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Abstract 17 

The balance between particulate inorganic carbon (PIC) and particulate organic carbon (POC) 18 

holds significant importance in carbon storage within the ocean. A recent investigation delved 19 

into the spatial distribution of phytoplankton and the physiological mechanisms governing their 20 

growth. Employing random forests, a machine learning technique, this study unveiled apparent 21 

relationships between POC and 10 environmental fields. In this work, we extend the use of 22 

random forests to compare how observed PIC and POC respond to environmental conditions. 23 

Our findings indicate that while both exhibit similar responses to certain environmental drivers, 24 

PIC is less sensitive to iron and more sensitive to light. Intriguingly, both PIC and POC display 25 

reduced sensitivity to CO2, contrary to previous studies, possibly due to the elevated pCO2 in our 26 

dataset. This research sheds light on the underlying processes influencing carbon sequestration 27 

and ocean productivity. 28 

Plain Language Summary 29 

This study looks at how different types of carbon, specifically tiny particles of chalk (particulate 30 

inorganic carbon, PIC) and organic carbon from microscopic marine plants (particulate organic 31 

carbon, POC), are distributed in the ocean and how they respond to environmental conditions. 32 

The ratio between PIC and POC has a big impact on how carbon is stored in the ocean. We used 33 

a machine learning technique to analyze how patterns in these fields estimated from satellite 34 

were related to drivers such as light and nutrients. We found that PIC and POC react similarly to 35 

some environmental factors (such as ammonium) but differently to others (such as iron and 36 

light). Surprisingly, both types of carbon showed less sensitivity to CO2 than expected from 37 

previous work, possibly because of high CO2 levels in the dataset. 38 

1 Introduction 39 

Because different phytoplankton functional types (PFTs) are associated with different elemental 40 

cycles there is thus a need to understand how PFTs respond to different environmental drivers.   41 

In particular, the ratio of particulate inorganic carbon (PIC) to particulate organic carbon (POC) 42 

can play a pivotal role in the oceanic storage of carbon. POC primarily originates from 43 

phytoplankton photosynthesis, resulting in the conversion of CO2 into organic compounds and 44 

consequent sequestration of CO2 from the marine environment. Each year, nearly 10 gigatons of 45 

carbon are exported from the ocean surface while around 2000 gigatons of carbon are stored in 46 

the deep ocean through the biological pump (Boyd et al., 2019). However, the production of PIC 47 

by calcifying planktonic organisms (e.g., coccolithophores) results in an opposing effect on 48 

surface water pCO2 as the accompanying reduction in seawater alkalinity leads to the release of 49 

CO2 (Liang et al., 2023; Kwon et al., 2009). 50 

Extensive investigations have focused on deciphering the attributes of the PIC:POC ratio to 51 

unravel the ramifications of global climate change on the dynamics of the oceanic carbon cycle 52 

(Sarmiento et al., 2002; Rivero-Calle et al., 2015; Krumhardt et al., 2017). Archer et al. (2000) 53 

argue that a decline in the PIC:POC export ratio may have contributed to the reduction in 54 

atmospheric CO2 that occurred during the last ice age. Brovkin et al. (2019) suggest that the 55 

increase in atmospheric CO2 during the Holocene was associated with changes in the rain ratio 56 

and carbonate burial. Because of this, gaining a comprehensive understanding of the 57 
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distributional characteristics and sensitivities of PIC in comparison to POC is essential for 58 

improved modeling of marine ecosystems and their responses to environmental changes. 59 

In a recent investigation, Holder and Gnanadesikan (2021) utilized machine learning techniques 60 

to reveal apparent relationships between the spatial distribution of phytoplankton and the 61 

physiological mechanisms controlling their growth. These apparent relationships (those found in 62 

the environment where many environmental drivers co-vary and where many species are present) 63 

are different from intrinsic relationships found in laboratory settings where one variable at a time 64 

is considered, usually for one species. Holder and Gnanadesikan (2023, henceforth HG23) found 65 

that a large fraction of variability in observations can be linked to large-scale environmental 66 

variables via these apparent relationships. The dominant predictors in the observational data sets 67 

of POC were shortwave radiation and dissolved iron, with temperature and ammonium also 68 

relatively important. However, they did not consider the impact of different physiological 69 

mechanisms on different types of phytoplankton.  70 

The present study juxtaposes the apparent relationships between environmental drivers of global 71 

