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Abstract12

We investigate the steady dynamical response of the atmosphere on the equatorial β-13

plane to a steady, localized, mid-tropospheric heating source at the equator (Part II in-14

vestigates the off-equatorial case). Expanding Gill (1980)’s seminal work, we vary the15

latitudinal and longitudinal scales of the diabatic heating pattern while keeping the to-16

tal amount of diabatic heating fixed. We focus on characteristics of the response which17

would be particularly important if the circulation interacted with the hydrologic and en-18

ergy cycles: the overturning circulation and the low-level wind. In the limit of very small19

scale in either the longitudinal or latitudinal direction, the intensity of the overturning20

circulation tends towards the value for which the vertical energy transport balances the21

diabatic heating, which is also the limit in the non-rotating case (with β = 0). In the22

same limit, the low-level westerly jet still extends eastward of the center of diabatic heat-23

ing, while there is no jet in the non-rotating case. The intensity of the overturning cir-24

culation decreases with increasing longitudinal or latitudinal scale of the diabatic heat-25

ing. The low-level westerly jet decreases in maximum velocity and spatial extent rela-26

tive to the spatial extent of the diabatic heating with increasing longitudinal or latitu-27

dinal scale of the diabatic heating, and the associated low-level eastward mass transport28

decreases with increasing longitudinal scale. Our results suggest that moisture-convergence29

feedbacks will favor small-scale convective disturbances while surface-heat-flux feedbacks30

would favor small-scale disturbances in mean westerlies and large-scale disturbances in31

mean easterlies.32

Plain Language Summary33

Most meteorological phenomena in the tropics result from the interaction between34

moist thermodynamics and dynamics. Indeed, heating by diabatic processes such as phase35

change and radiation create temperature and pressure gradients which cause atmospheric36

circulations. These circulations in turn transport water and humidity and by doing so37

couple with the diabatic processes. This coupling is complex, poorly understood, and38

poorly simulated by current climate models, with bearings on our understanding and fore-39

cast capability of many tropical meteorological phenomena. This study deepens our un-40

derstanding of one side of this interaction, furthering our knowledge of the dynamical41

response to steady diabatic heating at the equator. We focus particularly on the influ-42

ence of the horizontal extent of this heating. We find that the more spread-out the heat-43

ing, the slower the overturning circulation and low-level westerly winds in the region of44

diabatic heating. Our results suggest that the coupling of the circulation with the en-45

ergy and water cycle would favor small convective cloud systems, especially in wester-46

lies.47

1 Introduction48

Gill (1980, hereafter G80)’s seminal work aimed to provide a very simple model49

of the Walker circulation that results from the longitudinal distribution of diabatic heat-50

ing in the tropics, with maxima of convective heating over the three equatorial land masses51

or achipelagos – Amazonia, Africa and the Maritime Continent (Krueger & Winston, 1974)52

– as well as monsoon circulations resulting from off-equatorial regional diabatic heating.53

G80 showed that the damped, linear, baroclinic dynamical response of the tropical at-54

mosphere to a localized, steady, mid-tropospheric diabatic heating reproduces the main55

features of these circulations.56

This simple model has become one of the main frameworks to understand tropi-57

cal circulations and its solutions are now commonly called Gill circulation. The relevance58

of G80’s work to the atmospheric circulation associated with El Niño Southern Oscil-59

lation was revealed soon after the publication of the original article (Pazan & Meyers,60

1982; Philander, 1983) and it lead to a leap in our understanding of El Niño Southern61
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Oscillation (Cane & Zebiak, 1985). Later studies of the dynamical pattern associated62

with the Madden-Julian Oscillation (MJO) (Madden & Julian, 1971; C. Zhang, 2005)63

revealed that this pattern is essentially G80’s equatorially symmetric solution (Hendon64

& Salby, 1994; Kiladis et al., 2005). Very recently, this framework has shown promise65

to understand the observed pattern of tropical precipitation in details (Adam, 2018). Be-66

cause of this widespread relevance, G80’s model has come to be considered foundational,67

and is used as a test for further theoretical development (e.g., Bretherton & Sobel, 2003).68

G80 mostly focused on two cases, with latitudinal distributions of diabatic heat-69

ing for which there are simple solutions: one symmetric about the equator, the other asym-70

metric. This constrained the horizontal scale of the heating. Gill (1980) and Heckley and71

Gill (1984) presented a couple more cases with little analysis. Further generalisations72

of G80’s work attempted to simulate the observed flow realistically (Z. Zhang & Krish-73

namurti, 1996), with some success. Even if the Gill circulation appears relevant to ob-74

served large-scale tropical circulations, these circulations span a significant range of hor-75

izontal scales, and we have yet to understand how sensitive the Gill circulation is to the76

horizontal extent and latitude of the imposed diabatic heating. The present work aims77

to address this question, with a particular focus on characteristics of the circulation that78

interact with the energy cycle: the vertical, overturning circulation which is associated79

with moisture transport and latent heat release, and the surface wind which modulates80

the surface turbulent heat fluxes.81

In the present article, we explore the sensitivity of Gill’s equatorially symmetric82

circulation, leaving off-equatorial cases to Part II Bellon and Reboredo (2020). In Sec-83

tion 2, we present the Matsuno-Gill equation system and its solutions, as well as the non-84

rotating case. Section 3 presents some solutions as well as the scale sensitivity of the over-85

turning circulation and of the low-level wind. Section 4 summarizes our findings and con-86

cludes.87

2 Method88

We use the vertical structure of Quasi-equilibrium Tropical Circulation Models (QTCM)89

(Neelin & Zeng, 2000; Zeng et al., 2000; Lintner et al., 2012) to derive parameters of the90

equation system for the steady first baroclinic response of the tropical atmosphere to pre-91

scribed diabatic heating, over a β-plan. We present semi-analytical solutions for a more92

general case than in G80, i.e., applicable to heating of varied horizontal extents, to shed93

some light on the nature and amplitude of the dynamical response. In this section, we94

summarize the equations of the model and the method of solutions by decomposition in95

cylinder functions. We also solve the non-rotating case as a reference, and study the asymp-96

totes for small zonal extent of the diabatic heating.97

2.1 Linear baroclinic model of the tropical atmosphere98

In the QTCM, the tropospheric temperature is assumed to differ from a reference99

profile Tr(p) by an anomaly with fixed profile a1(p) which corresponds to a moist adi-100

abat up to the upper troposphere where a cold-top effect is included: T (x, y, p, t) = Tr(p)+101

a1(p)T1(x, y, t). The vertical profile of velocity is assumed to be identical to the profile102

of geopotential gradients, which is linked to the profile of temperature anomaly by the103

hydrostatic approximation. Details of the models can be found in (Neelin & Zeng, 2000;104

Zeng et al., 2000; Lintner et al., 2012).105

The equation for the baroclinic velocity v1 is:106

∂tv1 + fk× v1 = −R∇T1 − ε1v1, (1)
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where f = βy is the Coriolis parameter, k the vertical unit vector, R is the gas con-107

stant for air, and ε1 is a coefficient for linear damping due to viscosity and the projec-108

tion of surface friction on the first baroclinic mode.109

The temperature equation is:110

〈a1〉∂tT1 +Msr1∇ · v1 = 〈Q〉 − 〈a1〉ε1T1, (2)

where 〈 〉 indicates the vertical average over the troposphere, Msr1 is the base-state gross111

dry static stability for the baroclinic mode normalized by the heat capacity of air (com-112

puted using the reference temperature profile Tr), Q is the diabatic heating rate, and ε1113

is a damping coefficient accounting for Newtonian cooling. The damping coefficients for114

temperature and momentum are set to be equal as in G80.115

The momentum and temperature Equations (1) and (2) can be non-dimensionalized116

using the speed of gravity waves c = (RMsr1/〈a1〉)1/2 and the equatorial Rossby ra-117

dius L = (c/2β)1/2, so that the resulting non-dimensional set of equations is identical118

to the linear shallow-water equations used in G80 (with the surface pressure replaced by119

the mid-tropospheric temperature) for the steady state. The characteristic time scale120

is τ = L/c = (2βc)−1/2 and the temperature scale is T = Msr1/〈a1〉. With121

x = Lx̂, y = Lŷ, t = τ t̂,

v1 = cv̂, T1 = T T̂ , ε̂ = ε1τ, Q̂ = τ
Msr1
〈Q〉, (3)

where ˆ denotes non-dimensional variables, we have122

∂t̂v̂ +
1

2
ŷk× v̂ = −∇̂ · T̂ − ε̂v, (4)

∂t̂T̂ + ∇̂ · v̂ = Q̂− ε̂T̂ . (5)

If we neglect the damping in the meridional momentum equation (its order of mag-123

nitude allows for this approximation) and consider the steady state, these equations are124

equivalent to Equations (2.6), (2.8), and (2.12) in G80:125

εu− 1

2
yv = −∂T

∂x
, (6)

1

2
yu = −∂T

∂y
, (7)

εT +
∂u

∂x
+
∂v

∂y
= Q, (8)

where theˆhave been omitted to maximize the similarity with G80’s notations. We will126

keep these notations withoutˆfor the rest of the article. We will take ε = 0.1 as in G80.127

This damping rate was at times assessed to be too large (e.g., Battisti et al., 1999), but128

more recent studies have shown that such a value is justified, in particular because of129

convective momentum transport (Lin et al., 2005, 2008). The non-dimensional upward130

mid-tropospheric vertical velocity is equal to the non-dimensional baroclinic divergence131

and can be written:132

w = Q− εT. (9)

2.2 Solutions to cylinder-shaped forcing133

G80 showed the analytical solutions to Equations (6)-(8) for diabatic heatings that134

follow half a period of a cosine function in the zonal direction and a parabolic cylinder135

function in the meridional direction:136
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Q(n) = F (x)Dn(y) with n ∈ N, (10)

and F a half-period of cosine function in a limited range of longitude:137

F (x) =

{
k cos(kx) for |x| < Lx,

0 for |x| > Lx,
with k =

π

2Lx
, (11)

and Dn a parabolic cylinder function of degree n, i.e., the product of a polynomial of de-138

gree n and an exponential that limits the latitudinal extent of the significant diabatic139

heating:140

D0 = exp

(
−y

2

4

)
,

D1 = y exp

(
−y

2

4

)
, (12)

Dn+1 = yDn − nDn−1, ∀n > 0

Note that our function F differs from the function F in G80 by a factor k which141

we introduced to make the integral of F over the longitude independent from k.142

The method of solution as described in G80 introduces two new variables q and r143

that combine T and u in the Equations (6)-(8) as:144

q = T + u, (13)

r = T − u. (14)

