted in a BACC of 0.92. Of all perennial 540 

station-months, 98% were correctly identified as perennial, i.e., without any no-flow day (Table 541 

2). Consequently, 25,496 (2%) of all perennial station-months were erroneously identified as 542 

intermittent. Of the intermittent station-months, 86% were correctly identified as intermittent, i.e., 543 
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4,463 intermittent months were wrongly identified as perennial. Thus, the step 1 RF tends to 544 

overestimate the occurrence of intermittent months in absolute terms. In Europe, streamflow 545 

intermittence is more prevalent in the summer (JJA) and in the fall (SON) than in winter (DJF) 546 

and spring (MAM), and this is also the case for the number of predicted intermittent months (Table 547 

2). A higher percentage of intermittent station-months, about 88%, was correctly identified as 548 

intermittent in JJA and SON than in the other two seasons (Table 2).  549 

 550 

Table 2 551 

Number of Observed and Correctly Simulated Perennial and Intermittent Stations and Station-552 

months 553 

 
Numbe

r of 
stations 

Number of station-months 

All DJF MAM JJA SON 

Correctly simulated as perennial

Observed as perennial
 

2806

2821
 

1,108,741

1,134,237
 

280,627

284,423
 

287,832

291,917
 

268,165

276,920
 

272,117

280,977
 

 99.5% 97.8% 98.7% 98.6% 96.8% 96.8% 

       

Correctly simulated as intermittent

Observed as intermittent
 

551

885
 

28,244

32,707
 

3,445

4,297
 

3,627

4,391
 

10,294

11,643
 

10,878

12,376
 

 62.3% 86.4% 80.2% 82.6% 88.4% 87.9% 

Note. Observed (bottom numbers) and correctly simulated (top numbers). Information on station-months is provided 554 
for all months and the four seasons December to February (DJF), March to May (MAM), June to August (JJA) and 555 
September to November (SON). 556 

 557 

The overestimation of intermittent months mainly occurs at stations that are both observed and 558 

simulated to be intermittent, i.e., stations that have at least one no-flow day in the whole period 559 

1981-2019, as only 15 perennial gauging stations, scattered throughout Europe, were erroneously 560 

predicted to be intermittent (dark red symbol in Figure 4b). Thus, 99.5% of all 2,821 stations 561 

observed to be perennial were correctly simulated to be perennial (Table 2, grey symbols in Figure 562 

4b). The 885 gauging stations with at least one intermittent month, i.e., 24% of all stations 563 

considered in this study, are particularly concentrated on the Iberian Peninsula, Sardinia and 564 

Cyprus (Figure 4a), where gauging stations commonly recorded more than 20% of intermittent 565 

months. Elsewhere, almost all intermittent stations have less than 20%, and mostly less than 10%, 566 

of intermittent months. No intermittence is observed in winter months in the northern parts of 567 

Scandinavia, even though no-flow conditions are commonly reported in these climates because of 568 

dry conditions, the storage of precipitation as snow, and freezing (Buttle et al., 2012). Intermittence 569 

was not even observed at a station on a northern Norwegian island with a small drainage area of 570 

19 km2. Intermittence at the stations in western Finland occurs only in the summer and only at 571 



manuscript submitted to Water Resources Research 

19 

 

stations with small upstream areas. The two intermittent stations in northern Sweden are located 572 

downstream of large artificial reservoirs. 573 

Over a third of intermittent stations (334 out of 885) were wrongly simulated to be perennial by 574 

the step 1 RF (dark blue dots in Figure 4b); these stations are distributed across Europe with no 575 

clear spatial clustering. Many of these stations are located on streams that normally flow year-576 

round but that exceptionally dried, for example, during a severe drought. Indeed, these intermittent 577 

stations that were wrongly classified as perennial have a median of only 2 intermittent months 578 

across their entire record (range: 1-19 months), while the 551 correctly classified intermittent 579 

stations have a median of 35 months (range 2-431 intermittent months).  580 

When considering only the 885 intermittent stations, the median and mean percent of observed 581 

intermittent months are 5.6% and 15.8%, respectively. Whereas 86% of all observed intermittent 582 

stations months (28,244 out of 32,707) are correctly predicted to be intermittent, 11%  of observed 583 

perennial station-months at intermittent stations (25,398 out of 233,195) are wrongly predicted to 584 

be intermittent. This resulted in a general overestimation of the total share of station-months at 585 

intermittent stations. While 13% of all station-months at intermittent stations are observed to be 586 

intermittent (and 11% correctly predicted as such), 21% are predicted to be intermittent. The 587 

overestimation is concentrated in regions with a relatively high prevalence of intermittence, i.e., 588 

large parts of the Iberian Peninsula, Sardinia and Cyprus (compare Figures 4a and 4b), where 589 

intermittent months are often overestimated by a factor of more than 2 (Figure 4b). The main 590 

suspected reasons for this overestimation are the poor ability of the downscaled streamflow 591 

estimates (Figure 2) and the RF model to capture the strong human impacts on streamflow dynamic 592 

in large parts of Spain as well as Cyprus (not Sardinia). In these semi-arid regions, a multitude of 593 

small and large dams as well as water transfers by canals often make naturally intermittent 594 

streamflow perennial (Chiu et al., 2017). Even though some large reservoirs are considered when 595 