PIC and POC, allowing an assessment of how the spatiotemporal distributions of POC and PIC 72 

are controlled differently. Our findings demonstrate PIC and POC exhibit distinct sensitivities to 73 

variations in light, iron, and mixed layer depth.  74 

2 Methods 75 

2.1 Observations 76 

A large portion of the observational data used in our analysis was compiled as part of the HG23 77 

manuscript. For clarity and to minimize the requirements of the reader to seek out additional 78 

scientific papers, we provide a brief overview of how the observations were compiled in HG23 79 

below. For additional information on the dataset construction, please see HG23. 80 

We employed observational datasets based on remote sensing as target datasets. Using remotely 81 

sensed data does introduce potential sources of error into our analytical framework, as the 82 

algorithms used to generate these products may be biased. However, using satellite-based 83 

measurements is integral to our research objectives. First, this enables the sampling of a wide 84 

range of environmental conditions while maintaining measurement consistency, thereby 85 

optimizing the identification of variables that explain a substantial proportion of variance. 86 

Second it facilitates the generation of datasets that are large enough for applying tree-based 87 

analytical methods designed to uncover nonlinear relationships.  88 

The first of these datasets was the MODIS-Aqua POC product  (Stramski, et al. 2008). This 89 

particular dataset predicts POC concentrations from the remote sensing reflectances Rrs 90 

measured at wavelengths of 443 and 555 nm using the equation: 91 

𝑃𝑂𝐶 = 𝐴1[𝑅𝑟𝑠(443)/𝑅𝑟𝑠(555)]𝐵1 92 

Where A1 and B1 are regression coefficients. 93 

The second target dataset utilized in our study was PIC product from Balch et al. (2005) and 94 

Gordon et al. (2001). The PIC algorithm is a hybrid of two independent approaches, defined as 95 
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the 2-band approach and the 3-band approach. The 2-band approach uses normalized water-96 

leaving radiances in two bands near 443 and 555 nm. The 3-band approach uses spectral top-of-97 

atmosphere reflectances at three wavelengths near 670, 750, and 870 nm.  98 

We accessed both PIC and POC products with a spatial resolution of 9 km and a monthly 99 

climatology spanning from July 2002 to December 2022 from the NASA Ocean Color website. 100 

To enhance data quality and spatial coverage, we regridded both datasets to a spatial resolution 101 

of 1°. 102 

2.2 Environmental drivers 103 

HG23 sourced 1° monthly averaged, objectively analyzed, temperature, salinity, mixed layer 104 

depth, silicate, phosphate, and nitrate from the World Ocean Atlas (WOA) 2018 dataset (Garcia 105 

et al., 2019; Locarnini et al., 2019; Zweng et al., 2019). Monthly vertical velocity data at a depth 106 

of 55 meters were acquired from the Estimating the Circulation and Climate of the Ocean 107 

(ECCO) reanalysis dataset, version 4 release 4 (ECCO Consortium et al., 2021a, 2021b; Forget 108 

et al., 2015). Net shortwave radiation (QSW) at the ocean surface from the International Satellite 109 

Cloud Climatology Project (ISCCP) provided by the Objectively Analyzed Air-Sea Fluxes 110 

(OAFlux) Project (Yu et al., 2006),was used as a proxy for light supply as in accordance with the 111 

rationale outlined in HG23. We also use the globally interpolated MPI-ULB-SOMFFN 112 

climatological pCO2 product (Landschützer et al. 2020b) as an additional environmental driver. 113 

No globally interpolated observational datasets are available for dissolved iron and ammonium, 114 

both sparsely sampled variables. To address this, HG23 generated synthetic "observational" 115 

datasets by utilizing the ensemble average of CMIP6 Earth System Models (ESMs). Both of 116 

these synthetic predictors ended up being important predictors of observed POC in HG23. 117 

Phytoplankton can persist under low light levels, including high-latitude areas during winter, 118 

where they often enter a dormant state. Models are capable of sustaining low levels of biomass in 119 

such conditions. However, the observational datasets derived from passive satellite products lack 120 

information in these specific regions, resulting in an analytical gap. To address this limitation, 121 

we incorporated the low-light regions into our analysis by replacing missing months at points 122 

which had some measurements in the POC and PIC datasets with the 1st percentile value within 123 

the corresponding global dataset (while HG23 used the 5th percentile, this difference does not 124 

significantly impact the results). 125 

2.3 Random Forest 126 

Random Forest (RF) is a powerful ensemble learning technique widely employed in the field of 127 

machine learning (Breiman, 2001). It operates by constructing a multitude of decision trees 128 

during the training phase and outputs predictions based on the aggregate result of these 129 

individual trees. Each tree is built on a different subset of the dataset, using a subset of 130 

predictors. This contributes to its resilience against overfitting and enhances predictive accuracy. 131 