For each forcing following a parabolic cylinder function Q(n) = F (x)Dn(y), the solu-145

tions (q(n), v(n), r(n)) can be written as the sum of two additive components (Gill, 1980;146

Heckley & Gill, 1984; Abramowitz & Stegun, 1964), (q(n,1), v(n,1), r(n,1)) in which q(n,1)147

is proportional to Dn(y), v(n,1) is proportional to Dn−1(y), and r(n,1) is proportional to148

Dn−2(y), and (q(n,2), v(n,2), r(n,2)) in which q(n,2) is proportional to Dn+2(y), v(n,2) is149

proportional to Dn+1(y), and r(n,2) is proportional to Dn(y):150

q(n) = q(n,1) + q(n,2) = q(n)n (x)Dn(y) + q
(n)
n+2(x)Dn+2(y), (15)

v(n) = v(n,1) + v(n,2) = v
(n)
n−1(x)Dn−1(y) + v

(n)
n+1(x)Dn+1(y), (16)

r(n) = r(n,1) + r(n,2) = r
(n)
n−2(x)Dn−2(y) + r(n)n (x)Dn(y) (17)

The longitudinal functions in the first component are solutions of:151

dq
(n)
n

dx
− (2n− 1)εq(n)n = −(n− 1)F (x), (18)

v
(n)
n−1 = 2nεq(n)n − nF (x), (19)

r
(n)
n−2 = nq(n)n . (20)

And in the second component, they are solutions of:152

dq
(n)
n+2

dx
− (2n+ 3)εq

(n)
n+2 = −F (x), (21)

v
(n)
n+1 = 2(n+ 2)εq

(n)
n+2 − F (x), (22)

r(n)n = (n+ 2)q
(n)
n+2. (23)

Equations (19), (20), (22) and (23) give the solutions as a function of q
(n)
n and q

(n)
n+2 and153

the heating’s longitudinal distribution F , so solving Equations (18) and (21) gives the154
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complete solution q(n) that involves qn, qn+2, vn−1, vn+1, rn−2, and rn for n > 1. The155

same combinations without the functions with negative indices for n = 0 and n = 1156

are the solutions studied in G80, with heating symmetric (n = 0) and asymmetric (n =157

1) with respect to the equator.158

For n = 0, the longitudinal dependence of the first component can be written:159

{ε2 + k2}q(0)0 =


0 if x < −Lx,
εk cos(kx) + k2 sin(kx) + k2 exp[−ε(x+ Lx)] if |x| < Lx,

2k2 cosh(εLx) exp{−εx} if x > Lx,

(24)

for n = 1:160

q
(1)
1 = 0, (25)

and for n > 1:161

(2n− 1)2ε2 + k2

n− 1
q(n)n =


2k2 cosh[(2n− 1)εLx] exp[(2n− 1)εx] if x < −Lx,
(2n− 1)εk cos(kx)− k2 sin(kx) + k2 exp[(2n− 1)ε(x− Lx)] if |x| < Lx,

0 if x > Lx.
(26)

Note that only q
(0)
0 is non-zero east of the region of diabatic heating, and zero west of162

it. All other components extend west of the region of heating.163

It is clear from the similarity of Equations (18) and (21) and from the same bound-164

ary and continuity conditions that apply to q
(n)
n and q

(n)
n+2 that the longitudinal depen-165

dence of the second component can be written, for all n:166

q
(n)
n+2 =

1

n+ 1
q
(n+2)
n+2 , (27)

i.e. the longitudinal dependence of the second component of the response to heating along167

Dn is proportional to the longitudinal dependence of the first component of the response168

to heating along Dn+2169

To get back to the physical non-dimensional variables, we use T (n) = (q(n)+r(n))/2170

and u(n) = (q(n) − r(n))/2. The first component of the solution is, for n = 0:171

u(0,1) = T (0,1) =
1

2
q
(0)
0 (x)D0(y),

v(0,1) = 0;

 (28)

for n = 1:172

u(1,1) = T
(1,1)
1 = 0,

v(1,1) = −F (x)D0(y);

}
(29)

for n > 1, it is173
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T (n,1) =
1

2
q(n)n (x)[Dn(y) + nDn−2(y)],

u(n,1) =
1

2
q(n)n (x)[Dn(y)− nDn−2(y)],

v(n,1) = n[2εq(n)n (x)− F (x)]Dn−1(y);

 (30)

And the solution for the second component is, for all n:174

T (n,2) =
1

2
q
(n)
n+2(x)[Dn+2(y) + (n+ 2)Dn(y)],

u(n,2) =
1

2
q
(n)
n+2(x)[Dn+2(y)− (n+ 2)Dn(y)],

v(n,2) = [2(n+ 2)εq
(n)
n+2(x)− F (x)]Dn+1(y).

 (31)

Following from Equation (27), it is straightforward that the second component of the175

temperature and zonal wind response to heating along Dn has the same patterns as the176

first component of the response to heating along Dn+2: T (n,2) = T (n+2,1)/(n+1) and177

u(n,2) = u(n+2,1)/(n+ 1).178

Both components’ contributions to the mid-tropospheric vertical velocity can be179

written:180

w(n,m) =
1

2
F (x)Dn(y)− εT (n,m), (32)

for all n and for m = 1 or 2.181

Note that:182

1. Only the first component of the solution for n = 0 extends beyond x = Lx in183

the longitudinal direction. It is associated with no meridional wind and has a Kelvin-184

wave structure as noted in G80.185

2. All other components have a Rossby-wave structure with gyres aligned in the lon-186

gitudinal band of the diabatic heating and west of it, with a westward extent that187

decreases with n. On each side of the equator, cyclonic and anticyclonic gyres al-188

ternate in the poleward direction.189

3. For n even, the gyres straddling the equator rotate in the same meteorological di-190

rection, cyclonic or anticyclonic, for both components. The total number of gyres191

is n for the first component and n+2 for the second component. If the gyres clos-192

est to the equator in the first component are cyclonic, the gyres closest to the equa-193

tor in the second component are anticyclonic and vice-versa. This is due to the194

change of signs of D2n(0) with every increment in n (see Eq. (A5)).195

4. For n odd, the gyres on each side of the equator have opposite directions of ro-196

tation (one is cyclonic, the other anticyclonic) for both components. The total num-197

ber of gyres is n+1 for the first component and n+3 for the second component.198

If the gyres just north of the equator in the first component are cyclonic, the gyres199

just south of the equator in the second component are cyclonic (same if anticy-200

clonic). This is due to the change of signs of D2n+1 near y = 0 with every in-201

crement in n (see Eqs. (A4)-(A5)).202

2.3 More general forcing203

Because of the variety of scales of cloud ensembles, it is of interest to understand204

the dynamical response to diabatic heating with a wide range of horizontal extent from205

the synoptic to the planetary scale. The present work expands on the results of G80 for206

diabatic heating symmetric about the equator by studying the response to diabatic heat-207
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ing Q with a similar shape as the symmetric case (n = 0) in G80 (half-period cosine208

in the longitudinal direction, Gaussian in the meridional direction), but with varying lon-209

gitudinal and meridional extents:210

Q = F (x)D(y), (33)

with F (x) in the form given by Equation (11), and D(y) a Gaussian function in the form:211

D(y) =
1

Ly
exp

(
− y2

4L2
y

)
. (34)

With such a formulation, the imposed heating Q is a ”patch” of heating centered on the212

equator (Part II treats the case of an off-equatorial heating). The heating pattern is close213

to circular for Lx = 3Ly. By design, the maximum heating varies with Lx and Ly in214

k/Ly but the total heating imposed to the atmosphere is independent of the longitudi-215

nal and latitudinal scales: the energy input in the global atmosphere is the same in all216

cases:217

[Q] =

∫ +Lx

−Lx

∫ +∞

−∞
Qdxdy = 4

√
π, (35)

with the brackets [·] indicating global integration.218

With inner product 〈f, g〉 =
∫
fg dy, Dn functions form an orthogonal basis (Dn)n∈N.219

The norm of each Dn is
√
n!
√

2π. The Gaussian function D can be decomposed in a se-220

ries on the basis (Dn)n∈N:221

D(y) =

∞∑
n=0

an(Ly)Dn(y),

with a2n =
1

2nn!

(
L2
y − 1

L2
y + 1

)n√
2

L2
y + 1

, (36)

and a2n+1 = 0 for n ∈ N.

It is straightforward that Q can also be written as a series of Q
(n)
n∈N:222

Q =

∞∑
n=0

anQ
(n)F (x), (37)

with an = 0 for n odd in our case with diabatic heating symmetric about the equator223

(see Eq. (34)).224

The solution to the steady, linear equation system (6)-(8) forced by Q = F (x)D(y)225

can be determined semi-analytically as an infinite sum of the solutions to the diabatic226

heatings Q(n) = F (x)Dn(y):227

T =

∞∑
n=0

anT
(n), (38)

u =

∞∑
n=0

anu
(n), (39)

v =

∞∑
n=0

anv
(n). (40)
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In practice, and since the infinite sum in Equation (36) is convergent, it can be ap-228

proximated by a finite sum up to a value m following a convergence criterion (Cauchy,229

1821). The convergence criterion requires to set a positive error of tolerance δ for which230

any index l > m+ 1 satisfies ||
∑l
n=0 an(Ly)Dn(y)−

∑l−1
n=0 an(Ly)Dn(y)|| 6 δ at y =231

0. This value m will differ for different values of Ly. For example, setting δ = 0.001,232

one mode is enough for the trivial case where Ly = 1, whereas for Ly = 0.5 we need233

10 modes to meet the error criterion, and more modes are needed for smaller Ly. (Heckley234

& Gill, 1984) used the same approach to study the transient response to a very local-235

ized heating.236

2.4 A baseline: the non-rotating case237

One of the crucial elements of the Gill circulation is the longitudinal asymmetry238

which results from the rotation of the Earth. It is therefore interesting to be able to eval-239

uate the exact effects of rotation. To do so, we also solve the non-rotating case. If we240

neglect the Coriolis acceleration, the system reduces to a classical damped gravity wave.241

Equations (4) and (5) easily reduce to:242

w = −1

ε
∆T, (41)

T =
1

ε
Q+

1

ε2
∆T. (42)

These equations make clear that, in the absence of any circulation, the temperature re-243

sponse is reduced to the direct thermodynamic response Q/ε. Vertical energy transport244

adds a diffusive term ∆T/ε2 to the temperature response; as a result, the large-scale trans-245

port damps temperature gradients and the equilibrium temperature response to a dia-246

batic heating is spatially smoother than the diabatic heating itself.247

The damped gravity wave response to a forcing described by Equation (33) can be248

obtained by decomposing the latitudinal dependence of Q through a Fourier transform.249