computing LR net cell runoff used to estimate HR streamflow, simulation of reservoir outflow is 596 

very uncertain already at LR. In addition, information on reservoirs, weirs or canals in the 597 

individual HR cells within each LR is not taken into account in the streamflow downscaling 598 

approach. The reservoirs included in the computation of the static HR predictor by the predictor 599 

dor (degree of regulation by upstream dams; Lehner et al., 2011) (Table 1) only takes into account 600 

a subset of the actual reservoirs and misses small ones. 601 

Interannual variability of the number of intermittent months per year is simulated quite 602 

satisfactorily, in particular for gauging stations in southern Spain (Figure 4c). Considering all 885 603 

intermittent stations, the median Pearson correlation coefficient between the observed and 604 

predicted annual time series of the number of intermittent months is 0.50. Thus, the step 1 RF is 605 

able to capture the interannual variability of climatic conditions. That said, the corresponding NSE 606 

values (i.e., based on the annual time series; not shown) are below zero at almost all stations due 607 

to the strong overall overestimation of intermittent months. 608 

 609 
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Figure 4. Percentage of observed intermittent months (with at least one no-flow day) per gauging 610 

station for all observations during 1981-2019 (a), ratio of the number of predicted months to the 611 

number of observed intermittent months (P: perennial, I: intermittent) (b) and Pearson correlation 612 

of the annual time series of the number of intermittent months (c), as simulated by the step 1 RF 613 

model. 614 

As expected, gauged streams in smaller drainage basins are both observed and simulated to be 615 

more strongly intermittent than larger drainage basins, especially in the two smallest drainage 616 

basin classes 0-2 km2 and 2-5 km2 (Figure S4). However, intermittent months are also most 617 

overestimated in these size classes; the predicted median proportion of intermittent months for 618 

these stations is twice the observed median of about 13%. For drainage basins larger than 2500 619 

km2, on the contrary, the step 1 RF tends to underestimate the already low percentage of 620 

intermittent months (though it strongly overestimates intermittence for a few basins, too; Figure 621 

S4). 622 

 623 
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4.1.2. Step 2 RF 624 

The target of the step 2 RF are the observations of the number of no-flow days, in four classes (1: 625 

1-5, 2: 6-15, 3: 16-29, 4: 30-31 no-flow days) in observed intermittent months. At most intermittent 626 

gauging stations, class 1 (1-5 no-flow days) dominates, whereas class 4 (30-31 no-flow days) 627 

dominates in many stations with more than 10% of intermittent months, in particular in the central 628 

and southern part of the Iberian Peninsula and in Cyprus (Figure S5). With a BACC of 0.67 629 

(averaged over the four classes) in the cross-validation of the calibrated step 2 RF, the classification 630 

performs satisfactorily. More than three quarters of the station-months with observed class 4 (30-631 

31 no-flow days) are correctly classified, and almost half of the station-months with 1-5 and 16-632 

29 no-flow days are correctly classified (Figure 5). Although the model exhibits weaker 633 

performance for station-months with 6-15 observed no-flow days, these observations are still more 634 

likely to be correctly classified than pertaining to any of the three other classes. Classification 635 

performance is highest for the class with most observations, 30-31 no-flow days, as can be 636 

expected in RF modeling. In total, 54% of the 32,707 station-months are classified into the correct 637 

observed class, and of the wrongly classified observations, 70% are predicted to belong to 638 

neighboring classes (Figure 5). 639 

 640 

Figure 5. Confusion matrix of predicting four classes of no-flow days per station-month. The top 641 

number in each box shows total number of station-months belonging to the observed and simulated 642 

intermittence class, the bottom number the percent of the total number of station-months that are 643 

observed to be in the intermittence class (step 2 RF model). 644 

 645 
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The percentage of intermittent months that are correctly classified into the four classes shows no 646 

spatial pattern across Europe (Figure 6a), although the overestimation of no-flow days is most 647 

pervasive in Spain where the number of observed no-flow days is already high (red in Figure 6b). 648 

The step 2 RF tends to overestimate the number of no-flow days in the intermittent station-months 649 

where the step 1 RF also overestimates the number of intermittent months (e.g., in many stations 650 

on the Iberian Peninsula). The bias shown in Figure 6b correlates weakly with the ratio of predicted 651 

to observed intermittent months shown in Figure 4b, with a Pearson correlation coefficient of 0.11. 652 

The correlation between the monthly time series of observed and simulated intermittence classes, 653 

as measured by the Spearman rank correlation coefficient, is positive for most gauging stations, 654 

and larger than 0.3 for 38% of stations (Figure 6c). This correlation analysis does not include the 655 

perennial months at a station. The overall performance of the monthly time series of five classes, 656 

with class 0 for perennial months, reflects the combined performance of the step 1 and step 2 RFs 657 

and thus the overall RF modeling approach used for estimating streamflow intermittence for all 658 

reach-months in Europe. These correlation values, shown in Figure 6d, are much higher than the 659 

correlation for just the intermittent months; values larger than 0.9 dominate. The median Spearman 660 

rank correlation coefficient for the monthly time series of the five intermittence classes is 0.81, 661 

with 90% of the stations exceeding a value of 0.58 and 14% of the stations exceeding a value of 662 