Renowned for its robustness and ability to handle diverse data types, RF has become a favored 132 

tool in predictive modeling, classification, and regression tasks across various domains. 133 

To mitigate the risk of overfitting, we employed a random data splitting approach for both the 134 

PIC and POC datasets. The dataset was split into distinct training and testing subsets with 80% 135 
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of the values from each dataset allocated to the training subsets and the remaining 20% forming 136 

the testing subsets. This ensured that the testing subsets contained data unfamiliar to the RF 137 

models during their training phase. In accordance with arguments made in HG23, decision trees 138 

were constructed without sample replacement. The assessment of each RF model's performance 139 

was carried out using the testing data, which were presented as input to the trained models.  140 

RF models were formulated for each of the satellite-based observational estimates. The target 141 

data consisted of logarithmically transformed POC or PIC variables. This transformation was 142 

employed to reduce the undue influence of exceptionally large values, given the highly skewed 143 

nature of both target variables. The predictor dataset, identified as "observational" for the RF 144 

models, comprised observed values for sea surface temperature (SST), sea surface salinity (SSS), 145 

shortwave radiation, nitrate, phosphate, silicate, pCO2, reanalyzed values of upwelling velocity, 146 

and model-ensemble estimates for iron and ammonium. These datasets were standardized to a 147 

uniform 1° grid. 148 

Since RFs employ a subset of variables for constructing each tree (in our case, 4 out of 11 149 

predictors), it is imperative to ensure an adequate number of trees to capture the essential 150 

nonlinear interactions required to model the target variable effectively.  A total of 50 decision 151 

trees were constructed for each RF, following the methods of HG23 who performed a 152 

metanalysis to identify the optimal settings. The increase in the relative error when comparing 153 

testing data and RF generated predicting data is relatively small (Table S1), suggesting the RFs 154 

perform relatively well, capturing 88.7% and 83.9% of the variance in the total POC and PIC 155 

datasets, respectively.  156 

The assessment of variable importance within a dataset can be approached through various 157 

methodologies. One of these is referred to as the permutation method. The permutation method is 158 

a robust technique employed in statistical analysis and machine learning to assess the importance 159 

of predictor variables in a model. In this method, a baseline is initially established by calculating 160 

the model error using a trained algorithm, such as a RF. Subsequently, each predictor variable's 161 

influence is evaluated by introducing randomness – the variable values are shuffled, creating a 162 

modified dataset. This modified dataset is then presented to the trained model for predictions, 163 

and the disparity between the error of these new predictions and the original error is computed 164 

for each predictor variable. A substantial increase in the root mean squared error (RMSE) signals 165 

that a particular variable holds greater importance, highlighting its significance in the predictive 166 

process. Conversely, variables associated with marginal increments in error are considered less 167 

influential. The permutation method thus provides valuable insights into the relative importance 168 

of predictors. 169 

Additionally, we conducted analyses involving the substitution of one predictor's value with its 170 

observed median, while keeping the other predictor values in accordance with their observed 171 

variations. This modified dataset was then presented to the RF model for analysis. A low 172 

prediction in regions where the predictor variable is below the median value implies the potential 173 

for this variable to suppress phytoplankton biomass. 174 

Finally, in order to gain insights into the inherent relationships within each RF we conducted 175 

sensitivity analyses. These analyses involved an exploration of the influence of individual 176 

predictor variables. For example, when analyzing the sensitivity of iron, we adjusted its values to 177 



manuscript submitted to Geophysical Research Letters (GRL) 

 

span the minimum and maximum range observed in the observational dataset. At the same time 178 

the other predictor variables were set to their median values (i.e. SW radiation was set to 176 179 

W/m2). This artificially constructed dataset was then supplied to the RF model to generate a 180 

“median sensitivity”. 181 

3. Results and discussion 182 

The distribution patterns of PIC and POC exhibit substantial disparities, both temporally and 183 

spatially, as evident in Figure 1. In Northern Hemisphere winter, PIC concentrations (Fig. 1a) 184 

demonstrate elevated levels in high-latitude regions of the Southern Hemisphere, gradually 185 

diminishing as one approaches approximately 30°S latitude. Subsequently, there is an increase in 186 

