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Abstract19

Ancient exhumed accretionary complexes are sometimes associated with high-pressure–20

low-temperature (HP–LT) metamorphic rocks, such as psammitic schists, which are de-21

rived from sandy trench-fill sediment. At accretionary margins, sandy trench-fill sedi-22

ments are rarely subducted to the depth of HP metamorphism because they are com-23

monly scraped off at the frontal wedge. This study uses sandbox analogue experiments24

to investigate the role of seafloor topography in the transport of trench-fill sediment to25

depth during subduction. The experiments were conducted with a detached, rigid back-26

stop to allow a topographic high (representing a seamount) to be subducted through a27

subduction channel. In experiments without topographic relief, progressive thickening28

of the accretionary wedge pushed the backstop down, leading to a stepping down of the29

décollement, narrowing the subduction channel, and underplating the wedge with sub-30

ducting sediment. In contrast, in experiments with a topographic high, the subduction31

of the topographic high raised the backstop, leading to a stepping up of the décollement32

and widening of the subduction channel. These results suggest that the subduction of33

topographic relief is a possible mechanism for the transport of trench-fill sediment from34

the trench to HP environments through a subduction channel. A sufficient supply of sed-35

iment to the trench and topographic relief on the subducting oceanic plate might enable36

trench-fill sediment to be accreted at various depths and deeply subducted to become37

the protoliths of HP–LT metamorphic rocks.38

Plain Language Summary39

Ancient accretionary rocks are sometimes exposed close to high-pressure metamor-40

phic rocks of the same depositional age, which were originally deposited at the trench41

and deformed at depth (>20 km) along the subduction zone. Because most trench-fill42

sandy sediment along accretionary margins is scraped off at the toe of the accretionary43

wedge, it is difficult to explain how sandy metamorphic rocks can coexist with accretionary44

rocks of the same depositional age. This study examines the importance of the surface45

roughness of the subducting oceanic crust in transporting sandy trench-fill sediment to46

high-pressure environments. We performed two types of sandbox analogue experiment,47

one with a smooth and one with a rough subducting plate surface. For the case of a smooth48

plate, the growing accretionary wedge pushed the sliding surface down, thereby prevent-49

ing the sandy sediment from being subducted to depth and resulting in the stacking of50
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sediment trapped under the accretionary wedge (i.e., underplating). In contrast, a to-51

pographic high on the subducting oceanic crust raised the sliding surface to accommo-52

date both the topographic high and the surrounding sediment, meaning that the sed-53

iment could then be subducted (i.e., underthrusting). This might explain the transport54

of sandy sediment to the depths of high-pressure metamorphism.55

1 Introduction56

High-pressure–low-temperature (HP–LT) metamorphic rocks derived from terrige-57

nous sedimentary rocks are known to occur at subduction margins. Such metamorphic58

rocks are exposed alongside low-grade accretionary rocks and fore-arc basin strata that59

include coarse-grained sandy deposits with the same depositional ages as the metamor-60

phic rocks. For example, the Sanbagawa Metamorphic Complex in southwestern Japan61

contains HP–LT psammitic and even conglomeratic schists (e.g., Wallis, 1998), and the62

depositional ages and geochemical characteristics of the protolith are almost identical63

to those of sandstone from the low-grade Shimanto Accretionary Complex (Kiminami64

et al., 1999; Shibata et al., 2008; Aoki et al., 2012) and submarine fan turbidites deposited65

in the associated fore-arc basin (Noda & Sato, 2018) (Figure 1). These observations in-66

dicate that terrigenous trench-fill sediments were accreted in a shallow subduction zone67

and were also subducted to >20 km depth. Other examples of such subduction–accretion-68

related HP–LT metamorphic rocks can be seen in the Franciscan Complex in Califor-69

nia (e.g., Ernst, 2011; Jacobson et al., 2011; Dumitru et al., 2015; Raymond, 2018), the70