We get:250

D(y) =
1√
π

∫ +∞

−∞
e−`

2Ly
2

cos (`y) d`, (43)

and we can then write the equilibrium temperature response as a Fourier decomposition251

in y as well:252

T =
1√
π

∫ +∞

−∞
T`(x) e−`

2Ly
2

cos (`y) d`, (44)

and each function T` is solution to:253

λ2T` − ∂xxT` = ε F (x), (45)

with λ2 =
(
ε2 + `2

)
. This second-order linear differential equations can be solved for254

x < −Lx, |x| < Lx, and x > Lx. The solutions to the corresponding homogeneous255

equation are e±λx, and a particular solution proportional to cos (kx) for |x| < Lx is eas-256

ily found. By using continuity conditions at x = ±Lx and evanescent conditions for x −→257

±∞, the general solution can be derived:258

(
λ2 + k2

)
T` =

{
εk cos (kx) + εk

2

λ e
−λLx cosh (λx) if |x| < Lx,

εk
2

λ cosh (λLx) e−λ|x| if |x| > Lx.
(46)
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The corresponding winds can be written in a Fourier decomposition as well:259

u =
1√
π

∫ +∞

−∞
U`(x) e−`

2Ly
2

cos (`y) d`,

v =
1√
π

∫ +∞

−∞
V`(x) e−`

2Ly
2

sin (`y) d`, (47)

w =
1√
π

∫ +∞

−∞
W`(x) e−`

2Ly
2

cos (`y) d`,

with260

(
λ2 + k2

)
U` =

{
k2 sin (kx)− k2 e−λLx sinh (λx) if |x| < Lx,

sgn(x)k2 cosh (λLx) e−λ|x| if |x| > Lx,
(48)

V` =
`

ε
T`, (49)

and261

(
λ2 + k2

)
W` =

{(
`2 + k2

)
k cos (kx)− ε2 k

2

λ e
−λLx cosh (λx) if |x| < Lx,

−ε2 k
2

λ cosh (λLx) e−λ|x| if |x| > Lx.
(50)

We can point to some similarities between the solutions qn to Gill circulation and262

the solutions T` to the non-rotating problem: they are the sum of a cosine function and263

an exponential within the heating region, and an exponential decay out of this region,264

if non zero. In the non-rotating case, the cosine component clearly appears as the pri-265

mary, local response to the forcing (it is a particular solution of the equation) that does266

not systematically respect temperature continuity and mass continuity at the zonal bound-267

aries of the region of diabatic heating. The exponential component is the secondary re-268

sponse that ensures mass balance and thermal continuity. In the Gill circulation, an ad-269

ditional terms in sine appears as a result of the symmetry-breaking β effect. The char-270

acteristic scale for the exponential decay ((2n−1)ε or (2n+3)ε in the rotating case, λ271

in the non-rotating case) combines the damping rate ε and information on the merid-272

ional structure of the mode (n in the rotating case, ` in the non-rotating case): the de-273

cay is faster for larger meridional variability (i.e., larger n or larger wavenumber `). This274

factor also appears in the amplitude of the response, which is inversely proportional to275

the sum of the square of this factor and k2. There are also significant differences: in the276

non-rotating case, the solution is symmetric in the longitudinal direction, unlike in the277

rotating case. The damped gravity wave’s horizontal wind is also irrotational, while the278

Gill circulation has obvious rotational structures.279

2.5 Limits for small zonal extent of the heating280

Here, we explore the asymptotic solutions for Lx → 0, focusing on the interval281

−Lx ≤ x ≤ Lx. Outside this interval, there is no simple expression for the infinite sums282

or integrals of exponentially decreasing modes which are solutions. Qualitatively, there283

is subsidence outside of [−Lx, Lx] in both the rotating and non-rotating cases.284

Damped gravity wave:285

–10–
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For Lx → 0, k → +∞, and286

T` ∼
ε

λ
, V` ∼

`

λ
,

U` ∼ sin kx, (51)

W` ∼ k cos kx,

for |x| ≤ Lx. It follows through the inverse Fourier transforms that:287

u ∼ sin (kx)D(y), (52)

w ∼ k cos (kx)D(y) = Q, (53)

i.e., at first order the temperature perturbation is negligible in front of the diabatic heat-288

ing and advective cooling. The ascending region is well approximated by the diabatic289

heating region. Note that Equations (52) and (53 are valid for any function D.290

Gill circulation:291

For Lx → 0 and k → +∞, we have:292

q
(0)
0 ∼ 1 + sin kx,

q(n)n ∼ (n− 1)(1− sin kx) for n > 0, (54)

q
(n)
n+2 ∼ (1− sin kx) for all n,

for |x| ≤ Lx. Noting that:293

Dn + nDn−2 = − 1

n− 1
(Dn − n yDn−1) for n > 1 and

Dn+2 + (n+ 2)Dn = Dn + y Dn+1,

we can write the temperature responses to cylindrical forcing as follows:294

T (0,1) ∼ 1

2
(1 + sin kx)D0(y),

T (1,1) ∼ 0

T (n,1) ∼ −1

2
(1− sin kx) [Dn(y)− n yDn−1(y)] for n > 1, (55)

T (n,2) ∼ 1

2
(1− sin kx) [Dn(y) + y Dn+1(y)] .

By combining the odd cylinder function following Equation (12), we can further write:295

T (0) ∼ 1

2
(1− sin kx) y2D0(y) +D0(y), (56)

T (n) ∼ 1

2
(1− sin kx) y2Dn(y) for n > 0. (57)

By multiplying T (n) by an and summing over n, we get the asymptote of the solution296

T for Lx → 0:297

T ∼ 1

2
(1− sin kx) y2D(y) + a0D0(y). (58)

This result is valid for all functions D, not only the symmetric Gaussian used in the rest298

of this article, with a0 understood as the projection coefficient of D onto D0. A scale anal-299

ysis reveals the first order for w: εT = O(D), while Q = O(D/Lx) so that εT << Q,300

as in the non-rotating case, and:301

w ∼ k cos (kx)D(y) = Q. (59)
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The asymptotes for the zonal and meridional wind can be obtained using Equa-302

tions (6) and (7):303

u ∼ −2 (1− sin kx)

[
D(y) +

y

2

dD

dy

]
+ a0D0(y), (60)

v ∼ −k cos (kx) y D(y), (61)

valid for any function D. For a heating following a symmetric Gaussian (Eq. (34)), of304

interest in the present work, Equation (60) further simplifies into:305

u ∼ −2 (1− sin kx)

(
1− y2

4L2
y

)
D(y) + a0D0(y), (62)

which is negative around the equator, indicating upper-tropospheric easterlies and low-306

level westerlies in this region. The zonal wind is maximum on the equator on the west-307

ern boundary of the heating region (x = −Lx), and it decreases both eastward and pole-308

ward, eventually changing sign.309

If Ly → 0 as well, all the results above hold, and the first term on the right-hand310

side of the last equation is dominant negligible: the velocity scales with 1/Ly and the311

jets extends in longitude all the way to the eastern boundary of the heating region (x =312

Lx) and in latitude to y = 2Ly on both sides of the equator. This clearly shows that313

the Gill response is different from a damped gravity wave, even for scales that are much314

smaller than the equatorial radius of deformation: it is characterized by a westerly low-315

level jet at the center of the diabatic heating. This suggests significant limitations on the316

approach considering that small systems in the equatorial regions are well approximated317

by non-rotating systems.318

2.6 Additional experiments319

We also used both a linear and a non-linear versions of the QTCM on a β-plane320

(Sobel & Neelin, 2006; Bellon & Sobel, 2008, 2010; Bellon, 2011) reduced to its baroclinic321

structure to verify our results by integrating the simplified QTCM in time from an ini-322

tial state of rest until it reaches a steady state, which is achieved after about 15 days of323

simulation. With the linear, simplified QTCM, we obtained very similar results to our324

analytical derivations, which gives us high confidence in our results. In particular, we325

performed simulations with small zonal and/or meridional extents Lx and Ly, and their326

similarity with the semi-analytical solutions confirms the validity of the longwave approx-327

imation down to very small scales. We also performed the same simulations with the non-328

linear simplified QTCM and found that the results were very similar to the linear ver-329

sion for amplitudes of the forcing up to the typical seasonal heating rates in the observed330

tropical atmosphere. This shows that the influence of non-linearities is very limited in331

this problem for realistic amplitudes of the forcing. All these additional experiments demon-332

strate the robustness of our analytical approach, and we will not show these results in333

details since they only validate G80’s simplifications and confirm our semi-analytical re-334

sults presented in the next section.335

3 Results336

3.1 Temperature and wind response337

We present here the features of the solutions in terms of temperature, surface winds338

and mid-tropospheric vertical motion for diabatic heating distributions Q with differ-339

ent horizontal extents. Figure 1 depicts contours of temperature perturbation and sur-340

face velocity field for the damped gravity wave forced by heating of different meridional341

scales, but with the same total, horizontally integrated heating [Q]: Ly = 1 (equato-342
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Figure 1: Solutions for the damped
gravity wave (non-rotating case): (non-
dimensional) temperature response (con-
tours) and low-level velocity (vectors) for
(a) Ly = 1, (b) Ly = 1/2, and (c) Ly = 1/4.
In all cases, Lx = 3Ly.
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Figure 2: Forcing and solution for the
damped gravity wave (non-rotating case):
diabatic heating (dashed lines) and mid-
tropospheric vertical velocity (solid lines)
for (a) Ly = 1 (equatorial radius of defor-
mation), (b) Ly = 1/2, and (c) Ly = 1/4.
In all cases, Lx = 3Ly.

rial radius of deformation, Fig. 1a), Ly = 1/2 (Fig. 1b), and Ly = 1/4 (Fig. 1c), with343

a fixed aspect ratio so that Lx = 3Ly (diabatic-heating pattern close to circular). Fig-344

ure 2 shows the corresponding contours of mid-tropospheric vertical velocity together345

with contours of heating. Figures 3 and 4 show the same fields for the Gill circulation346

(i.e., with rotation). Figures 3a and 4a are almost identical to the symmetric forcing pre-347

sented in G80, the only difference being the longitudinal extent: Lx = 3 here while G80348

showed solutions for Lx = 2.349

The damped gravity wave exhibits a near-circular, warm temperature perturba-350

tion collocated with the heating, which forces convergent surface winds (Fig. 1) and as-351

cent collocated with the heating (Fig. 2). The Gill circulation exhibits the Kelvin-wave352

easterlies east of the heating and cyclonic gyres straddling the equator west of the heat-353

ing, with maxima of temperature at the center of the gyres, as described in G80 (Fig.354