0.99.   663 



manuscript submitted to Water Resources Research 

23 

 

 664 

  

  

 665 

Figure 6. Percentage of intermittent months that are correctly classified into the four classes (1: 1-666 

5 no-flow days per month, 2: 6-15, 3: 16-29, 4: 30-31) by the step 2 RF at each of 885 gauging 667 

stations with at least 1 no-flow day in their record (a), bias expressed as simulated mean class 668 

number (1 through 4) minus observed mean class number (green: correct average classification, 669 

red: overestimation of no-flow days, blue: underestimation of no-flow days) (b), and Pearson 670 

correlation coefficient for the monthly time series of simulated and observed intermittence classes, 671 

for four classes 1-4 (c) and five classes 0-5, with class 0: 0 no-flow day (d). All correctly classified 672 

perennial stations were omitted from the maps and would show a correlation coefficient of 1. 673 

4.2. Importance of predictors and dependence of predicted class on predictor values 674 

All 23 predictors were found to be significant at the p-value = 0.05 level. The relative importance 675 

of the 23 predictors differs strongly between step 1 RF (identifying whether a station-month is 676 
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intermittent) and step 2 RF (identifying the number of no-flow days in intermittent months, in four 677 

classes) (Figure 7). However, two predictors computed from the downscaled HR monthly 678 

streamflow, namely the monthly area-specific streamflow (Q) and the mean of the area-specific 679 

streamflow of the previous three months (Q_mean_p3), are among the five most important 680 

predictors in both RFs. Both are predicted to be negatively correlated to the probability of 681 

intermittence, as was expected (Figure S6).  682 

The most important predictor in the step 1 RF is the size of the drainage basin of the streamflow 683 

gauging station (Figure 7), with the probability of intermittence decreasing with increasing size up 684 

to a drainage area of about 20,000 km2 (Figure S6). Terrain slope (slope) and the precipitation to 685 

potential evapotranspiration ratio (P_to_PET_ratio) show a similar importance in step 1 and take 686 

up ranks 4 and 5, respectively. The partial dependence plots for the step 1 RF show, for all but 2 687 

of the 23 predictors, correlations between the predictor and the likelihood of intermittence that are 688 

expected by hydrologists. For example, the partial dependence plot for interannual variability as 689 

expressed by the coefficient of variation (Q_iav_cv) shows the expected behavior, with the 690 

intermittence probability increasing with increasing Q_iav_cv for Q_iav_cv > 0.4. Exceptions to 691 

this correspondence between model predictions and hydrological understanding include the terrain 692 

slope (slope) and, albeit less conclusively, the degree of regulation (dor) (Figure S6). Steeper 693 

slopes across the upstream drainage area are expected to make intermittence more likely 694 

(Šarauskienė et al., 2020) due to a decrease in the fraction of runoff that recharges groundwater 695 

and thus a decrease in baseflow, but the RF predicted the opposite correlation. This negative 696 

correlation can be explained by the spatial distribution of the gauging stations; gauging stations in 697 

steeper terrain are those in the mountainous regions along the Spanish Atlantic coast, the Pyrenees 698 

and the Alps, i.e., wet regions with large runoff. As for the degree of regulation, artificial reservoirs 699 

can make streams either more perennial or more intermittent, depending on reservoir management 700 

(e.g., for hydroelectricity, irrigation, flood control) and river type (Datry et al., 2023). Here, the 701 

step 1 RF showed that increased regulation was associated with greater levels of intermittence 702 

(Figure S6). A likely reason for this correlation is that many stations downstream of large dams in 703 

our training dataset were located in dry areas like Spain, where intermittence is common and flow 704 

regulation by reservoirs is associated with extensive water withdrawal (Sabater & Tockner, 2009). 705 

This predictor’s importance in RF 1 is very low (Figure 7), so the impact of this counterintuitive 706 

relationship on model predictions is minor.  707 

In the step 2 RF, all of the five most important predictors are dynamic predictors. They include 708 

four HR predictors derived from the downscaled WaterGAP output (Figure 7). In addition to the 709 

highest ranking Q and Q_mean_p3, the minimum area-specific streamflow over the previous three 710 

months (Q_min_p3) and the mean area-specific streamflow over the previous 12 months 711 

(Q_min_p12) are among the five most important predictors. The LR predictor of the number of 712 

wet days per month is ranked second in importance. 713 

 714 
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 715 

Figure 7. Predictor importance for step 1 RF (left) and step 2 RF (right). The higher the impurity 716 

reduction, the larger the relative importance of a predictor. The higher absolute values for the step 717 

1 RF are due to the larger number of station months available as target. Error bars show the 718 

standard deviation across the six cross-validation training sets calculated for both the step 1 and 719 

step 2 RFs. The relatively larger error bars for the step 2 RF are due to considering four classes 720 

instead of only two in the step 1 RF. Dynamic HR predictors are indicated by * and dynamic LR 721 

predictors by +. 722 

4.3. Predicted time series of monthly streamflow intermittence status of stream reaches in 723 

Europe  724 

In total, 96.2% of the approximately 718 million reach-months at more than 1.5 million stream 725 

reaches in Europe are simulated as perennial in the period 1981-2019 (Table 3). 82.2% of the 726 

stream reaches and 81.3% of the European network length of 3.06 million km are simulated to 727 

never have experienced a no-flow day during this period. Reaches with intermittent months are 728 

simulated to exist in almost all European countries, but high percentages of intermittent months 729 

are prevalent on the Iberian Peninsula, Sardinia and Cyprus and also occur in southern Italy and 730 
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Greece (Figure 8). Large regions with low fractions of intermittent months exist in France but also 731 

in Finland, Belarus and Ukraine.  732 

 733 

Table 3 734 

Occurrence of the Five Intermittence Classes at the Gauging Stations and All Reach-months in 735 