PIC concentrations near the equator, followed by a decline in values as latitudes increase in the 187 

Northern Hemisphere. In contrast, POC concentrations (Fig 1d) exhibit their lowest values in 188 

subtropical regions of both the Northern and Southern Hemispheres, with an augmentation 189 

observed around the equator and in latitudes exceeding 30°. 190 

 191 

Figure 1. Global distribution of PIC and POC in January (1a and 1d) and July (1b and 1e) from 192 

the Moderate Resolution Imaging Spectroradiometer (MODIS) averaged over all days during the 193 

entire measuring period (2002-2022). The third column shows the zonal averaged PIC (1c) and 194 

POC (1f). Concentrations are in log scale for better contrast. 195 

Figure 1e illustrates that POC distribution in July follows a similar zonal transition pattern as 196 

observed in January, albeit with different absolute values. Generally, POC concentrations in 197 

high-latitude areas of the Southern Hemisphere during July are lower compared to those in 198 

January, while concentrations in the Northern Hemisphere are higher. In contrast, the PIC 199 

concentration in July (Fig. 1b) displays a reverse pattern when contrasted with its distribution in 200 

January. During July, PIC concentrations are elevated in high-latitude regions of the Northern 201 

Hemisphere, gradually declining as latitudes approach 30°S, with a minor increase near the 202 

equator and reaching their lowest values in the Southern Hemisphere. Upon closer examination 203 

of these distribution patterns, it becomes apparent that POC concentrations tend to align more 204 
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closely with the annual-mean wind stress curl field, whereas PIC concentrations are more tightly 205 

coupled to seasonal changes. 206 

To gain deeper insights into the contrasting distribution patterns of PIC and POC, we present 207 

zonally-averaged concentrations (Fig. 1c, f).  The distribution of POC concentration is 208 

characterized by two distinct mid-latitude bands of reduced values, potentially attributed to 209 

subsurface downwelling instigated by wind stress. Additionally, our analysis reveals that 210 

between 15 and 30 degrees in both hemispheres, PIC is high during the summer and low during 211 

the winter so that the peak of PIC concentration aligns with the solar zenith angle. This suggests 212 

potential correlations with light, temperature or the depth of the mixed layer. It is also notable 213 

that when we contrast POC and PIC in summer months for both hemispheres, a symmetry was 214 

observed in PIC around 30 degrees but was not seen for POC. Near-equatorial (15°S-15°N) 215 

regions show interesting differences. At 15°S, we can see a band of high values throughout the 216 

year. Additionally, we see a peak that moves northward during the spring, and southward during 217 

the fall, following the sun. POC shows a peak on the equator during Northern summer. 218 

 219 

Figure 2. Variable importance plots for PIC (left) and POC (right) of the log10 transformed 220 

target datasets. The x-axis shows the variables that were used in each random forest (RF). The y-221 

axis shows the relative importance of each variable computed by permuting each variable in the 222 

testing dataset with the others held at their observed values, computing the root mean squared 223 

error associated with the permuted inputs and normalizing this by the standard deviation of the 224 

target from each dataset. 225 

To get a better sense of the underlying determinants of PIC and POC variability, the permutation 226 

importance (defined as the error when one variable is permuted for the testing data normalized 227 

by the standard deviation of target data) was computed for successive variables. Large error 228 

(RMSE) is indicative of predictors possessing greater importance, contributing significantly 229 

towards the predictions while small error means less importance. Plots are shown in Figure 2. 230 

Both datasets show that downward shortwave radiation is the most important variable. However, 231 

iron is the second-most important variable in the POC data set but is only the fifth most 232 

important in the PIC data set, ranking behind short wave radiation, temperature, mixed layer 233 
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depth and ammonium. Mixed layer depth is more important for PIC than for POC. Salinity and 234 

vertical velocity are not very important in both datasets. 235 

 236 

Figure 3. Sensitivity analyses on RFs trained on log10-transformed PIC (blue line) and 237 