3).355

As expected, the temperature and wind fields are symmetric in latitude and lon-356

gitude for the damped gravity wave (Figs. 1 and 2), while the longitudinal symmetry357
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Figure 3: Solutions for the Gill circulation
(rotating case): (non-dimensional) tem-
perature response (contours) and low-level
velocity (vectors) for (a) Ly = 1 (equatorial
radius of deformation), (b) Ly = 1/2, and
(c) Ly = 1/4. In all cases, Lx = 3Ly.
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Figure 4: Forcing and solution for the Gill
circulation (rotating case): diabatic heating
(dashed lines) and mid-tropospheric vertical
velocity (solid lines) for (a) Ly = 1, (b)
Ly = 1/2, and (c) Ly = 1/4. In all cases,
Lx = 3Ly.
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is broken in the Gill circulation (Figs. 3 and 4). As a result, vertical ascent is more col-358

located with the heating in the damped gravity wave than in the Gill circulation and there-359

fore more efficient at reducing the temperature response, and the horizontal winds forced360

by smaller temperature gradients are weaker in the non-rotating case than in the rotat-361

ing case. The meridional extent of the damped-gravity-wave winds is larger than that362

of the Gill circulation, and conversely the longitudinal extent of the Gill circulation is363

larger than that of the damped gravity wave.364

As the horizontal extent of the diabatic heating is decreased, the maximum heat-365

ing scales with L−1x L−1y . In the damped gravity wave, winds get stronger but more lo-366

calized (Fig. 1). The maximum vertical speed increases slightly faster than the maxi-367

mum heating (Fig. 2), and the maximum temperature response increases only slightly368

(Fig. 1) because of the competition between diabatic warming and advective cooling. In369

the Gill circulation, winds also get stronger as the horizontal extent of the heating is de-370

creased, especially the equatorial westerly jet between the gyres (Fig. 3), and the max-371

imum vertical speed increases faster than the maximum heating (Fig. 4). The off-equatorial372

temperature maxima are moved closer to the equator and slightly eastward, they even373

merge for small Ly (Fig. 3). Overall, the meridional extent of the response decreases.374

The eastward extent of the temperature and horizontal-wind response increases and the375

westward extent decreases slightly with decreasing horizontal extent of the heating (Fig.376

3). This reveals a decrease in the Rossby-wave response in the west, while the Kelvin-377

wave response expands eastward. The latter corresponds to an increase in the projec-378

tion of D on D0 with decreasing Ly, which is consistent with the expression of a0 (see379

Eq. (36)).380

Some aspects of the Gill circulation more closely resemble the damped gravity wave381

for small horizontal extents of the heating: the pattern and amplitude of vertical speed382

are similar (Figs. 4c and 2c), and the merging of temperature maxima at the equator383

(Fig. 3c). This could be expected since it extends over a smaller range of latitude around384

the equator, which corresponds to a region of smaller Coriolis parameter where the ef-385

fect of rotation should be smaller. But some differences between the Gill circulation and386

the damped gravity wave are also enhanced: the westerly jet at the center of the heat-387

ing, the ratio of meridional to zonal extent, and the east-west asymmetry.388

3.2 Overturning Circulation389

One of the most important characteristics of a tropical circulation is its overturn-390

ing circulation, because of the associated latent heat transport and the coupling with the391

hydrologic cycle. We define the intensity of the overturning circulation Γ as the upward392

vertical mass flux integrated over the horizontal domain (which, by mass conservation,393

is the same as the downward vertical mass flux integrated over the domain):394

Γ =

∫∫
w>0

w dxdy. (63)

Γ can be computed numerically using the expression of w in Equations (32) and (50).395

Figure 5a shows the intensity Γ of the overturning circulation for the non-rotating396

case, as a function of the characteristic longitudinal and latitudinal extents Lx and Ly397

of the heating. For the damped gravity wave, Γ decreases with both Lx and Ly, in a sim-398

ilar fashion for both. This can be qualitatively understood from Equations (41) and (42):399

the direct, local temperature response Q/ε is smoother if the features of Q are smoother,400

i.e. for large horizontal extents Lx and/or Ly. The diffusive, smoothing effect of trans-401

port ∆T/ε2 on T is smaller if the features of T are smoother, so that the difference w =402

Q−εT is smaller for smoother Q. This smaller vertical speed translates into a weaker403

overturning circulation Γ through spatial integration.404

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Γ

a

b

c

(a)

0 1 2 3 4 5 6

Lx

0

0.5

1

1.5

2

L
y

2

3

4

5

6

7

Γ∗/Γ− 1 (%)(b)

0 2 4 6

Lx

0

1

2

L
y

-15

-10

-5

0
Γ∗u/Γ∗ (%)(c)

0 2 4 6

Lx

0

1

2

L
y

0

20

40

60

80

100

Figure 5: (a) Intensity Γ of the overturning circulation in the non-rotating case; the let-
ters ”a”, ”b”, and ”c” indicate the cases shown in Figures 1 and 2. Contours interval 0.5;
(b) Error made by approximating Γ by Γ∗; and (c) Contribution Γ∗u of the zonal flow to
the overturning circulation (in % of Γ∗).

A more quantitative understanding can be hindered by the fact that the domain405

of integration in Equation (63) is determined by the field w itself, which we know only406

as a Fourier decomposition. But Figure 2 suggests that the upward motion is limited to407

a region between −Lx and Lx in longitude, with a meridional extent that scales with Ly.408

We find that Γ can be approximated by the integral Γ∗ of w over the domain ( [−Lx,Lx],[−4Ly,4Ly]409

), with the latitudinal bounds corresponding to twice the e-folding distance of D:410

Γ ≈ Γ∗ =

∫ 4Ly

−4Ly

∫ Lx

−Lx

w dxdy. (64)

Figure 5b shows the normalized error that arises from approximating Γ by Γ∗. This er-411

ror is negligible for most of the domain of (Lx,Ly) considered here, topping at 4% for412

the largest values of Lx and Ly, and Γ∗ can safely be used as an approximation of Γ. Such413

a set domain of integration for Γ∗ presents two noteworthy advantages. First, we can study414

the contribution of the different spectral modes to Γ∗:415

Γ∗ = 4

∫ +∞

−∞
Γ`∗(Lx)S`(Ly) d`, (65)
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with:416

Γ`∗ =

∫ +Lx

0

W` dx and S` =
e−`

2Ly
2

√
π

∫ +4Ly

0

cos (`y) dy =
e−`

2Ly
2

√
π

sin (4`Ly)

`
;

Note that S` is the integral between 0 and 4Ly of the spectral contribution of wavenum-417

ber ` to the diabatic heating (cf Eq. (43)). This means that Γ`∗ encapsulates the sensi-418

tivity of the dynamical response of wavenumber `. Also, we have the following mathe-419

matical constraint on S` for all Ly:420

∫ +∞

−∞
S`d` =

∫ +4Ly

0

D(y) dy = 2

∫ +2

0

e−s
2

ds =
√
π erf(2), (66)

in which we have used the change of variable s = y/2Ly.421

Second, thanks to the continuity equation, the double integral in Equation (64) is422

equal to the sum of the integral of u on the longitudinal boundaries and the integral of423

v on the meridional boundaries of the integration domain and we can look at the con-424

tributions of zonal winds and meridional winds to Γ∗ and Γ`∗:425

Γ∗ = Γ∗u + Γ∗v and Γ`∗ = Γ`∗u + Γ`∗v

Integrating Equations (48) and (49), we can write the contributions Γ`∗u from the426

zonal winds and Γ`∗v from the meridional winds to the overturning circulation of the spec-427

tral mode ` as:428

Γ`∗u =
k2

λ2 + k2
1 + e−2λLx

2
, (67)

Γ`∗v =
`2

λ2 + k2

(
1 +

k2

λ2
1− e−2λLx

2

)
, (68)

which yields the following expression for Γ`∗:429

Γ`∗ =
1

λ2 + k2

(
k2 + `2 − ε2k2

λ2
1− e−2λLx

2

)
, (69)

Figure 5c shows the ratio Γ∗u/Γ∗ which illustrates the contribution of the zonal winds430

to the intensity of the overturning circulation. As expected considering the horizontal431

isotropy of the non-rotating case, the contribution of the zonal wind to the overturning432

circulation Γ∗ is about half for heating patterns which are close to circular (and the con-433

tribution of meridional winds is about half as well in these cases) and increase with in-434

creasing Ly and decreasing Lx.435

Section 2.5 shows that for Lx → 0, the temperature response is negligible com-436

pared to the diabatic heating, and w ∼ Q. In this limit, the ascending region becomes437

the region of heating, and there is no flow through the meridional boundaries (also, w ∼438

∂xu), the overturning circulation results at first order from the divergence of the zonal439

wind:440

Γ ∼ [Q] ∼ Γu and Γv ∼ 0 (70)

This also means that Γ(0, Ly) is independent of Ly, which is visible in Figure 5a. Equa-441

tions (67)-(69) confirm that the approximation Γ ≈ Γ∗ holds well in this limit: for Lx →442

0, k → ∞, Γ`∗ = Γ`∗u = 1 and Γ`∗v = 0. We can rewrite Γ∗ using Equation (65) as443

proportional to the integral of S` over `, which is given by Equation (66): Γ∗(0, Ly) =444

Γ∗u(0, Ly) = 4
√
π erf(2) = erf(2)[Q] ≈ 0.995[Q]. Our solutions for Γ also converge445
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numerically towards [Q] for Ly → 0, which is expected since the non-rotating mathe-446

matical system is isotropic and functions F and D both tend towards a Dirac δ func-447

tion when the horizontal scale (Lx or Ly) tends towards zero.448

For Lx → ∞, k → 0 and Γ`∗ → `2

λ2 which is zero for ` = 0 and tends towards449

1 for ` → ∞. Figure 6a shows the variation of Γ`∗ with the meridional wavenumber `450

and the zonal extent Lx of the diabatic heating; Γ`∗ is very close to 1 for ` > 0.3 (i.e.451

meridional wavelengths shorter than 20, which is approximately the pole-to-pole distance).452

This corresponds to similar sensitivities of Γ`∗ to the zonal wavenumber k = π/2Lx and453

to the meridional wavenumber `, which consistent with our interpretation of the isotropic,454

diffusive effect of circulation on temperature. There is still some differences between the455

sensitivities to k and to ` due to the finite band of longitudes [−Lx, Lx] receiving dia-456

batic heating compared to its latitudinal distribution extending to infinity. Only the small457

wavenumbers/large wavelengths have a response that is decreasing significantly with Lx,458

with a maximum decrease for ` = 0. The decrease in Γ∗ with increasing Lx therefore459

results from the amount of diabatic heating that forces a response projecting onto small460

wavenumbers `. Figure 6b shows the variation of the the spectral coefficient S` with the461

meridional wavenumber ` and the meridional extent Ly of the diabatic heating. For `Ly <<462