Chugach terrane in Alaska (Plafker et al., 1994), the Central Pontides in Turkey (Okay71

et al., 2006), and the Coastal Cordillera in Chile (Glodny et al., 2005; Willner et al., 2004;72

Angiboust et al., 2018).73

At typical sedimentary accretion zones, such as those in Cascadia (Gulick et al.,74

1998; Booth-Rea et al., 2008; Calvert et al., 2011), Alaska (J. C. Moore et al., 1991; Ye75

et al., 1997), Java (Kopp et al., 2009), southern Chile (Glodny et al., 2005; Melnick et76

al., 2006), Sumatra (Singh et al., 2008; Huot & Singh, 2018), and Japan (Park et al., 2002;77

H. Kimura et al., 2010), terrigenous trench-fill sediments are generally scraped off at the78

frontal wedge, whereas hemipelagic-to-pelagic sediments underplate the base of the ac-79

cretionary wedge (e.g., Scholl, 2019). This may be because the increased structural thick-80

ness of the wedge and progressive dewatering of subducting sediment causes the décollement81

to step down and narrow the subduction channel (e.g., Sample & Moore, 1987; Vannuc-82
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chi et al., 2008). This suggests that the growth of the accretionary wedge might inhibit83

the subduction of terrigenous sediment beyond the wedge through the subduction chan-84

nel. However, occurrences of HP–LT metasandstone at some accretionary margins demon-85

strate that terrigenous sediment can be subducted beneath the wedge. One hypothesis86

is that a topographic high enables trench-fill sediment to be subducted under the wedge87

(Figure 2). Subducting seamounts followed by subducting material can be observed be-88

neath the wedge along accretionary margins in southwestern Japan (G. F. Moore et al.,89

2014), Alaska (Li et al., 2018), Barbados (G. F. Moore et al., 1995), and Hikurangi (Barker90

et al., 2009; Bell et al., 2010).91

The subduction of terrigenous material associated with the rough topography of92

a subducting oceanic plate has been proposed to explain tectonic erosion of the wedge93

(e.g., von Huene & Culotta, 1989; Lallemand et al., 1994; von Huene et al., 2004). Sand-94

box analogue experiments have shown the potential for sediment transport below the frontal95

wedge behind a subducting topographic high (Lallemand et al., 1992; Dominguez et al.,96

2000). Numerical simulations show that in the wake of a subducting seamount, there are97

unfaulted strata, large-offset thrust faults, increased fault spacing, an oversteepened sur-98

face slope, and intense deformation along the base of the wedge (Morgan & Bangs, 2017).99

In addition, recent seismic profiles across the accretionary margins of the Nankai Trough100

(Bangs et al., 2006) and the Hikurangi Trench (Bell et al., 2010) reveal that subduct-101

ing seamounts or ridges and the surrounding sediment are accommodated by a step-up102

in the décollement, and the surrounding sediment is being transported to depth.103

However, the influence of a subducting seamount beneath an accretionary wedge104

on subduction and accretion fluxes is not well understood. In particular, the role of to-105

pographic highs in modifying the décollement level and in maintaining or rejuvenating106

the subduction channel as a conduit for sediment subduction needs to be explored. The107

purpose of this study is (1) to investigate how the topographic roughness of the subduct-108

ing plate interface influences material fluxes, including the accretion of sediment to the109

wedge and the subduction of sediment along the subduction channel, and (2) to propose110

a model that explains how terrigenous trench-fill sediment can be transported to depth.111