POC (red line) target datasets. The minimum-maximum range for each variable was 238 

determined using values from the observational datasets and all other variables are set to 239 

their median value. 240 

We then evaluate sensitivity of PIC versus POC to individual environmental parameters with all 241 

other variables fixed at their median. The first row shows that when increasing mixed layer 242 

depth, temperature and salinity (Fig. 3a, 3b and 3c), both PIC and POC remain relatively stable 243 

for some time then decrease at around the same concentration of the variable. For salinity, 244 

however, the drop in PIC reverses when salinity concentration increases to higher values. PIC is 245 

also more sensitive to changes in mixed layer depth than POC, consistent with the permutation 246 

importance in Fig. 2. Conversely, greater nitrate, phosphate and ammonium (Fig.3d, 3e and 3f) 247 

are associated with increases in both PIC and POC before plateauing at high values. Both PIC 248 

and POC are relatively insensitive to silicate and vertical velocity as shown in the supplement 249 
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(Fig. S1). Both POC and PIC show relatively weak, and inconsistent, responses to changes in 250 

pCO2 (Fig. 3g).  251 

Intriguingly, our investigation reveals distinct responses of PIC and POC to variations in iron 252 

and light consistent with Fig. 2. For dissolved iron (Fig. 3h), POC shows an increase with 253 

increasing iron before eventually plateauing while PIC shows a slight drop before returning to 254 

the previous values. As shown in Figure 3i, POC and PIC show similar patterns between values 255 

of 10 and 30 W/m2, with a jump in each field observed as radiation increases. POC then reaches 256 

a plateau while PIC shows a second jump around 100 W/m2 as shortwave radiation increases to 257 

higher values. 258 

To elucidate the underlying mechanisms, we conducted a deeper examination of the spatial and 259 

temporal impacts of iron and light on PIC and POC. The influence of iron on the zonally 260 

averaged cycle of POC exhibits pronounced hemispheric asymmetry. In the Southern 261 

Hemisphere MODIS observations, low iron levels (Fig. 4a) suppress the summertime bloom, 262 

peaking in February at approximately 60°S with a 0.3 log unit reduction (roughly a factor of 2). 263 

Conversely, in the Northern Hemisphere MODIS observations, higher iron levels are associated 264 

with a stronger bloom, with peak enhancement occurring in May and June in subpolar latitudes, 265 

also roughly a factor of two. The zonally averaged cycle of PIC under the impact of iron displays 266 

different trends (Fig. 4b). Although reduced iron concentrations around the equator seem to 267 

suppress PIC consistently throughout the year (consistent with POC), the results show an 268 

opposite-sign sensitivity to iron compared to POC in other areas. In the Southern Hemisphere, 269 

spatiotemporal iron variability fosters a more robust PIC bloom, peaking around 60°S in 270 

February. In the Northern Hemisphere, higher iron levels suppress PIC around 50°S, particularly 271 

in March, while iron variability promotes a PIC bloom near the Arctic region. 272 

The observed annual mean impact of iron (Fig. 4c) aligns with the zonally averaged cycle, 273 

revealing the most significant annual-mean biomass suppression (0.6 log units or a factor of 4) in 274 

the Southeast Pacific—a region known for low iron and biomass levels (Bonnet et al., 2008), as 275 

well as at the equator. Notably, higher iron emerges as a crucial factor in explaining elevated 276 

POC along the boundary of the subtropical/subpolar gyre in the North Pacific, North Atlantic, 277 

and the Arabian Sea. Conversely, the annual mean impact of iron on PIC has less of the ocean 278 

showing strong effects. More strikingly, the spatial pattern of PIC sensitivity to iron (Fig. 4d) is 279 

the opposite direction compared to POC in North Pacific, North Atlantic (particularly under the 280 
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Saharan dust plume) and Arabian Sea. Iron is associated with higher PIC levels in most parts of 281 

the Southern Ocean, as well as the South Pacific subtropical gyre.      282 

 283 

Figure 4. Impact of variability of iron or light on POC and PIC computed by replacing 284 

the observed/modeled value at each point in time and space by the median value from 285 

observations, running the RF for each dataset, and computing the difference between the 286 

RF using the observed/modeled value and that using the observed median. Scale is log10, 287 

so that a value of +0.1 means that the differences between the value of iron seen at that 288 



manuscript submitted to Geophysical Research Letters (GRL) 

 

latitude and longitude and the median value of iron increases biomass by log10(0.1) or 289 