1, S` varies almost linearly with Ly: S` ≈ 4Ly; S` also changes sign for `Ly = nπ/4463

for n > 0 (contours of S` = 0 can be seen in Fig. 6b for n = 1 and 2). As Ly increases,464

D becomes less peaked at y = 0 and the amplitudes of the dynamical response from modes465

with small wavenumbers ` increase as a result of the diffusive effect of vertical energy466

transport in latitude, while the amplitudes of the responses from modes with large wavenum-467

bers ` decrease. This increases the sensitivity of the circulation intensity Γ to Lx and468

since Γ∗(0, Ly) is independent of Ly, Γ∗ decreases with Ly.469

Figure 7a shows the intensity Γ of the overturning circulation in rotating case, as470

a function of the characteristic extents of the heating Lx and Ly: Γ decreases with both471

increasing Lx and Ly, in a similar trend for both. For Lx → 0 or Ly → 0, Γ is very472

similar to the non-rotating value. As shown in Section 2.5, in the limit Lx → 0, Γ ∼473

[Q] in both cases. It appears that Γ = [Q] is verified in the limit Ly → 0 as well; it is474

tempting to attribute this limit to the fact that the circulation is confined at the equa-475

tor where the effect of rotation might be negligible. But Section 2.5 also shows that this476

argument does not apply in the limit of diabatic heating of very small horizontal extent477

(with Lx and Ly → 0). In this limit, the Gill circulation differs from the damped grav-478

ity wave by a strong low-level westerly jet in the region of heating and the similarity be-479

tween the damped gravity wave and the Gill circulation in this limit is restricted to the480

region and intensity of ascent. This argument probably does not apply for cases with Lx >481

0 and a justification to Γ ∼ [Q] for Ly → 0 still eludes us.482

Γ’s decrease with increasing Lx and Ly is much steeper in the rotating case than483

in the non-rotating case. Figure 7b shows the ratio between Γ in the rotating case and484

Γ in the non-rotating case; it decreases significantly for increasing Lx and Ly, from 1 for485

Lx = 0 or Ly = 0 and down to 0.4 for the largest values in the range of parameters486

we have explored ((Lx, Ly) = (6, 2)). Rotation increases the sensitivity of the overturn-487

ing circulation to the horizontal extent of the diabatic heating pattern. In fact, Figure488

3 shows that rotation creates gyres straddling the equator, which are mostly rotational,489

while the damped gravity wave is exclusively divergent. The poleward flow associated490

with these gyres seems to compensate most of the equatorward flow and we expect the491

meridional wind to contribute little to the divergence of the horizontal wind and upward492

motion. We can also propose an energetic interpretation of this sensitivity. The energy493

source of the system is the diabatic heating, and the sinks are the kinetic energy loss through494

friction and the thermal energy loss through Newtonian cooling, the sum of which is pro-495

portional to the total energy (kinetic and thermal). Assuming the global thermal energy496

(and thermal energy loss) is similar in the non-rotating and rotating cases, the global497

kinetic energy is similar in both cases. In the non-rotating vase, all kinetic energy cor-498
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Figure 6: (a) Overturning circulation Γ`∗ of mode with meridional wavenumber ` as a
function of ` and the zonal extent Lx of the diabatic heating and (b) spectral coefficient
S` as a function of ` and the meridional extent Ly of the diabatic heating.

responds to divergent motion while in the rotating case part of it is associated with ro-499

tational motion and the kinetic energy of divergent motion is smaller than in the rotat-500

ing case. We can therefore expect the divergent flow to be weaker in the rotating case501

than in the non-rotating case. There are two caveats to this energy reasoning: first, our502

semi-analytical solutions to the linear equations do not satisfy energy conservation; sec-503

ond, the kinetic energy loss due to meridional winds is neglected by the longwave ap-504

proximation. The additional numerical experiments described in Section 2.6 show that505

these caveats are inconsequential: non-linear, energy-conserving simulations are very sim-506

ilar to our quasi-analytical solutions, which shows that these approximately satisfy en-507

ergy conservation, and confirms that effect of friction on meridional winds is indeed neg-508

ligible.509

Again, we find that Γ can be approximated by the integral Γ∗ of w over the do-510

main ( [−Lx,Lx],[−4Ly,4Ly] ), although there is more discrepancy between the two than511

in the non-rotating case. Figure 7c shows the error made by approximating Γ by Γ∗. It512

is up to 16%, for very large characteristic scales in both meridional and zonal direction,513

in a range of parameters that correspond to heating that both extend to the extratrop-514

ics and over a significant fraction of the Earth’s circumference (more than a quarter) and515

is too large to be realistic. Γ∗ is therefore still a reasonable approximation to Γ. As in516
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Figure 7: (a) Intensity Γ of the overturning circulation in the rotating case; the letters
”a”, ”b”, and ”c” indicate the cases shown in Figures 3 and 4 and ”G80” indicates the
case discussed in G80. Contours interval 0.5; (b) Ratio of the intensity of the circulation
in the rotating case to that in the non-rotating case; (c) Error made by approximating Γ
by Γ∗; (d) Contribution Γ∗u of the zonal flow to the overturning circulation (in % of Γ∗);

and (e) Contribution Γ
(0,1)
∗u of the easterly flow to the overturning circulation (in % of Γ∗).

the non-rotating case, this approximation allows us to decompose the intensity of the517

overturning circulation into the sum of contributions from the different modes:518
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Γ∗ =

∞∑
n=0

Γ
(2n)
∗ =

∞∑
n=0

Γ
(2n,1)
∗ + Γ

(2n,2)
∗ , (71)

with Γ
(2n,1)
∗ and Γ

(2n,2)
∗ the contributions of the first and second part of the response to519

the projection of the diabatic heating D on the nth symmetric cylinder function D2n,520

i.e., a2n multiplied by the response to a diabatic heating in the form F (x)D2n(y).521

Γ
(2n,i)
∗ = a2n

∫ 4Ly

−4Ly

∫ Lx

−Lx

w(2n,i) dx dy, (72)

for i = 1, 2. Appendix B shows that we can write these contributions as:522

Γ
(2n,1)
∗ = γ2n(Lx)f2n(Ly) + [1− γ2n(Lx)] g2n,1(Ly) (73)

Γ
(2n,2)
∗ = γ2n+2(Lx)f2n(Ly) + [1− γ2n+2(Lx)] g2n,2(Ly) (74)

with the variation in Lx given by the series of functions γ2n:523

γ0 = 1
2q

(0)
0 (Lx) =

1

2

1 + e−2εLx

1 + ε2l2x
,

γ2n = 1
2
q
(2n)
2n (−Lx)
2n−1 = 1

2q
(2n−2)
2n (−Lx) =

1

2

1 + e−2(4n−1)εLx

1 + (4n− 1)2ε2l2x
for n > 0, (75)

with lx = 1/k = 2Lx/π; and the variation in Ly given by:524

f2n = a2n(Ly)I2n with I2n =

∫ 4Ly

−4Ly

D2n dy, (76)

g2n,1 = − 8n

4n− 1
a2n(Ly)D2n−1(4Ly), and (77)

g2n,2 =
4

4n+ 3
a2n(Ly)D2n+1(4Ly). (78)

Figure 8 shows these functions for n ≤ 5. In terms of amplitude, Γ∗ is dominated by525

the response of mode n = 0, because the differences f0 − g0,1 = f0 and f0 − g0,2 are526

the largest, and because the γ0’s decrease with increasing Lx is the slowest of all γ2n.527

But all modes with larger n also contribute to the sensitivity of Γ∗ to Lx and Ly.528

Since γ2n(0) = 1, Γ
(2n,i)
∗ = f2n for all n and i = 1, 2, and we can establish by529

integration that Γ∗ is an excellent approximation of Γ in the limit Lx → 0:530

Γ∗(0, Ly) = 2

∫ 4Ly

−4Ly

∞∑
n=0

a2nD2n dy = 2

∫ 4Ly

−4Ly

Ddy = 4
√
π erf(2) = erf(2)[Q]. (79)

Γ∗(0, Ly) is the same as in the non-rotating case and it is a good approximation of Γ(0, Ly) =531

[Q]. It is independent of Ly, which is consistent with Figure 7a. From our numerical in-532

tegration, it appears that Γ∗ also tends towards a value close to Γ(Lx, 0) = [Q] for Ly →533

0, as in the non-rotating case.534

With γ2n(0) = 1 and γ2n → 0 for Lx → ∞, each contribution Γ
(2n,i)
∗ is f2n for535

Lx = 0 and tends towards g2n,i for Lx →∞. Figure 8a shows the functions γ2n for n536

from 0 to 5. γ0 is identical to Γ`=0
∗ found for the non-rotating case, which is in keeping537

with the interpretation of the first part of the response to a diabatic heating following538

D0 as a Kelvin wave, whose properties are the same as a gravity wave except for its lat-539

itudinal structure. The decrease of γ0 with Lx therefore results from the same processes540

as that of a gravity wave: the diffusive effect of large-scale circulation on temperature541

–21–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

perturbations is less effective for smoother diabatic heating (i.e., larger Lx), and this re-542

sults in a smaller difference between Q and εT , and therefore a smaller vertical speed543

w (see Eq. (32)). The decay of γ2n with Lx is increasingly fast with increasing n, which544

means that the larger n (and the larger i), the faster the convergence of the circulation545

response to a diabatic heating along D2n towards its limit g2n,i for Lx → ∞. A more546

intricate latitudinal structure of the diabatic heating (i.e., a larger n) yields a stronger547

sensitivity of the circulation response to Lx. This differs from the non-rotating case, for548

which more intricate latitudinal structures of the diabatic heating (i.e., large wavenum-549

bers `) lead to smaller sensitivity of the circulation to Lx. We can attribute this change550

in sensitivity to the effect of rotation: for larger n, the diabatic heating has extrema fur-551

ther from the equator, where the effect of rotation is larger and temperature anomalies552

generate circulations that are increasingly rotational and less and less convergent, cre-553

ating less vertical motion.554
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Figure 8: Functions determining the sensitivity of the contribution Γ
(2n,i)
∗ to the lon-

gitudinal extent Lx and Ly of the diabatic heating for n ≤ 5 : (a) γ2n(Lx) gives the

variation of Γ
(2n,1)
∗ and Γ

(2n−2,2)
∗ from the f2n for Lx = 0 to, respectively, g2n,1 and g2n,2

for Lx → ∞; (b) a2n the projection coefficient of D on the cylinder function D2n, normal-

ized by |a2n(0)/a0(0)|; (c) f2n (thick lines) and g2n,1 (thin lines) give the limits of Γ
(2n,1)
∗

for, respectively, Lx = 0 and Lx → ∞; and (d) f2n (thick lines) and g2n,2 (thin lines) give

the limits of Γ
(2n,2)
∗ for, respectively, Lx = 0 and Lx →∞.