Europe 736 

Class 

Station-months 

 

Reach-months 

 

Observed Predicted Predicted 

0: Perennial 
1,134,237 

97.20% 

1,113,204 

95.39% 

690,269,534 

96.20% 

1: 1-5 no-flow days 
5,643 

0.48% 

5,248 

0.45% 

413,786 

0.06% 

2: 6-15 no-flow days 
6,030 

0.52% 

5,338 

0.45% 

549,107 

0.08% 

3: 16-29 no-flow days 
8,634 

0.74% 

8,484 

0.73% 

1,742,476 

0.24% 

4: 30-31 no-flow days 
12,400 

1.06% 

13,637 

1.17% 

24,689,525 

3.43% 

Total 
1,166,944 

100% 

1,145,911 

98.20% 

717,664,428 

100% 

Note. In this study, Europe does not include Russia and Turkey. The gauging stations represent those which were used 737 
to set up the RF model, where the fraction of all station-months with observed and simulated classes is provided. In 738 
each column, the first row shows the total number of stations or reaches in the class and the second row shows the 739 
percentage in the class. The percentage values for the reach-months relate to the total number of reach months (468) 740 
during 1981-2019; and for the station-months, to the number of station-months with observations. As the step 2 RF 741 
model predicting the four classes of no-flow days was set up only for the station-months that are observed to be 742 
intermittent, the predicted class percentages do not add up to 100%. 743 

 744 
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 745 

Figure 8. Percentage of months with at least one no-flow day for European stream reaches during 746 

the period 1981-2019. 747 

 748 

The predicted prevalence of perennial conditions across reaches is similar to the observed 749 

prevalence in streamflow gauging stations where 97% of the observed station-months and 76% of 750 

the stations are perennial. As drainage area is the most important predictor for a station-month 751 

being perennial or intermittent, with small basin size leading to a higher probability of 752 

intermittence, it is surprising that a higher percentage of reaches is simulated to be perennial as 753 

compared to the gauging stations. Reaches with small upstream basins of less the 50 km2 comprise 754 

78% of all reaches, whereas only 12% of gauging stations have such small basins (Table 4). This 755 

highlights the importance of the interplay of all predictors of the step 1 RF and may be affected by 756 

our voluntary addition of intermittent data in observations. 757 

  758 
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Table 4 759 

Mean Streamflow per Station-month and Reach-months Averaged for Drainage Basin Area 760 

Classes 761 

Upstream 

area [km2] 

Gauging stations Reaches 

Mean 

Observed 

(m3 s-1) 

Mean 

Predicted 

(DSSa) 

(m3 s-1) 

Number of 

stations in 

this study / 

in Döll et al. 

(2023a) 

Total station-

months 

(%) 

 

 

 

Mean 

Predicted 

(DSSa) 

(m3 s-1) 

Total reach-

months 

(%) 

(0-2] 0.05 0.03 16 / 8 0.45  0.05 10.92 

(2-5] 0.12 0.08 22 / 10 0.62  0.04 30.97 

(5-10] 0.21 0.17 53 / 29 1.49  0.1 14.10 

(10-50] 0.79 0.58 393 / 272 9.70  0.32 21.70 

(50-500] 4.55 3.25 1,786 / 896 47.54  2.33 14.56 

(500-2500] 17.29 15.65 789 / 358 22.41  15.65 4.41 

(2500-10000] 56.91 57.73 366 / 178 10.13  62.25 1.90 

>10000 512.31 544.30 281 / 164 7.69  594.55 1.49 

aDownscaled streamflow. 762 

 763 

The fraction of reach-months with 30-31 no-flow days (3.4%) is much higher than the 764 

corresponding fraction of the stream-months that are observed and predicted to occur at the 765 

streamflow gauges (1.1%; Table 3). This is not due to the much higher prevalence of reaches with 766 

small upstream basins than of stations with such small basins (Table 4) as also in each drainage 767 

area size class, the fraction of months with 30-31 no-flow days is larger for the reach-months than 768 

for the station-months (Table 5). Both station observations and reach predictions agree that the 769 

likelihood of perennial months increases and the likelihood of 30-31 no-flow days decreases with 770 

increasing size of the drainage basin (Table 5). The exception are the smallest reaches with an 771 

upstream area of 2 km2 or smaller, because we only generated such small reaches from the 15 arc-772 

sec drainage direction map where the mean annual downscaled HR streamflow during the period 773 

