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6. Summary

Titan is the target of the 
upcoming New Frontiers 
mission, Dragonfly. As part of 
the payload, Dragonfly will 
carry a seismic package1. 
Here, we investigate how a 10 
km methane clathrate lid 
could alter the thermal and 
seismic profile, and the 
seismic response (ground 
motion) compared to a pure 
water ice model. 

Image credit: JHU APL

We create interior models 
using PlanetProfile2. The 
models have identical 
interiors, except one has a 
100 km thick pure water ice Ih 
shell, and the other has a 10 
km clathrate lid over a 90 km 
pure water ice Ih shell.  
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To calculate the seismic 
velocities we use the 
SeaFreeze3 library for ice Ih 
and published laboratory 
results for clathrates4,5. 
Clathrates have similar bulk 
properties to ice, but have 
much smaller thermal 
conductivities. 

Due to reduced thermal 
conductivity, clathrates will act as 
insulators and decrease the 
conductive lid thickness relative 
to a pure water ice shell. The 
reduction in conductive lid allows 
warmer, more ductile, ice to exist 
closer to the surface. There will 
be differences in thermal profiles 
(a), creating changes in seismic 
profiles (b) and seismic quality 
factors (c). 
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The change in 
seismic 

velocities 
maximizes at a 
depth of about 

10 km. The 
difference is up 
to 8.5 %, which 

could be 
detectable. 

We use Instaseis6 and AxiSEM7 to generate ground motion from a Mw 3.1 
quake occurring at a depth of 3 km. Due primarily to the differences in seismic 
quality factor, there are differences in the resulting waveforms. 
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Because the clathrate lid 
suppresses surface waves the root 
mean square (RMS) of the 
waveform will also be much 
smaller. We compare the RMS of 
each waveform from the clathrate 
lid model to the pure water ice 
model. The clathrate model 
reduces RMS values by up to a 
factor of 75. 
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We use Mineos8 to 
model the dispersion 
curves of surface 
waves. The group 
(solid) and phase 
(dashed) for both 
models are nearly 
identical. The 
velocities differ by less 
than 2% between the 
models.

• The clathrate lid will reduce the conductive lid 
thickness of the ice shell.
•The change in conductive lid thickness 
results in differences in the thermal profile.
•The change in thermal profile results in 
changes in seismic velocity profile (up to 
~9%). 
•The change in thermal profile also affects the 
seismic quality factor (QS).
•Reduced QS suppresses the surface waves in 
the clathrate lid model, reducing the ground 
motion. 
•There are small (<2%) differences in the 
surface wave dispersion curves. 
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