We performed two types of sandbox analogue experiment, one with and one without a112

topographic high. The novelty of these experiments is that they used a detached back-113

stop to reproduce the subduction and underplating of sediment when a rigid topographic114

high is subducted beneath an accretionary wedge. We also inserted two weak layers within115
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the sand, to reproduce the situation where the subducting sediment includes several po-116

tential slip surfaces. Such multiple décollements are commonly found within underthrust117

sediments or at the top of the oceanic crust, including at the Nankai (G. F. Moore et118

al., 2001; Park et al., 2002), Hikurangi (Ghisetti et al., 2016; Plaza-Faverola et al., 2016),119

and Barbados (Saffer, 2003) accretion zones.120

2 Methods121

2.1 Model setup and experimental materials122

A scaled 2-D analogue modeling technique was used for this study so that the re-123

sults could be compared with naturally occurring geological structures (e.g., Buiter, 2012;124

Graveleau et al., 2012). A glass-sided rectangular deformation rig with internal dimen-125

sions of 100 cm × 30 cm × 20 cm was used (Figure 3). A steel plate was positioned at126

one end as a fixed wall with a small open window at the bottom. A rigid wedge made127

from wood was placed next to the steel plate but was not fixed to it. The wedge was de-128

signed to behave like a static backstop that has a higher mechanical strength than the129

accretionary wedge (e.g., Tsuji et al., 2015). A rigid backstop is used to ensure stabil-130

ity during the experiments and for repeatability. The mobility of the backstop helped131

to replicate the deformable nature of equivalent structures in natural geological systems,132

and to allow topographic relief to be subducted. The backstop had a surface slope that133

dips at 30◦ and is covered by sandpaper. A plastic (Mylar R©) sheet was placed over the134

rig’s base plate and fixed to a roll that pulled the sheet using a stepper motor (on the135

left side in Figure 3). The sheet was pulled beneath the rigid backstop at a rate of 0.5 cm/min,136

thereby compressing the experimental material above.137

Two types of granular material were used for the experiments: Toyoura sand and138

glass micro-beads. Dry granular materials like these are widely used as analogue mate-139

rials to simulate the brittle and frictional behavior of sedimentary rocks in accretionary140

wedges because they display elastic–frictional plastic behavior and reproduce the non-141

linear deformation of crustal rocks under brittle conditions (e.g., Dahlen, 1984; Lohrmann142

et al., 2003; Graveleau et al., 2012). Toyoura sand, a standard testing material commonly143

used by Japanese civil engineers, is a spherical quartz-rich sand with a particle size of144

0.14–0.26 mm (D50 = 0.2 mm), a density of approximately 1600 kg m−3, an internal co-145

efficient of friction, µ, of 0.59–0.68, and a cohesion, C, of 105–127 Pa (Yamada et al., 2006;146
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Dotare et al., 2016). The glass micro-beads are spherical and 0.045–0.063 mm in diam-147

eter, have a low internal coefficient of friction (µ = 0.47) and low cohesion (40 Pa), and148

are considered a suitable analogue for weaker layers (Yamada et al., 2006, 2014).149

Layers of sand and glass micro-beads with a total thickness of 3.4 cm were used150

in the experiments. The sand and glass were sprinkled into the rig from a height of ap-151

proximately 30 cm above the rig floor (Figure 3). Alternating layers of blue, red, and152

black sand were laid down to help visualize the cross-sectional geometry of the models,153

without influencing the mechanical homogeneity. Mechanically weak layers were created154

by adding two thin layers of glass micro-beads, each 3 mm thick.155

Experiment A (Exp. A) investigated the subduction of a smooth oceanic plate be-156

neath a static backstop (Figure 3a). Experiment B (Exp. B) investigated the subduc-157

tion of topographic relief (e.g., a seamount), using a block that was attached to the plas-158

tic sheet (Figure 3b). The height of the relief was 1.6 cm, approximately half of the to-159

tal thickness of the sediment. The height of the relief was chosen to avoid drastic defor-160

mation of the accretionary wedge. The surface of the topographic relief was covered by161

a Teflon R© sheet. The total amount of horizontal shortening was 30 cm for Exp. A and162