1981-2019 exceeds 0.03 m3/s (section 2.4); this explains the high fraction of perennial months in 774 

the smallest size class. One reason for the higher prevalence of the class 30-31 no-flow days for 775 

the reach-months as compared to the station-months in all size classes between 2 km2 and 500 km2 776 

may be that the average streamflow for all reach-months of a certain size class is smaller than for 777 

the gauges (both observed and predicted) (Table 4). This discrepancy likely led to more dry 778 

months, because streamflow is the most important predictor in the step 2 RF (Figure 7). At the 779 

same time, the fraction of perennial reach-months, which is determined by the step 1 RF, is also 780 
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higher than the fraction of perennial station-months in each size class, such that the other three 781 

intermittence classes are predicted to be very rare among the reach-months. The reason for this is 782 

unknown, but one aspect to consider may be that streamflow is not the most important predictor 783 

in the step 1 RF (Figure 7).  784 

 785 

Table 5 786 

Percent of Observed Station-months and Predicted Reach-months (1981-2019) in the Five 787 

Intermittence Classes 788 

Upstream 

area [km2] 

Observed station-months in classes 0-4 

(%) 

Predicted reach-months in classes 0-4 

(%) 

0 1 2 3 4 0 1 2 3 4 

(0-2] 87.30 2.57 4.42 4.42 1.28 99.80 0.008 0.15 0.03 0.14 

(2-5] 88.48 1.93 3.03 3.77 2.79 93.55 0.14 0.20 0.58 5.52 

(5-10] 94.18 1.11 1.58 1.87 1.25 95.27 0.05 0.06 0.30 4.32 

(10-50] 95.85 0.59 0.85 1.13 1.58 96.58 0.01 0.01 0.06 3.33 

(50-500] 96.83 0.34 0.55 0.86 1.41 97.55 0.003 0.006 0.03 2.41 

(500-2500] 98.33 0.24 0.34 0.49 0.59 99.34 0.02 0.006 0.01 0.62 

(2500-10000] 99.32 0.10 0.13 0.14 0.30 99.84 0.02 0.007 0.005 0.13 

>10000 98.85 0.23 0.23 0.28 0.40 99.83 0.02 0.007 0.01 0.14 

Note. These values are represented as a function of upstream drainage area [km2] of the streamflow gauging stations 789 
or the reach. Classes: 0: perennial, 1: 1-5 no-flow days, 2: 6-15 no-flow days, 3: 16-29 no-flow days, 4: 30-31 no-flow 790 
day. In total, 1,166,944 station-months and 717,664,428 reach-months are considered. 791 

 792 

The actual number of perennial months in reaches with upstream areas of 2-50 km2, the dominant 793 

upstream area classes listed in Table 4, may even be higher as the step 1 RF tends to underestimate 794 

the fraction of perennial station-months (Figure S4). However, the number of streamflow gauging 795 

stations for that class, in particular in the size class under 10 km2, is rather small (Table 4).  796 

The prevalence of intermittence across the European river network shows a clear seasonal and 797 

interannual variability. While 97.6-99.8% of the European reaches are perennial in January and 798 

February, this is the case for only 89.6-93.4% in August and September (Figure 9). There is no 799 

overall trend over the whole 39-year period, but seasonal minima and maxima of the fraction of 800 

perennial reaches decreased from 2013 to 2019, while the opposite is true for the fraction of months 801 

with 30-31 no-flow days (Figure 9). The southern European countries of Portugal, Spain, Italy, 802 

Greece and Cyprus have a much higher seasonal range of the fraction of perennial reaches; in July 803 
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to August, only about 70% of the reaches are perennial, while in winter, it is close to 90-99%, 804 

depending on the year (Figure S8a). In the Scandinavian countries Norway, Sweden and Finland, 805 

the (very low) occurrence of intermittent conditions is larger in the second half of the study period, 806 

but the highest level of intermittence occurred in 1996, related to unusually low precipitation 807 

(Figure S7b). As an illustration of the spatial distribution and seasonality of streamflow 808 

intermittence, the European maps for streamflow intermittence in January and August 2019 are 809 

shown in Figure S8.  810 

 811 

Figure 9. Monthly time series of the percent of all European stream reaches in the five 812 

intermittence classes for the period 1981-2019. 813 

5. Discussion 814 

In this study, we chose to use all daily streamflow observations available for the study period to 815 

set up the RF model, to obtain a robust model based on the maximum amount of information. A 816 
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temporal validation of the models with independent data was not conducted. The RF model of Döll 817 

et al. (2023a), with less streamflow observations and slightly different predictor variables and 818 

intermittence class definitions, was trained with data for a calibration period that encompassed, for 819 

each gauging station, the first two-thirds of the available observed months, while the rest was left 820 

for independent validation; 99% and 95% of the perennial station-months were predicted correctly 821 

for the calibration and the validation period, respectively. Considering only the intermittent 822 

station-months (i.e., predictions from the step 2 RF), the frequency of predicting the correct class 823 

decreased from 56% in the calibration period to 47% in the validation period. In this study, we 824 

validate our predictions with a data set of visually observed intermittence for France. Then, we 825 

discuss the challenges of deriving continental-scale high-resolution estimates of monthly 826 

streamflow and streamflow intermittence. 827 

5.1. Validation of streamflow intermittence predictions using ONDE observations for France 828 

We used observations from the French national river drying observatory (ONDE, 2020; Beaufort 829 

et al., 2018) to validate our predictions for 2,865 reaches and 148,004 reach-months in France of 830 

whether each reach-month was intermittent (with a least one no-flow day) or perennial, i.e., the 831 

step 1 RF. The ONDE network consists of a stable set of approximately 3,300 sites on river and 832 

stream reaches of Strahler orders under five, which have been inspected since 2012 by trained 833 

public staff from the French Biodiversity Office (OFB in French), at least monthly between May 834 

and September with the objective of identifying all drying events. If either the status “no visible 835 

flow” or “dried out” was assigned in any month, we considered the reach-month to be observed as 836 

intermittent. Considering that its objective is to track intermittence in mostly headwater streams, 837 

the ONDE dataset has a much higher percentage of intermittent reaches and reach-months than the 838 