From its value for Lx = 0 independent from Ly (see Eq. (79)), the decrease of Γ∗555

with Lx is determined by the limits of the circulation response to a diabatic heating along556

D2n for Lx = 0 (functions f2n(Ly)) and Lx →∞ (functions g2n,i(Ly)). These are the557

product of (i) the change in projection of D onto the cylinder functions D2n, given by558

a2n, and (ii) the sensitivity of the dynamical response of the atmosphere to Ly for di-559
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abatic heating following the cylinder function D2n. These functions are shown in Fig-560

ures 8b-d. We can distinguish two domains:561

• Ly ≥ 1: for Ly = 1, D is D0, so a0 = 1 and a2n = 0 for all n > 0 (and its562

n − 1 first derivatives are zero as well) – this is the case described in G80. For563

increasing Ly > 1, D is less and less peaked at the equator; it projects increas-564

ingly on higher and higher n cylinder functions while projecting less and less on565

cylinder function 0, as shown in Figure 8b. Because of the exponential decay of566

Dn(4Ly) with increasing Ly, g2n,1 and g2n,2 are negligible in this range of Ly (see567

Fig. 8c,d), and Γ
(2n,i)
∗ ≈ γ2(n+i−1)(Lx)f2n(Ly) (i = 1 or 2). For the same rea-568

son, I2n tends towards the integral of D2n over [−∞,+∞] and the variation of f2n569

with Ly is determined by the variation of a2n (see Fig. 8b,c,d), with a decreas-570

ing contribution of mode 0 and an increasing contribution of higher and higher571

n modes for increasing Ly. Considering the sensitivity of the functions γ2n,i(Lx)572

to n explained above, the decrease of Γ∗ with Lx is therefore larger for larger Ly.573

Since Γ∗ is independent of Ly for Lx=0, this explains the sensitivity of Γ∗ to both574

Lx and Ly.575

• Ly < 1, there is still a strong influence of the response of mode n = 0, but the576

influence of modes with larger n is complex. For Ly close to zero, both a2n(0) and577

I2n ≈ 8LyD2n(0) alternate sign as (−1)n (see Eqs. (36) and (A5)), so f2n is pos-578

itive for all n. But f2n − g2n,1 is negative for n > 0 which means that the con-579

tributions to the circulation Γ
(2n,1)
∗ increases with increasing Lx. f2n − g2n,2 is580

positive and Γ
(2n,2)
∗ decreases with increasing Lx and compensates at least par-581

tially the increase in Γ
(2n,1)
∗ . Appendix B (Eqs. (B14) and (B15)) shows that, for582

Lx close to zero, Γ
(2n,2)
∗ more than compensates Γ

(2n,1)
∗ : Γ

(2n)
∗ = Γ

(2n,1)
∗ +Γ

(2n,2)
∗583

decreases with Lx for all n. This illustrates the large compensations between the584

two components of the response to the heating along D2n for each n > 0. For585

larger Ly < 1, f2n, g2n,1, g2n,2, and their differences can change sign for n > 0586

since D2n and D2n±1 changes sign at least once over the interval [−4Ly, 4Ly], re-587

sulting in an increase of the contributions Γ
(2n,i)
∗ with increasing Lx in intervals588

where a2n(f2n − g2n,i) < 0. These contributions in these intervals reduce the589

sensitivity of Γ∗ to Lx and, since Γ∗(0, Ly) is a constant, Γ∗ is larger for reduced590

sensitivity to Lx, i.e. for smaller Ly. Appendix B quantifies the sensitivity of Γ∗591

to Lx for Lx close to zero, and shows an increase of the sensitivity of Γ∗ to Lx with592

increasing Ly, starting from zero sensitivity for Ly = 0 and increasing to large593

sensitivity at large Ly.594

Despite this overall complexity, it appears clearly that the two components of the response595

to the heating along D0 are the main contributors to Γ∗. This is because in this mode,596

the Kelvin-wave pattern and the Rossby-wave pattern both contribute to low level wind597

convergence in the region of ascent through the easterlies at the eastern boundary (for598

the first component) and westerlies at the western boundary (for the second component).599

By contrast, the two components for modes with n > 0 are opposite close to the equa-600

tor, with gyres that circulate in opposite directions, and there is a significant amount601

of compensation between components of of the response to the heating along D2n with602

n > 0.603

Thanks to the continuity equation, we can also decompose Γ∗ into the sum of a con-604

tribution from the meridional wind (v integrated over the boundary at y = ±4Ly and605

a contribution Γ∗u from the zonal wind (u integrated over the boundaries at x = ±Lx).606

And each contribution Γ
(2n,i)
∗ can also be decomposed in the same way, as for the non-607

rotating case:608

Γ∗ = Γ∗u + Γ∗v and Γ
(2n,i)
∗ = Γ

(2n,i)
∗u + Γ

(2n,i)
∗v
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Because u(0,1)(−Lx) = 0 and u(2n,i)(Lx) = 0 for all n > 0 or i = 2, The contribution609

from the zonal wind at the eastern border results exclusively from the damped Kelvin610

wave extending eastward from the heating, while the contribution from the zonal wind611

at the western border results from a combination of damped Rossby waves. By integrat-612

ing u given in Equations (28)-(31), we can write:613

Γ
(2n,1)
∗u = γ2n(Lx) [f2n(Ly)− (4n− 1)g2n,1(Ly)] , (80)

Γ
(2n,2)
∗u = γ2n+2(Lx) [f2n(Ly) + (4n+ 3)g2n,2(Ly)] , (81)

and we can compute Γ∗u by summing over n. Figure 7d shows that except for small Ly,614

Γ∗u is the dominant contribution to Γ∗, unlike in the non-rotating case in which the rel-615

ative contributions of Γ∗u and Γ∗v are similar for similar ratio Lx/Ly (see Fig. 5c). The616

smaller contribution of the meridional wind Γ∗v results from the partial compensation617

between the equatorward and poleward branches of the gyres. But the westerly low-level618

zonal flow into the ascending region through its western boundary is also part of these619

gyres, and it contributes very significantly to the flow. In the limit Lx → 0, Γ∗ ≈ Γ∗u.620

Section 2.5 also shows that, in this limit, w ∼ Q; this means that the region of ascent621

is the region of diabatic heating which extends to infinity in the latitudinal direction, so622

that there is no flow at the meridional boundaries. As in the non-rotating case, we have:623

Γu ∼ Γ ∼ [Q] and Γv ∼ 0 (82)

irrespective of Ly, as for the damped gravity wave (see Eq. (70)), so the contribution624

of the zonal flow is predominant for both Γ and its approximation Γ∗ in this limit.625

Figure 7e shows that the contribution Γ
(0.1)
∗u of the damped Kelvin wave (i.e., of626

the first part of the response to D’s projection onto D0) represents a significant fraction627

of Γ∗ (and Γ∗u) except for small Ly. This relative contribution is larger than 60% for628

large Lx but it can be as low as one third for small Lx and large Ly, which shows the629

importance of the low-level westerly jet associated with the damped Rossby waves for630

small Lx, while for large Lx the contribution of the gyres to Γ∗ results overwhelmingly631

from the meridional winds.632

3.3 Equatorial westerly jet633

While the damped gravity has no horizontal wind at the center of the diabatic heat-634

ing, the Gill circulation is characterized by a low-level westerly jet there. This low-level635

jet is an interesting feature of the Gill circulation because it can increase the surface tur-636

bulent heat fluxes if the background surface wind is westerly as well (as in the Indian637

Ocean), or decrease them if the background wind is easterly (as over most of the rest of638

the equatorial belt). The resulting modulation of surface fluxes has been pointed out as639

a potential energy source for tropical intraseasonal variability (Sobel et al., 2008, 2010).640

This jet also contributes to horizontal non-linear moisture advection which is thought641

to contribute to the eastward propagation of tropical intraseasonal disturbances (Maloney642

et al., 2010; Leroux et al., 2016). The two cyclonic gyres that extend westward from the643

region of heating on both sides of the equator interact constructively to create this jet.644

On the other hand, the Kelvin-wave pattern extending eastward actually slows down this645

jet. As can be seen in Figure 3, as the scale of the heating decreases, the Kelvin wave646

signal increases slightly, but the effect of the gyres dominates: they become smaller, faster,647

and closer to the equator, which accelerates the low-level westerly jet but decreases its648

latitudinal extent.649

As metrics of this jet, we will study the low-level wind speed at the center of the650

diabatic heating uo = −u(0, 0) (u describes the first baroclinic mode, so that low-level651

winds have the opposite sign), the zonal extent of the jet xu defined as the zonal coor-652

dinate at which u changes sign along the x-axis: u(xu, 0) = 0, the meridional extent653
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of the jet yu defined as the positive meridional coordinate at which u changes sign along654

the y-axis: u(0, yu) = 0, and the integrated intensity of the jet U = −
∫ yu
−yu u(0, y)dy,655

which describes the low-level eastward mass transport around the equator. Figure 9 shows656

the sensitivity of these four metrics as a function of Lx and Ly.657
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Figure 9: Characteristics of the equatorial westerly jet in the Gill circulation: (a) west-
erly zonal velocity at the origin uo; the letters ”a”, ”b”, and ”c” indicate the cases shown
in Figures 3 and 4 and ”G80” indicates the case discussed in G80; (b) Intensity U of the
jet; (c) Zonal extent xu of the jet normalized by Lx; (d) meridional extent yu of the jet.

The low-level equatorial wind uo at the center of the diabatic heating decreases with658

both Lx and Ly (see Fig. 9a). It tends towards zero for large Lx or large Ly, and towards659

infinity if both Lx and Ly tend towards zero. We can also decompose uo into a sum of660

contributions from the different modes:661

uo =

∞∑
n=0

u(2n)o =

∞∑
n=0

u(2n,1)o + u(2n,2)o , (83)

with u
(2n,1)
o and u

(2n,2)
o the contributions of the first and second components of the re-662

sponse to the projection of the diabatic heating D on the nth symmetric cylinder func-663

tion D2n. Appendix C shows that there is a significant compensation between u
(2n,2)
o and664

u
(2n,1)
o for n > 0 because the two gyres straddling the equator have opposite rotation665

(cyclonic v.s. anticyclonic) in the two components. We can write:666

u(2n)o = ν2n(Lx)h2n(Ly), (84)
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with the variation in Lx (respectively, Ly) encapsulated in the series of functions ν2n (resp.,667

h2n):668

ν0(Lx) = −1

2
q
(0)
0 (0) +

3

2
q
(0)
2 (0),

ν2n(Lx) = −
(
n− 1

4

)
q
(2n)
2n (0)

2n− 1
+

(
n+

3

4

)
q
(2n)
2n+2(0), for n > 0. (85)

669

h0(Ly) = a0(Ly)D0(0) =

√
2

1 + L2
y

,

h2n(Ly) = 2a2n(Ly)D2n(0) =
(2n)!