35 cm for Exp. B.163

After each 2 cm increment of shortening, we sprinkled dry sand from at least 10 cm164

above the surface of the accretionary wedge to fill the topographic lows that had devel-165

oped (Figure 4). This sand was used to replicate sedimentation in fore-arc/slope basins166

that form on the surfaces of accretionary wedges. A total of 1129 g of sand was added167

over the course of Exp. A and 910 g during Exp. B. The volumes of sand added during168

Exp. A and B were 706 and 569 cm3, respectively.169

In addition to investigating wedge morphology, we studied temporal variations in170

sediment influx/outflux. The sediment influx and outflux (cm2) were calculated using171

the thicknesses (cm) of the trench-fill sediments (influx) and the subduction channel un-172

derneath the backstop (outflux), which were multiplied by the rig width (30 cm) and di-173

vided by the length of shortening (cm). Input and output (cm3) are here defined to be174

the integrals of influx and outflux, respectively, with respect to shortening length (cm).175

Time-lapse digital images were taken through the transparent side glass at 5 s intervals176

using a PC-based controller. The images were later analyzed to calculate sediment in-177

flux/outflux and to study the cross-sectional geometry of the wedges. The experiments178
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did not account for the effects of isostatic compensation and erosion, which would have179

contributed to the differences between our models and natural examples (e.g., Schellart180

& Strak, 2016).181

2.2 Scaling182

Models used in laboratory experiments should be properly scaled so that the re-183

sults can be considered true analogues of geological processes (e.g., Hubbert, 1937). It184

is assumed that brittle deformation will obey frictional Mohr–Coulomb-type laws. The185

basic scaling relationship between the physical properties of a model and those in na-186

ture, which relates the stress, σ, density, ρ, gravity, g, and length, l (Hubbert, 1937; Schel-187

lart, 2000) is188

σg
σm

=
lg
lm

× gg
gm

× ρg
ρm

. (1)

where the subscripts m and g indicate model and geological values, respectively. The co-189

hesion C can substitute for stress, σ (Schellart, 2000; Graveleau et al., 2012), and the190

experiments are performed under normal gravity (gm/gg = 1); consequently, Eq. 1 can191

be modified to give192

lg
lm

=
Cg

Cm
× ρm
ρg
. (2)

For mean bulk density values of 2000–2500 kg m−3 and cohesion values of 5–20 MPa,193

which are typical of sedimentary rocks in accretionary wedges (Schumann et al., 2014),194

the length scale ratio ranges from approximately 3 × 104 to 1 × 105. A 1 cm model layer195

in an experiment therefore corresponds to 300 m to 1 km in nature. The 3.4-cm-thick196

sediment layers used in this experiment can be scaled to 1–3 km of strata, which is a mod-197

erate thickness of trench-fill sediment for a modern accretionary margin (Noda, 2016).198

The 5 cm width and 1.6 cm height of the topographic relief used in Exp. B can be scaled199

to 1.5–5 km and 0.5–1.6 km, respectively. The scaled dimensions of the topographic re-200

lief are comparable to many seamounts on the Pacific plate. However, the height-to-radius201

ratio of 0.64 in the model is higher than that of 0.21 for natural seamounts (Jordan et202

al., 1983; Smith, 1988). This high ratio is used to enhance the effects of topography. The203

total amount of shortening during the experiments was 30–35 cm, which is equivalent204
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to 9–35 km of displacement. Assuming a plate convergence rate of 5 cm/year, this in turn205

corresponds to 1.8–7 × 105 years. A sediment supply to the topographic lows of 910—1129 g206

for 6 × 105 years is equivalent to a sediment budget on the order of 106 t/year. The cal-207

culated sediment budget is the same order of magnitude as the sediment load in many208

mountainous rivers in Japan and New Zealand (Milliman & Syvitski, 1992), and the sed-209

imentary influx into the Kumano Basin during the last 4 Myr (50 km × 70 km × 2 km).210