European streamflow gauging station dataset used to set up the RF model. While 61% of the 839 

reaches and 15% of the reach-months are intermittent in the ONDE dataset, only 24% of the 840 

European gauging stations and 2.8% of the station-months are intermittent. Considering only 841 

French gauging stations, the respective values are 38% and 3.5%. About 73% of ONDE reaches 842 

have a drainage area of less than 50 km2, which is similar to the fraction of European reaches in 843 

the size class (Table 4), whereas this is the case for only 12% in the European data set of gauging 844 

stations. 845 

Compared to the ONDE data, the step 1 RF model underestimates the number of intermittent reach-846 

months (Figure 10d), whereas it tends to overestimate the number of intermittent station-months 847 

relative to the 3706 European streamflow stations. With a BACC of 0.53, only 8% of the 848 

intermittent reach-months in ONDE are correctly identified (Figure 10c). Underestimation occurs 849 

in all size classes, increasing from an underestimation of, on average, 4 months for upstream areas 850 

of less than 10 km2 to an underestimation of 6-7 months for basins between 10 km2 and 2,500 km2. 851 

Considering whether reaches are intermittent or perennial, only 23% of the intermittent reaches 852 

were correctly predicted as such, compared to 62% for the European stations used to set up the 853 

step 1 RF (Table 2). Our RF model achieves a balanced accuracy of only 0.54 (Figure 10a) in its 854 

binary classification of ONDE reaches, while the global static RF model of naturally intermittent 855 

reaches of Messager et al. (2021) yielded a slightly higher value of 0.59 (Figure 10b). The spatial 856 

pattern of agreement of the static global model is less patchy than that of our model. The global 857 

model predicts intermittence to occur in large contiguous areas, as it is mainly driven by larger-858 

scale climatic predictors whereas our dynamic European model is strongly driven by small-scale 859 

streamflow characteristics. In addition, our model is based on more streamflow gauging stations. 860 
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For unknown reasons, our RF model cannot predict intermittent reaches along the Mediterranean 861 

coast, which differs from the static global model. If the threshold for perennial conditions is 862 

increased to a probability of 75%, which does not lead to a decrease of BACC, 91% of the 863 

intermittent reaches would be correctly identified, but then 85% of the perennial reaches would be 864 

incorrectly predicted as intermittent.  865 

  

  

Figure 10. Comparison of simulated intermittence of reaches and reach-months with the ONDE 866 

data set of visually observed intermittence. Correspondence between the simulated and observed 867 

intermittence state of reaches for our RF model (a) and the RF model of Messager et al. (2021) 868 

(b), percent of correctly classified reach-months in our model (c) and ratio of predicted to observed 869 

intermittent months in our model (d). 870 

 871 
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5.2. Challenges of continental-scale high-resolution estimation of streamflow and streamflow 872 

intermittence 873 

Given the amount, spatial resolution and uncertainty of available data, it is very challenging to 874 

achieve a good prediction of HR streamflow intermittence for all of Europe. One reason is that 875 

continental and global-scale streamflow simulations for relatively large rivers represented by LR 876 

models often strongly differ from observations. This mismatch stems from large-scale models not 877 

being calibrated in a basin-specific manner against observed daily streamflow, as is done with 878 

small-scale models. In addition, their input data are coarser and usually less accurate than those of 879 

small-scale models. Here, using an advanced downscaling algorithm, the output of a LR 880 

hydrological model (Figure 11a, b) was downscaled, by a factor of 14,400, to generate monthly 881 

time series of streamflow at 15 arc-sec resolution (Figure 11c). It is encouraging that these 882 

simulated HR streamflow time series show skill for most streamflow stations with upstream areas 883 

smaller than an LR cell, even down to upstream areas of less the 5 km2 (Figures 2 and 3). However, 884 

the number of evaluated gauging stations with such small upstream areas was very small (Figure 885 

3). The estimated HR streamflow time series enabled, together with other predictors, the estimation 886 

of HR streamflow intermittence. A comparison of Figures 11b and 11d, which shows LR and HR 887 

intermittence, respectively, for a part of France illustrates the strongly increased information 888 

content of the European HR streamflow intermittence dataset as compared to an LR intermittence 889 

estimation. 890 

  891 
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 892 

 893 
 894 

Figure 11. Illustration of downscaling of LR WaterGAP output to the HR stream network of 895 

HydroSHEDS and the resulting resolution-dependent characterization of intermittence. Panels 896 

show LR (0.5 arc-deg) grid cells with the sum of surface runoff and groundwater discharge (the 897 

main input to the downscaling algorithm) (a), LR reaches with their intermittence status (b), HR 898 