(2nn!)2

(
1− L2

y

1 + L2
y

)n√
8

1 + L2
y

, for n > 0. (86)

Figure 10 shows the functions ν2n and h2n for n ≤ 5. These show that the response670

to the forcing along D0 is the largest contribution to uo except for Lx and Ly → 0, but671

most cylinder modes do contribute to the sensitivity of uo to Lx and Ly. The functions672

ν2n include the two compensating effects of u
(2n,1)
o and u

(2n,2)
o . For h2n > 0, the con-673

tribution from u
(2n,2)
o is positive, larger for Lx = 0 (scaling with (4n+3)), and decay-674

ing faster (with a derivative scaling with (4n + 3)2). The contribution from u
(2n,1)
o is675

negative, smaller in amplitude (scaling with (4n−1)) for Lx = 0, and decaying slower676

(with a derivative scaling with (4n−1)2, see Eqs. (85), (C4) and (C5)). As a result of677

this compensation, ν2n(0) = 1, independent from n, and ν2n decreases towards 0 for678

Lx →∞. This decrease is faster for larger n, similarly to the functions γ2n which de-679

scribe the sensitivity of Γ∗ to Lx.680
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Figure 10: Functions determining the sensitivity of the contributions u
(2n)
o to the west-

erly zonal velocity at the origin uo for n ≤ 5: (a) ν2n(Lx) gives the variation of u
(2n)
o with

Lx and (b) h2n gives the variation of u
(2n)
o with Ly.

The functions h2n describe the sensitivity of u
(2n)
o to Ly, which is essentially dom-681

inated by the sensitivity of a2n in terms of amplitude (see the similarity between Figs.682

8b and 10b), but D2n(0) contributes to the sign: D2n(0)’s sign is given by (−1)n, while683

a2n is given by ((1 − L2
y)/(1 + L2

y))n; as a result, h2n is positive for all n for Ly < 1684

and, for Ly > 1, h2n is positive for even n and negative for odd n. As in the case of685

Γ∗, we find this distinction between two regimes on each side of Ly = 1, for which D =686

D0 and a2n = 0 for n > 0:687
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• For Ly ≤ 1, all cylinder modes interact constructively to strengthen the low-level688

westerly jet. The amplitudes of functions h2n decrease with Ly. For all n > 0,689

h2n(1) and its (n − 1) first derivatives are zero at Ly = 1; h2n also slowly de-690

creases with increasing n at Ly = 0 (h2n(0) = (1− (2n)−1)h2n−2(0)). h0 is dif-691

ferent, first because h0(1) = 1 (case with D = D0), and also because h0(0) is692

not larger than h2(0): this results from the specificity of the first component of693

the response to heating along D0, i.e., the Kevin-wave pattern that extends east694

of the heating region and decreases the low-level westerly jet more efficiently than695

opposing gyres. The decrease of all h2n with Ly in this regime results from the696

decrease in the amplitudes of projection coefficients a2n with Ly, which results di-697

rectly from the smoother latitudinal distribution of diabatic heating. Moreover,698

the decrease in |a2n| with Ly is larger for larger n, so that the relative contribu-699

tion from cylinder modes with large n decreases with Ly, which explains why the700

sensitivity to Lx is maximum for Ly = 0 (see Fig. 9a).701

• For Ly > 1, there is still a strong influence of the response of mode n = 0, and702

the influence of modes with larger n is complex. Because h2n changes sign for each703

increment in n, there is considerable compensation between the contributions from704

successive cylinder modes. For even n, h2n > 0 and u
(2n)
o decreases with increas-705

ing Lx; for odd n, h2n < 0 and u
(2n)
o increases with increasing Lx (|u2no | decreases),706

which reduces the sensitivity of uo to Lx. The sensitivity of |h2n| to Ly is still con-707

trolled by that of a2n. The projection coefficient a0 decreases as (1+L2
y)−1, and708

for larger n a2n increases from zero for Ly = 0 to a maximum for a value of Ly709

that increases with n, and decreases for larger Ly, because D projects more and710

more on modes that have significant amplitude further and further away from the711

equator (i.e., on D2n of increasing n) as Ly increases. As a result, the contribu-712

tion to the low-level westerly jet from cylinder modes with n > 0 comes largely713

from a subset of modes with similar n, with a lot of compensation between modes,714

and as a result, the sensitivity to Ly results mostly from the sensitivity of the pro-715

jection of D on the cylinder mode n = 0. For Ly →∞, the contribution of cylin-716

der modes with larger and larger a2n gets relatively larger, but all projections co-717

efficients a2n tend rapidly to zero, so that the sum uo also tends to zero.718

Figure 9c shows the eastward longitudinal extent xu of the low-level westerly jet719

normalized by Lx. For small Lx and Ly, xu ∼ Lx, which means that the westerly jet720

extends over the whole region of diabatic heating at the equator, xu decreases with Ly,721

and increases significantly slower than Lx when Lx is increased. For very large Lx or Ly,722

xu tends towards zero (not shown), which means that the zonal flow becomes more sym-723

metrical in longitude with respect to the center of heating, with westerlies to the west724

and easterlies to the east, more similar to the damped gravity wave. Figure 9d shows,725

on the other hand, that the latitudinal extent yu of the low-level westerly jet increases726

with both Lx and Ly. For Ly → 0, yu is small but non-zero except if Lx → 0 as well,727

in which case yu scales like 2Ly. This scaling is approximately valid for larger values of728

Ly and Lx → 0, showing that the region of westerlies scales with the region of heat-729

ing. For Lx > 0, this widening is less pronounced, but yu still increases faster than Ly730

for the interval of Lx considered here. As a result, while yu increases slightly with in-731

creasing Lx for Ly → 0, it decreases with Lx for Ly > 0.7. The sensitivities of yu and732

uo help explain that of the intensity U of the low-level westerly jet shown in Figure 9b:733

as the velocity uo at the center of the jet decreases with Ly, its latitudinal extent yu in-734

creases, and as a result, U is not very sensitive to Ly. On the other hand, U decreases735

with Lx because of the dominant influence of uo. Using Equation (62) in Section 2.5, we736
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can write find the following scalings for the limit Lx, Ly → 0:737

uo ∼ 2

Ly
, (87)

xu ∼ Lx, (88)

yu ∼ 2Ly, and (89)

U ∼ 2
√
π erf(1) + 4e−1. (90)

Note that the maximum westerly wind is at the equator, west of the center of heating.738

For Lx → 0, it is the furthest from the heating center, at (−Lx, 0); in this limit, the739

maximum scales like 2uo.740

4 Summary and conclusion741

In this article, we explore the scale sensitivity of the equatorial Gill circulation, fo-742

cusing on characteristics of this circulation likely to couple it with the energy cycle: we743

study the sensitivity of the intensity overturning circulation (total mass upward/downward744

flux), which interacts with moist processes, and the characteristics of the low-level west-745

erly flow in the region where the diabatic heating is imposed, which influences turbu-746

lent surface heat fluxes. In all our experiments, we impose the same horizontally-integrated747

diabatic heating in order to understand how the dynamical response of the atmosphere748

depends on how spatially concentrated the diabatic heating is. This makes sense in terms749

of energy cycle: if we consider that the overall evaporation is at first order constant, the750

amount of latent heat available to be released in the atmosphere is fixed, and analogous751

reasoning can apply to other atmospheric energy sources. In this Part I, we study the752

case of diabatic heating symmetric about the equator (Part II studies asymmetric cases).753

We also compare our results with the non-rotating case, which is a damped gravity wave.754

We find that the intensity of the overturning circulation decreases with both the755

longitudinal and the latitudinal extents of the diabatic heating, and more than for the756

damped gravity wave. For the damped gravity wave, the weakening of the damped-gravity-757

wave circulation with increasing scales can be explained by the equivalence of vertical758

energy transport with a diffusive process on temperature; as a result, the temperature759

perturbation T is relatively smoother than the diabatic heating Q. This diffusive effect760

is more efficient at small scales than at large scales, and the pattern difference between761

T and Q is therefore larger at small scales than at large scales. This results in a larger762

w = Q − εT at small scales than at large scales. In the Gill circulation, this sensitiv-763

ity is enhanced by the influence of rotation which transforms the divergent circulation764

of the damped gravity wave into a Kelvin-wave structure east of the diabatic heating and765

cyclonic gyres straddling the equator west of the heating center. While the Kelvin-wave766

component exhibits some similarity with a gravity wave with meridional wavenumber767

zero, the cyclonic gyres have a very different structure and sensitivity. As a result, the768

decrease in intensity of the overturning circulation with the horizontal scales is about769

three times faster than in the non-rotating case.770

As for the low-level westerly jet in the region diabatic heating, we find that for most771

metrics, it is relatively smaller and weaker for large horizontal scales than for small ones.772

The velocity at the center of the jet decreases with increasing scales, the latitudinal and773

longitudinal extents of the jet increase with increasing scales, but slower than the lat-774

itudinal and longitudinal scales of the diabatic heating. For very small scales, the jet ex-775

tends eastward all the way to the eastern boundary of the diabatic heating. The total776

zonal mass flux in this jet decreases with the longitudinal extent of the diabatic heat-777

ing, but its sensitivity to the latitudinal extent is small.778

Our results suggest that the coupling of the Gill circulation with the hydrologic cy-779

cle would result in a stronger moisture convergence for small heating regions than for780
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large heating regions. Since we can reasonably assume that the imposed diabatic heat-781

ing results from latent and radiative heating in a convective cloud cluster, this means782

that the moisture-convergence feedback would be stronger for small clusters than for large783

ones if the circulation is in quasi-equilibrium with the diabatic heating. Furthermore,784

our results also show that the low-level westerly jet is stronger and overlaps with a larger785

region of diabatic heating for small scales than for large scales. This suggest that the cou-786

pling with surface turbulent fluxes would result in a decrease of surface fluxes in east-787

erlies and an increase in turbulent fluxes in westerlies via the wind-induced surface heat788

exchange mechanism. Over most of the tropics where trade winds are dominant, this would789

cause a negative feedback to a diabatic heating perturbation. Over the Indian Ocean where790

the dominant surface winds flow eastward, this would become a positive feedback.791

Although our results are significant in general for the steady or slowly evolving trop-792

ical circulations, they are particularly significant in the case of the MJO. More than four793

decades after the discovery of this phenomenon, the fundamental mechanisms of the MJO794

are still debated (Majda et al., 2007; Chen & Stechmann, 2015; Sobel & Maloney, 2012,795