3 Results211

3.1 Experiment A: Subduction without a seamount212

During the first ∼9 cm of shortening, high-frequency, low-amplitude forethrusts de-213

veloped in front of the backstop (Stage 1, Figure 5a; 8 cm of shortening in Figure 6). The214

wedge was uplifted quickly (uplift rate is 0.34 in Figure 5d), and thus the slope increased215

rapidly, exceeding 12◦ by the end of Stage 1 (Figure 5c). After the emergence of T6 (Stage216

2), the frequency of forethrust initiation and the uplift rate of the wedge (0.10) were lower217

than during Stage 1, but the rate of wedge widening (0.22) remained nearly constant (Fig-218

ure 5). The slope of the wedge surface ranged from 8.5◦ to 13◦, and was 9.5◦ at the end219

of the experiment (Figure 5c).220

Deformation was concentrated in the upper layer of glass beads, which acted as a221

décollement, until 16 cm of shortening (Figure 6). At around 18 cm of shortening the222

décollement stepped down to the lower layer of glass beads as the toe of the backstop223

subsided below the upper layer of glass beads. During this stage, the footwall of fore-224

thrust T7 underthrust the wedge and the sand layer between the two layers of glass beads225

underplated the wedge, creating a duplex structure (18–24 cm of shortening in Figure 6).226

This underthrusting raised the hanging wall of T7 and created a piggy-back basin (trench-227

slope basin) on top of the wedge (22 cm of shortening). After the activation of T8, with228

the lower layer of glass beads acting as a décollement, subducting sediment was accreted229

to both the frontal and basal parts of the wedge with increasing amount of underplat-230

ing and thickness of the forethrust sheet of T8. The final forethrust, T9, was initiated231

with the upper layer of glass beads acting as the detachment (30 cm of shortening). The232

final wedge was nearly 30 cm in length and had a constant slope of 9.5◦ (Figure 5). The233

toe of the backstop further subsided, to the lower layer of glass beads (30 cm of short-234

ening in Figure 6).235
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The outflux from the subduction channel (sediment subduction) gradually decreased,236

but its rate of change increased (Figure 5e). In particular, after the décollement stepped237

down, the outflux dropped rapidly. Influx to the accretionary wedge (solid dashed line238

in Figure 5e) increased to balance the total sediment influx. The output-to-input ratio239

of the experiment was 0.36 (Table 1).240

3.2 Experiment B: Subduction with a seamount241

Stage 1 of Exp. B was almost identical to that of Exp. A in terms of wedge progra-242

dation, and the widening and uplift rates of the wedge (Figure 5a–d). Stage 2 started243

after the initiation of forethrust T5, earlier than in Exp. A. T5 was active for over 12.8 cm244

of shortening, exceeding that of any other forethrust in either experiment (Figure 5a).245

This long activity acted to reduce the width of the wedge and steepened its slope to 17.7◦246

(Figure 5b, c). The wedge progradation rate during Stage 2 was 0.10, nearly half that247

of Exp. A (Figure 5a). The uplift rate varied from 0.06 to 0.29, but the mean rate was248

the same as in Exp. A (Figure 5b).249

The wedge deformation process during Stage 1 of Exp. B was similar that in Exp. A250

(0–6 cm of shortening in Figure 7). However, at 7 cm of shortening, the seamount trig-251

gered the first forethrust of Stage 2 at 10 cm from the toe of the wedge (T5 in Figure 7).252

The subduction of the seamount led to an undeformed layer underthrusting the wedge,253

and then uplifted the hanging wall as a trench-slope basin to create accommodation space254

(10–16 cm of shortening in Figure 7).255

A décollement was formed in the upper layer of glass beads on the landward side256

of the seamount and in T5 on the trenchward side during the period between the initi-257

ation of T5 and collision of the seamount with the backstop (8–12 cm of shortening in258