(15 arc-sec) grid cells with downscaled streamflow (c) and HR reaches with intermittence status 899 

in 5 classes (d). The figure shows the situation for the example of August 2003. In c and d, the 900 

locations of the streamflow gauging stations used for validation of downscaled streamflow and as 901 

target for the RF model are added. 902 

 903 
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It is very difficult to judge the realism or plausibility of the predicted reach intermittence. The 904 

model validation against an independent data set for France (section 5.1) indicates a severe 905 

underestimation of observed intermittent reach-months, while the comparison of predicted 906 

intermittence to streamflow observations used for setting up the RF model indicates that the RF 907 

model overestimates intermittence, particularly for the relatively dry regions of Europe such as 908 

large parts of the Iberian Peninsula. The latter may be explained by the suspected anthropogenic 909 

perennialization of streamflow by many small and large dams that have been constructed to make 910 

water available even in periods of low or no flow. Still, the BACC for predicting intermittent 911 

station-months (0.92) was very good. We found that the RF model can simulate well the 912 

interannual variability of the number of intermittent months at the streamflow gauging stations 913 

(Figure 4c), which is an important positive characteristic if the model is to be used for assessing 914 

the impact of drought conditions or climate change. The partial dependence plots for the step 1 RF 915 

show that the model identifies tendencies in the probability of a station-month being intermittent 916 

that agree with expert expectations (except for terrain slope), which increases our trust in the 917 

derived RF. Moreover, the correlation between the observed and predicted monthly time series of 918 

the five intermittence classes is high at most intermittent stations (Figure 6d), which indicates a 919 

good representation of the seasonality of streamflow intermittence. Averaged over all station-920 

months with available intermittence observations, there is no bias in the prediction of the five 921 

intermittence classes per size class of upstream area as compared to observations (Table 3). 922 

However, the prediction of the number of no-flow days per reach-month in four classes must be 923 

considered to be less reliable than the prediction of a reach-month as either intermittent or 924 

perennial, as indicated by the lower BACC of 0.67 for the step 2 RF. 925 

In this study, we estimate that 18.7% of the European stream network length were intermittent in 926 

the period 1981-2019, while the global model of Messager et al. (2021) predicts a value of 17.1% 927 

for the our European study area. However, these values cannot be compared directly for various 928 

reasons. Our river network includes smaller headwater streams than the global model (representing 929 

12.4% of the European river network used in this study; see Section 2.4) and the definition of 930 

intermittent reach is slightly different (global model: 1 no-flow day per year, our model: 1 no-flow 931 

day during the period 1981-2019). In addition, the global model aimed to predict natural 932 

intermittence by excluding heavily influenced gauging stations, relying on naturalized hydrology 933 

for the period 1971-2000. Still, our model predicts a similar prevalence of intermittent reaches in 934 

Europe.  935 

The prevalence of intermittence across European rivers and streams by this study, with 17.8% of 936 

intermittent reaches and 3.8% of the reach-months, is much lower than in the study of Döll et al. 937 

(2023a), with values of 39.6% and 9.1%, respectively, even though the same HR streamflow 938 

estimates were used in the RF modeling. Even though some predictors (related to irrigation, 939 

population and the degree of regulation by reservoirs) were added and one (daily streamflow 940 

variability) removed in this study, we attribute this strong discrepancy to the different observations 941 

of the RF target variables, which were derived from daily time series of streamflow observations. 942 

We explicitly tried to obtain streamflow from dry areas and small streams, with a higher likelihood 943 

of intermittence, and added data from Cyprus and Italy (for Sardinia and the Po basin, but time 944 

series for the rest of Italy were shorter than our inclusion threshold of 36 months), but we could 945 

not obtain in time any data for, e.g., Greece, Albania and Bulgaria. The data set was rather extended 946 

by stations for more humid regions such as Scandinavia, the three Baltic states, Poland and Belarus, 947 

most of which are perennial (comp. Figure 4a). When the streamflow observations data set was 948 
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extended from the one used by Döll et al. (2023a), i.e., from 1915 gauging stations to the 3706 949 

stations in this study (see Table 4 for station numbers per drainage area class), the additional 950 

stations had a smaller fraction of intermittent months than the original data set. In this way, we 951 

have further biased the target data set and therefore may have caused a biased streamflow 952 

intermittence prediction for the reaches. Still, we expect that almost doubling the amount of target 953 

observations as compared to the study of Döll et al. (2023a) increased the reliability of the RF 954 

models. The additional streamflow data and predictors are informative because the BACC for the 955 

step 1 RF increased from 0.85 in Döll et al. (2023a) to 0.92 in this study (while the BACC for the 956 

step 2 RFs are the same). However, the fit to the ONDE data as measured by the BACC for the 957 

identification of intermittent reaches remained the same as that of the step 1 RF model by Döll et 958 

al. (2023a). The comparison of the European streamflow intermittence estimation by Döll et al. 959 

(2023a) and in this study shows the major impact of available target observations on RF modeling 960 

results. 961 

Upstream area is the most important predictor for likelihood of a station-month to be intermittent, 962 

yet we cannot assume that inclusion of this predictor in the RF model development is adequately 963 

representing the effect of upstream area on the likelihood of intermittence given the existing 964 

distribution of our target data. To represent upstream area appropriately in the target data, we 965 

would need a data set of streamflow gauging stations that show the same distribution of upstream 966 

areas as the stream reaches; however, the distributions are extremely different (Table 4). While 967 