2013; Yano & Tribbia, 2017; Rostami & Zeitlin, 2019), and a better understanding of the796

circulation associated with this convective disturbance contributes to this debate. While797

the dynamical signature of the MJO resembles the symmetric solution described in G80,798

its latitudinal scale is smaller, and the scale sensitivity of the overturning circulation com-799

bined with its coupling to the hydrologic cycle might contribute to explaining the MJO800

scale selection. Also, the MJO convective disturbances do grow in the equatorial west-801

erlies of the Indian Ocean, and some studies have suggested that these background winds802

are crucial to their development (Sobel et al., 2008, 2010; Maloney et al., 2010; Leroux803

et al., 2016), particularly because of wind-induced surface-heat-flux feedback described804

above, but also because of horizontal moisture advection; the scale sensitivity of the low-805

level westerly jet suggests that such mechanisms are particularly active in small clusters,806

i.e. during the development of MJO disturbances.807
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Appendix A A few properties of the cylinder functions Dn808

The cylinder functions Dn are defined by the recursive Equation (12). They also809

verify, as pointed out by G80 (their Equations (3.7) and (3.8)):810

dDn

dy
+
y

2
Dn = nDn−1, (A1)

dDn

dy
− y

2
Dn = −Dn+1, (A2)

and they are solutions of the differential equations:811

d2Dn

dy2
+

(
n+

1

2
− y2

4

)
Dn = 0. (A3)

D2n are even functions and D2n+1 are odd functions of y. We have:812

D2n+1(0) = 0 =
dD2n

dy
(0), (A4)

D2n(0) = −(2n+ 1)D2n−2(0) =
(
− 1

2

)n (2n)!
n! = −dD2n+1

dy
(0). (A5)

Using Equations (A1) and (A2), we can also write:813

∫ Y2

Y1

Dn+1 dy = n

∫ Y2

Y1

Dn−1 dy − 2 [Dn(Y2)−Dn(Y1)] . (A6)

Appendix B Contributions of the cylinder modes to Γ∗814

By using the expressions of w(2n,i) (i = 1 or 2) in Equation (32) combined with the815

expressions of T (2n,i) from Equations (30) and (31) we can write Γ
(2n,i)
∗ as:816

Γ
(2n,1)
∗ =

a2n
2

(∫ Lx

−Lx

F dx I2n − ε
∫ Lx

−Lx

q
(2n)
2n dx

[
I2n + 2nI2n−2)

])
, (B1)

Γ
(2n,2)
∗ =

a2n
2

(∫ Lx

−Lx

F dx I2n − ε
∫ Lx

−Lx

q
(2n)
2n+2 dx

[
I2n+2 + (2n+ 2)I2n)

])
, (B2)

for all n. We have introduced the notation I2n =
∫ 4Ly

−4Ly
D2n dy for n ≥ 0 and I−2 =817

0.818

The integral of F is:819

∫ Lx

−Lx

F dx = 2,

and the differential Equations (18) and (21) yield the following expressions for the in-820

tegrals of the functions q
(2n)
2n(+2):821

ε

∫ Lx

−Lx

q
(0)
0 dx = 2− q(0)0 (Lx), (B3)

ε

∫ Lx

−Lx

q
(2n)
2n dx =

1

4n− 1

[
4n− 2− q(2n)2n (−Lx)

]
for n > 0, (B4)

and ε

∫ Lx

−Lx

q
(2n)
2n+2 dx =

1

4n+ 3

[
2− q(2n)2n+2(−Lx)

]
for all n, (B5)

–30–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

in which we have used q
(0)
0 (−Lx) = 0, q

(2n)
2n (Lx) = 0 for n > 0, and q

(2n)
2n+2(Lx) = 0 for822

all n.823

Equation (A6) yields:824

I2n−2 =
1

2n− 1
(I2n + 4D2n−1(4Ly)) and I2n+2 = (2n+ 1)I2n − 4D2n+1(4Ly).(B6)

Using Equations (B3)-(B6), Equations (B1) and (B2) can be rewritten:825

Γ
(0,1)
∗ =

q
(0)
0 (Lx)

2
a0I0, (B7)

Γ
(2n,1)
∗ =

q
(2n)
2n (−Lx)

4n− 2
a2nI2n −

8n

4n− 1
a2nD2n−1(4Ly)

(
1− q

(2n)
2n (−Lx)

4n− 2
)

)
for n > 0,(B8)

Γ
(2n,2)
∗ =

q
(2n)
2n+2(−Lx)

2
a2nI2n +

4

4n+ 3
a2nD2n+1(4Ly)

(
1−

q
(2n)
2n+2(−Lx)

2
)

)
for all n.(B9)

By replacing q
(2n)
2n by its expression from Equations (24) and (26), and using q

(2n)
2n =826

(2n− 1)q
(2n−2)
2n , Γ

(2n,i)
∗ can be written as in Equations (73) and (74).827

Using the differential Equations (18) and (21), the partial derivative of these con-828

tributions with respect to Lx for Lx = 0 can be written:829

∂Γ
(0,1)
∗

∂Lx
(0, Ly) = −εf0(Ly), (B10)

∂Γ
(2n,1)
∗

∂Lx
(0, Ly) = −(4n− 1)ε (f2n(Ly)− g2n,1(Ly)) for n > 0, (B11)

∂Γ
(2n,2)
∗

∂Lx
(0, Ly) = −(4n+ 3)ε (f2n(Ly)− g2n,2(Ly)) for all n. (B12)

Using the iterative Equations (A1)-(A3), each Γ
(2n,i)
∗ can be rewritten as a function of830

D2n only:831

∂Γ
(0,1)
∗

∂Lx
(0, Ly) = −2εa0I0 − εa0

[
−2I0 + 8LyD0(4Ly) +

∫ +4Ly

−4Ly

y2

2
D0dy

]
, (B13)

∂Γ
(2n,1)
∗

∂Lx
(0, Ly) = −εa2n

[
−2I2n + 8LyD2n(4Ly) +

∫ +4Ly

−4Ly

y2

2
D2ndy

]
for n > 0,(B14)

∂Γ
(2n,2)
∗

∂Lx
(0, Ly) = −εa2n

[
2I2n − 8LyD2n(4Ly) +

∫ +4Ly

−4Ly

y2

2
D2ndy

]
for all n. (B15)

Although far from the simplest forms, these equations show that there is a lot of com-832

pensation between the sensitivity of Γ
(2n,1)
∗ to Lx for small Lx and Γ

(2n,2)
∗ for n > 0,833

and also they yield a simple expression for Γ
(2n)
∗ :834

∂Γ
(0)
∗

∂Lx
(0, Ly) = −εa0

[
2I0 +

∫ +4Ly

−4Ly

y2D0dy

]
and (B16)

∂Γ
(2n)
∗

∂Lx
(0, Ly) = −εa2n

∫ +4Ly

−4Ly

y2D2ndy for n > 0, (B17)

which shows that, for Lx close to 0, each circulation Γ
(2n)
∗ in response to the diabatic heat-835

ing projection onto D2n decreases with Lx. Summing over n, we get the following sen-836

sitivity of Γ∗ to Lx:837
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∂Γ∗
∂Lx

(0, Ly) = −2εa0I0 − ε
∫ +4Ly

−4Ly

y2Ddy. (B18)

Integrating by parts and using changes in variables yields:838

∂Γ∗
∂Lx

(0, Ly) = −4ε

[√
2π

1 + L2
y

erf(2Ly) +
(√
π erf(2)− 4e−4

)
L2
y

]
. (B19)

Both terms inside the brackets are zero for Ly = 0 and positive otherwise, which shows839

that the change of Γ∗ with Lx for small Lx is zero for Ly =0, and increasingly negative840

for increasing Ly. The first term results from mode n = 0, and varies almost linearly841

with Ly for small Ly, but tends to zero for Ly →∞, while the second terms results from842

all other modes and increases quadratically in Ly.843

The contribution Γ
(2n,i)
∗u to Γ

(2n,i)
∗ from the zonal flow is simply the integral of the844

zonal velocity u(2n,i) over the zonal boundary of the the rectangle (2Lx, 8Ly) where it845

is not zero, multiplied by ±a2n. Using Equations (28), (30), and (31), it can be written846

as:847

Γ
(0,1)
∗u =

a0
2
q
(0)
0 (Lx)I0 = Γ

(0,1)
∗ , (B20)

Γ
(2n,1)
∗u = −a2n

2
q
(2n)
2n (−Lx) [I2n − 2nI2n−2] for n > 0, (B21)

Γ
(2n,2)
∗u = −a2n

2
q
(2n)
2n+2(−Lx) [I2n+2 − (2n+ 2)I2n] for all n. (B22)

The last two can be simplified using Equation (B6) into:848

Γ
(2n,1)
∗u =

q
(2n)
2n (−Lx)

4n− 2
a2n [I2n + 8nD2n−1(4Ly)] for n > 0, (B23)

Γ
(2n,2)
∗u =

q
(2n)
2n+2(−Lx)

2
a2n [I2n + 4D2n+1(4Ly)] for all n. (B24)

By replacing q
(2n)
2n by its expression from Equations (24) and (26), and using q

(2n)
2n =849

(2n− 1)q
(2n−2)
2n , Γ

(2n,i)
∗u can be written as in Equations (80) and (81).850

Appendix C Contributions of the cylinder modes to uo851

By using the expressions of u(2n,i) (i = 1 or 2) in Equations (30) and (31) we can852

write u
(2n,i)
o as:853

u(0,1)o = −a0
2
q
(0)
0 (0)D0(0), (C1)

u(2n,1)o = −a2n
2
q
(2n)
2n (0) [D2n(0)− 2nD2n−2(0)] for n > 0, (C2)

u(2n,2)o = −a2n
2
q
(2n)
2n+2(0) [D2n+2(0)− (2n+ 2)D2n(0)] for all n (C3)

Using Equation (A5), we can express the linear combinations of cylinder functions at y =854

0 as proportional to D2n(0):855

u(2n,1)o = −a2n
2
q
(2n)
2n (0)

4n− 1

2n− 1
D2n(0), (C4)

u(2n,2)o =
a2n
2
q
(2n)
2n+2(0)(4n+ 3)D2n(0), (C5)

for all n. u(0,1) is the westward wind associated with the Kevin-wave response. u
(2n,1)
o856

is the westward equatorial branch of the anticyclonic gyres along the equator for n >857
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0 and u
(2n,2)
o is the eastward equatorial branch of the cyclonic gyres along the equator.858

They both scale with n, but there is considerable compensation between u
(2n,1)
o and u

(2n,2)
o ,859

and therefore it does not provide any insight to present them independently. Their sum860

yield Equation (84).861
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