Figure 7). Just prior to the collision (12–18 cm of shortening), both the upper and lower259

layers of glass beads were sliding and the sand layer between two layers of glass beads260

underplated and was injected into T5. The décollement stepped up from the lower layer261

of glass beads to T5 when the seamount passed. In addition, following the collision the262

seamount raised the backstop and opened a subduction channel beneath it (>20 cm of263

shortening in Figure 7). The subsequent forethrusts, T6 and T7, were rooted in a décollement264

in the upper layer of glass beads. Finally, the toe of the backstop subsided slightly, caus-265

ing the lower layer of glass beads to act as a décollement.266
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Sediment outflux gradually decreased (blue line in Figure 5f), as it did during Exp. A,267

until the seamount reached the backstop. After the seamount raised the backstop, at around268

17–20 cm of shortening (Figure 7), sediment outflux fully recovered and even exceeded269

its initial rate (Figure 5d). Outflux soon decreased again as the seamount subducted far-270

ther landward and the backstop subsided (Figure 5f). The output-to-input ratio of the271

experiment was 0.46 (Table 1).272

4 Discussion273

4.1 Décollement step-down and underplating274

The gradual decrease of the outflux in Exp. A (Figure 5e) increased the influx to275

the accretionary wedge, which increased its growth rate. During the time the upper layer276

of glass beads acted as a décollement, the sediment above it was accreted to the wedge277

front. As the slip switched to the lower layer of glass beads, the sediment between the278

two layers of glass beads underplated the wedge, and frontal accretion continued. Sim-279

ilar results have been reported in previous analogue experiments; i.e., underplating be-280

comes significant when the outflux from the subduction channel (sediment subduction)281

is smaller than the influx (Kukowski et al., 1994; Albert et al., 2018). The results of our282

experiment support the conclusion that a narrowing of the subduction channel and a de-283

crease in outflux can lead to sediment underplating the wedge and faster wedge growth.284

If we assume that sand above the upper layer of glass beads is terrigenous sediment,285

and that sand below this layer is hemipelagic–pelagic sediment, the former can be scraped286

off at the wedge front and the latter may be underplated below the wedge (see Figure 8).287

This occurs because terrigenous and hemipelagic sediments tend to be detached as a re-288

sult of variations in diagenetic alteration (J. C. Moore, 1975) or smectite content (Vrolijk,289

1990; Deng & Underwood, 2001), or existence of weak smectitic pelagic clay (J. C. Moore290

et al., 2015). This can be observed in the Nankai Trough, where there is a step-down in291

the décollement at 1–3 km depth, in the transitional region between the aseismic and292

seismic zones (cf. Park et al., 2002; G. Kimura et al., 2007), which could be due to the293

different physical properties of these rock types.294

The stepping down of the décollement in this study was associated with subsidence295

of the backstop, which was probably linked to increased overburden stress caused by thick-296

ening of the wedge. Increased overburden stress may inhibit the subduction of terrige-297
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nous sediment to great depth. Underplating related to subsidence of the backstop (in-298

ner wedge) also occurs along erosive margins. For example, thick (> 2 km) sediment cover299

suggests subsidence of the inner wedge of the Ecuador–Colombia margin (Collot et al.,300

2008). Seismic profiles indicate underplating between listric splay faults and the basal301

décollement beneath the apex of the inner wedge, but the total mass flux at the plate302

interface is negative (Collot et al., 2008), and material at the base of the inner wedge303

is eroded.304

4.2 Décollement step-up and sediment subduction305

In Exp. B, the subduction of a seamount shifted the décollement from the glass bead306

layers into forethrust T5 along the leading flank of the seamount. While T5 was active307

as a “top décollement” (cf. Lallemand et al., 1994), incoming undeformed layered sand308

in the wake of the seamount was underthrust below the accretionary wedge. This is sim-309

ilar to what is seen in seismic profiles from the Nankai (Bangs et al., 2006) and Hiku-310

rangi margins (Bell et al., 2010), which show a décollement with a step-up caused by seamount311