77.7% of the reaches have an upstream area of up to 50 km2, this is only the case for 12.3% of the 968 

gauging stations. The largest size class for the reaches is, with 31%, the class 2-5 km2, but only 969 

0.6% of the station-months are in this class. As an illustration, if we would like to have the same 970 

size distribution with the 22 stations in the class 2-5 km2 
 that were available, then we would have 971 

to consider only 70 stations in total, instead of 3706. As the fraction of perennial months is higher 972 

for reaches than for the stations, especially for drainage areas below 50 km2 (except for the smallest 973 

size class due to the definition of the smallest reaches, Table 5), a further decrease of the average 974 

fraction of intermittent months for the gauging stations by the extension of the data set might have 975 

led to an even stronger underestimation of intermittence in these headwater reaches. However, by 976 

our extension, we more than doubled the number of stations in the class 2-5 km2 by raising the 977 

number of stations from 10 to 22 (Table 5) which increased the information base upon which the 978 

RF models were trained. 979 

The performance of our model certainly suffers from the general problem of imbalanced target 980 

data, with 97.2% of the station-months being perennial. The most important approach to handle 981 

this problem was the two-step approach whereby the prediction of perennial months in step 1 was 982 

followed by the prediction of the number of no-flow days per month only for those 2.8% of all 983 

station-months for which at least one no-flow day was observed. In addition, various alternative 984 

methods for handling imbalanced data were tested for the step 2 RF. Oversampling resulted in 985 

slightly better BACC values than undersampling and the Synthetic Minority Oversampling 986 

Technique (SMOTE) (Chawla et al., 2002).  987 

6. Conclusions and Outlook 988 

For the first time, streamflow intermittence dynamics could be quantified at the continental scale 989 

at a high spatial resolution, i.e., for stream reaches with an upstream area down to only 2 km2 (or 990 

even smaller in wet regions). We simulated monthly time series of streamflow intermittence in 991 
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five classes (0, 1-5, 6-15, 16-29 and 30-31 no-flow days per month) in the period 1981-2019 for 992 

more than 1.5 million stream reaches in Europe. This was achieved by 1) downscaling the 0.5 arc-993 

deg output of the global hydrological model WaterGAP to obtain time series of monthly 994 

streamflow at about 73 million 15 arc-sec grid cells and 2) combining this information with daily 995 

data of streamflow as observed at 3706 gauging stations and a number of static hydro-996 

environmental characteristics of the upstream basins (plus two WaterGAP-related datasets) in an 997 

RF modeling approach. The model captures the interannual variability of the number of 998 

intermittent months satisfactorily, and the monthly time series of the predicted five streamflow 999 

intermittence states is highly correlated with observations. The spatial prevalence of weakly 1000 

intermittent conditions appears to be underestimated, while the number of intermittent months is 1001 

overestimated in the dry regions of Europe where reservoirs tend to perennialize streamflow. 1002 

While the generated streamflow intermittence data set does diverge from reality for many reach-1003 

months, it is nevertheless a valuable basis for macro-scale studies of biodiversity, ecosystem 1004 

functions and ecosystem services under conditions of potential streamflow intermittence. 1005 

The presented modeling approach was designed to enable the computation of intermittence 1006 

changes due to climate change. For this purpose, the LR output of a WaterGAP run that is driven 1007 

by the bias-corrected output of global climate models, instead of observed historic climate, can be 1008 

downscaled to calculate monthly time series of HR streamflow in, for example, a 30-yr reference 1009 

period and a 30-year period in the future. These time series, together with the LR WaterGAP time 1010 

series of monthly diffuse groundwater recharge, runoff from land and the number of wet days 1011 

under climate change, can then serve to compute the dynamic predictor values that are, in addition 1012 

to the unchanged static predictor values, the input for the two developed RF models. In addition, 1013 

the developed modeling approach can be used to analyze the occurrence of drought in intermittent 1014 

streams (Sarremejane et al., 2021). 1015 

Data Availability Statement 1016 

WaterGAP 2.2e input and output used for deriving HR streamflow and as LR predictors in the RF 1017 

model is available from Müller Schmied et al. (2023b).  The code for deriving HR streamflow 1018 

(Trautmann, 2023) is available at https://doi.org/10.5281/zenodo.10301003, and the code and 1019 

workflow for the RF modeling (Abbasi & Messager, 2023) at 1020 

https://github.com/mahabbasi/europeanIRmap.git. Due to the very large file sizes, the HR monthly 1021 

streamflow time series are only available on request from first authors. The following data are 1022 

available at https://doi.org/10.6084/m9.figshare.24591807: 1) Input files for deriving HR 1023 

streamflow (Text S1), 2) the monthly time series of streamflow at the 3706 gauging stations, 3) 1024 

shapefiles of locations of streamflow gauging stations and European reaches, 4) all predictors and 1025 

target variables for the 3706 gauging stations used to generate the step 1 and step 2 RFs and 5) 1026 

shapefiles with the five intermittence classes for each reach-month in the period 1981-2019 as well 1027 

as the shapefiles for generating all figures (Döll et al., 2023b). The original data used for deriving 1028 

the HR static predictors are available as described in Section 2.3.2 and Table 1. 1029 
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