26% when averaged across all months.  290 

 291 

Compared to PIC, both the zonally averaged cycle and annual mean of POC exhibit weaker 292 

changes under the influence of light, with suppression observed at higher latitudes (Fig. 4e and 293 

f). This observation aligns with our findings in Figure 3. The zonally averaged cycle of PIC 294 

under the impact of light manifests clear hemispheric symmetry, with PIC blooms occurring in 295 

both hemispheres during summer. 296 

4. Conclusions 297 

In conclusion, our study highlights divergent sensitivities of PIC and POC to distinct drivers, 298 

with iron and light exhibiting particularly disparate impacts. Our findings align with the 299 

conclusions summarized by Krumhardt et al. (2017) that the sensitivity of POC and PIC to iron 300 

can be influenced by several factors, including temperature, CO2 concentration, and the specific 301 

species of coccolithophore. This opposite-sign sensitivity suggests grazing dynamics might be 302 

different for PIC versus POC. In locations where sensitivity goes in the opposite direction, PIC-303 

producers and non-PIC producers might have grazers in common, so that increases in the non 304 

PIC-producing phytoplankton would lead to more grazers and higher grazing pressure on the 305 

PIC-producing phytoplankton. 306 

Our findings show evidence for different sensitivity to light and mixed layer depth. Specifically, 307 

as illustrated in Figure 3, PIC exhibits heightened sensitivity to light and mixed layer depth at 308 

higher ranges, surpassing the corresponding sensitivities of POC. Furthermore, our analysis, as 309 

depicted in Figure 4, demonstrates that the mean impact of light variability on PIC is notably 310 

more pronounced than that on POC. These findings align with Iglesias-Rodríguez et al. (2002)'s 311 

argument that a critical irradiance between 25 and 150 μmol quanta m−2 s−1 selectively influences 312 

upper ocean large-scale coccolithophorid blooms. 313 

Both the PIC and POC exhibit diminished sensitivity to CO2 in contrast to observational 314 

syntheses made by Rivero-Calle et al. (2015) and Krumhardt et al. (2017). This divergence may 315 

be attributed to our examination of comparatively contemporary data characterized by elevated 316 

partial pressure of CO2 (pCO2) with concentrations from 325 to 407 ppmv representing the 5%-317 

95% range in our dataset. In contrast, Rivero-Calle et al. (2015) only found growth rates falling 318 

when pCO2 dropped below 300 ppmv, while Krumhardt et al. (2017) identified this decline at 319 

concentrations below 200 ppmv. Additionally, the disparity in findings may arise from the 320 

distinction in focus, with Krumhardt et al. (2017) concentrating on intrinsic relationships, 321 

whereas our investigation pertains to apparent relationships. 322 

Future work should aim to deepen our understanding of the intricate interplay between iron, light 323 

and the dynamics of PIC and POC in marine ecosystems. Exploring the nuanced mechanisms 324 

governing the response of these carbon pools to varying environmental conditions will be crucial 325 

for refining predictive models and enhancing our ability to anticipate the repercussions of 326 

climate change on oceanic biogeochemistry. This supports the work of Krumhardt et al. (2017) 327 
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who pointed out a lack of conclusive physiological responses to irradiance changes and 328 

insufficient physiological data for major coccolithophore species.  329 

Investigations into the specific physiological responses of key coccolithophore species to 330 

fluctuations in irradiance and iron availability could provide valuable insights into the underlying 331 

processes influencing carbon sequestration and ocean productivity. Long-term observational 332 

studies and the integration of advanced modeling techniques may further elucidate the complex 333 

relationships between environmental drivers and carbon cycling. 334 

 335 
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Data Availability Statement 339 

Particulate organic carbon and inorganic carbon are from the MODIS satellite climatology 340 

served at NASA MODIS Climatology (NASA MODIS POC Climatology, 2020; Balch et al., 341 

2005; Gordon et al., 2001; https://oceancolor.gsfc.nasa.gov/l3/). pCO2 is taken from MPI-ULB-342 

SOMFFN climatological product (Landschützer et al. 2020b).  Following HG23, observations of 343 

temperature, salinity, nitrate, phosphate, and silicate are taken from the World Ocean Atlas 344 

(Garcia et al., 2019; Locarnini et al., 2019; Zweng et al., 2019). Shortwave radiation is taken 345 

from the WHOI OAFlux data set (Yu et al., 2006). Upwelling data are taken from ECCO 346 

Consortium (2021a). A compiled (climatologically averaged and aligned) data set plus a script to 347 

generate the random forest and sensitivities will be available on Zenodo. 348 
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