subduction.312

Another effect of seamount subduction in Exp. B is that raising the backstop widened313

the subduction channel, allowing thick layers of sand to subduct below the backstop through314

the subduction channel. In nature, if an oceanic plate with sufficiently large topographic315

highs subducts under a static backstop (cf. Tsuji et al., 2015), trench-fill terrigenous sed-316

iment accompanying the highs could be transported through the subduction channel to317

a higher-pressure environment than sediment on a smooth oceanic plate. Exp. B could318

be analogous to the transport mechanism of the protolith of the ancient Sanbagawa Meta-319

morphic and Shimanto Accretionary complexes of southwestern Japan.320

We propose a schematic model for the subduction of terrigenous sediment under321

an accretionary wedge (Figure 8). A progressive thickening of the wedge increases the322

overburden on the décollement that develops along weak layers in the cover sediment de-323

posited on the subducting oceanic plate. This overburden results in dewatering and di-324

agenetic alteration of the subducting sediment, which increases its mechanical strength,325

leading to a step-down in the décollement (Figure 8a, b). The reduction of sediment out-326

flux due to narrowing of the subduction channel increases the mass of sediment under-327

plated beneath the wedge and the rate of frontal accretion. When a topographic high328
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(e.g., a seamount or an aseismic ridge) subducts under the wedge, the décollement steps329

up to the forethrust along the leading flank of the seamount (Figure 8b). This likely en-330

ables the subduction of terrigenous sediment beneath the wedge. Further subduction of331

the topographic high would raise the backstop and open the subduction channel for ter-332

rigenous sediment to be subducted into a high-pressure environment (Figure 8c). After333

the topographic high passes the inner wedge or backstop, the décollement under the ac-334

cretionary wedge returns to the plate boundary or a weak layer within the trench-fill sed-335

iments.336

4.3 Further implications337

Excess pore pressure is important in maintaining subduction channels along the338

plate interface (e.g., Saffer & Bekins, 2006). If the excess pore pressure drops below the339

overburden pressure, the physical conditions in the subduction channel may resemble those340

in the accretionary wedge (cf. Nankai and Barbados; Saffer, 2003). This probably ac-341

celerates both the stepping down of the décollement and underplating (Strasser et al.,342

2009; G. Kimura et al., 2011). In contrast, numerical simulations predict that the rais-343

ing of the wedge due to the subduction of a seamount could delay the release of fluid from344

subducting sediment (Baba et al., 2001; Ruh et al., 2016). Low-velocity layers observed345

in the wake of subducting seamounts could provide evidence of under-compacted sed-346

iment with potentially high excess pore pressures (e.g., Sage et al., 2006). Furthermore,347

the seismic reflection characteristics of the Hikurangi subduction margin also suggest lo-348

calized reductions in effective stress associated with seamount subduction (Bell et al.,349

2010). In addition to topographic relief, excess pore pressure could allow subduction chan-350

nels to persist for longer than would otherwise be possible. Our experiments cannot cur-351

rently incorporate the effects of excess pore pressure; consequently, we need to consider352

ways to include these effects.353

Where the trench-fill sediments are insufficient to fully cover the topographic re-354

lief of the subducting oceanic crust, tectonic erosion may dominate and the accretionary355

wedge cannot grow, as seen in northeastern Japan, Costa Rica, and Ecuador (von Huene356

et al., 2004; Collot et al., 2011). Therefore, a sediment-rich subduction zone is required357

for terrigenous sediments to be transported from shallow depths (e.g., the Shimanto ac-358

cretionary complex) to the depth of HP metamorphism (e.g., the Sanbagawa metamor-359

phic complex).360
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5 Conclusions361

We conducted a series of analogue experiments to investigate how terrigenous sed-362

iment is subducted under an accretionary wedge. The results yielded the following con-363

clusions.364

1. An increase in overburden stress due to progressive thickening of the accretionary365

wedge leads the décollement to step down and narrows the subduction channel.366

This accelerates the growth of the wedge through underplating and frontal accre-367

tion.368

2. When a topographic high subducts under the wedge, the décollement steps up from369

a weak detachment layer within the incoming sediment to the forethrust along the370

landward flank of the seamount. This enables terrigenous sediment in the wake371

of the seamount to be underthrust beneath the wedge.372

3. If a topographic high is rigid enough to uplift the backstop, it can widen the sub-373

duction channel to transport the terrigenous sediment that follows toward deeper374

environments.375

4. A sufficient sediment supply to the trench and a rough oceanic crust surface are376

necessary for simultaneous shallow accretion, underplating of the wedge, and trans-377

portation of sediment to deeper settings as the protolith of HP–LT metamorphic378

rocks.379
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Table 1. Total sediment input and output, and their ratio. Asterisk (∗) indicates output in-

cludes the volume of the seamount.

Exp. Displacement (cm) Input (cm3) Output∗ (cm3) Accretion (cm3) Output/Input Ratio

A 30.0 2,912 1,052 1,860 0.36

B 35.0 3,315 1,527 1,788 0.46
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fig_intro-Shikoku.pdf

Figure 1. Generalized geological map of eastern Shikoku, southwestern Japan, reproduced

from the Seamless Digital Geological Map of Japan (Geological Survey of Japan, AIST, 2015).

Black dots are labeled with detrital zircon U–Pb ages (Ma) of felsic tuff beds in the Izumi Group,

composed mainly of sandy turbidites and mudstone (Noda et al., 2017, accepted), the psammitic

schist of the Sanbagawa Metamorphic Complex (Aoki et al., 2007; Nagata et al., 2019; Otoh et

al., 2010), and sandy turbidites in the northern Shimanto Accretionary Complex (Hara et al.,

2017; Hara & Hara, 2019; Shibata et al., 2008).–25–
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fig_intro.pdf

Figure 2. Representative cross-sections of accretionary margins with topographic highs. (a)

Nankai Trough (G. F. Moore et al., 2014). (b) Southwestern Alaskan margin (Li et al., 2018). (c)

Northern Barbados margin (G. F. Moore et al., 1995).

–26–



manuscript submitted to Geochemistry, Geophysics, Geosystems

fig_method-setting.pdf

Figure 3. Experimental apparatus.

fig_method-sand.pdf

Figure 4. Amount of sand added to the topographic lows during the experiments.
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fig_res-param.pdf

Figure 5. Geomorphic parameters of the wedges (a–d) and sediment fluxes (e–f). (a) Num-

ber of forethrusts. (b) Wedge width. Dashed lines are labelled with wedge progradation rates

calculated from the amount of progradation (cm) divided by the amount of shortening (cm).

(c) Wedge slope angle. (d) Wedge height. Dashed lines are labelled with uplift rates calculated

from the amount of uplift (cm) divided by the amount of shortening (cm). (e) Sediment influx

and outflux for Exp. A (without seamount). (f) Sediment influx and outflux for Exp. B (with

seamount). Asterisk (∗) and dagger (†) indicate outfluxes including and excluding the volume of

the seamount, respectively.
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fig_res-imgDRa.pdf

Figure 6. Representative images of Exp. A.
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fig_model.pdf

Figure 8. Schematic model of sediment subduction through a subduction channel beneath an

accretionary wedge. (a) Subduction of a topographic high raises the décollement to accommo-

date the high and the following trench-fill sediment. (b) An increase in overburden gravitational

force under the inner wedge shifts the décollement downward and facilitates underplating. In the

wake of the subducting seamount, terrigenous sediment is underthrust beneath the accretionary

wedge. (c) The seamount raises the backstop, enabling the subduction of terrigenous sediment.

After the passage of the seamount, the décollement returns to the original, lower position, and

the subduction channel closes, resulting in underplating beneath the wedge.
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