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Key Points:

A new method for classifying the lightning discharge type has been developed using JEM-

GLIMS and the ground-based lightning data.

The observations using JEM-GLIMS and ground-based lightning detection networks were used 

to study the geographic distribution of Z-ratio.

The strong relationship between Z-ratio and latitude was found, in which, it has a good 

agreement compared with previous studies.
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Abstract

The occurrence ratio of intracloud (IC) to cloud-to-ground (CG) discharges, which is denoted by 

Z-ratio, is the crucial parameter for the studies on the climatological differences of thunderstorm 

structures and the quantitative evaluation of lightning contributions to the global electric circuit.  

However, the latitudinal, regional, and seasonal dependences of Z-ratio are not fully clarified.  

Therefore, using optical data obtained by the JEM-GLIMS mission, we distinguished the 

lightning discharge type, i.e., IC, positive CG (+CG), and negative CG (-CG) discharges, and 

statistically estimated the Z-ratio.  We analyzed 8354 JEM-GLIMS lightning events and 

succeeded in identifying 4431 IC discharges, 597 +CG discharges, and 3326 -CG discharges. 

From this result, we calculated the Z-ratio and estimated its latitudinal, regional, and seasonal 

dependences.  It is found that the Z-ratio is slightly higher over the continental area than the 

oceanic area.  In addition, the average Z-ratio in the local summer season is higher than that in 

the local winter season.  The clear latitudinal dependence of the Z-ratio is also found, which is 

generally comparable to the results shown in the previous studies.  The estimated Z-ratio varies 

from 2.9 - 0.19 from the equator to 50º latitude, and the global mean value is 1.6. The regional 

dependence of Z-ratio derived from this study can be combined with the CG lightning data 

provided by the ground-based lightning detection networks to estimate the occurrence number of

IC discharges.  It will greatly contribute to a more accurate estimation of the total lightning 

currents in the global electric circuit.

1. Introduction

The occurrence ratio of intracloud (IC) to cloud-to-ground (CG) discharges is reflected 

by the fundamental aspects of lightning activities.  Usually, this ratio is denoted by Z = NIC/NCG, 

where NIC and NCG are the occurrence number of IC and CG discharges, respectively.  The Z-ratio

is essentially important from several standpoints: (i) to evaluate regional or global NOx 

production by lightning (Pickering et al., 1998; Rakov and Uman, 2003; Ott et al., 2010), (ii) to 

estimate the contribution of lightning discharges to the global electrical circuit (Williams, 2009; 

Rycroft and Odzimek, 2010; Mareev and Volodin, 2014), (iii) to study kinematics and 

microphysics of thunderstorms (Williams et al., 1999; Buechler et al., 2000), and so on.  The 

latitudinal dependence of the Z-ratio was firstly reported by Pierce (1970).  It was found that the 
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Z-ratio decreases according to the increase of latitude.  Prentice and Mackerras (1977) analyzed 

lightning data obtained from 29 ground-based stations at different locations around the globe to 

study the relationship between Z-ratios and latitude, and they confirmed the Z-ratio decreases 

from the equator to the mid-latitudes with the value ranging from 9.0 to 1.5. 

The satellite-based observations such as the Optical Transient Detector (OTD) and the 

Lightning Images Sensor (LIS) (Boccippio et al., 2000; Christian et al., 2003; Koshak, 2010) 

have made us possible to observe lightning discharges (both IC and CG discharges) over wider 

regions and long periods with the high detection efficiency.  Boccippio et al. (2001) used OTD 

data obtained during the four years observation period and the ground-based lightning data 

obtained by the National Lightning Detection Network (NLDN) to determine the geographical 

distribution of lightning flashes and Z-ratios over the United States.  The large range of Z-ratios 

was found in the regions where the occurrence rates of +CG discharges and severe storms are 

high.  They also investigated the dependence of Z-ratios on latitude, longitude, and orographic 

effects.  However, they did not find out the apparent geographical dependence of the Z-ratio.  

Although they found the low Z-ratio values in mountain regions, it does not seem to be unique 

and is hard to conclude that this relation is linked with orographic effects or meteorological 

effects.  They suggested that the intensity, morphology and/or level of organization of 

thunderstorms have more significant impacts on the Z-ratios than the environmental factors such 

as the freezing level altitude, tropospheric depth or surface elevation.  Kuleshov et al. (2006) 

analyzed the ground-based lightning data obtained by the lightning flash counters (CIGRE-500 

and CGR3) and the satellite-based lightning data obtained by the OTD and LIS in order to 

estimate Z-ratios over Australia using the same methodology as Boccippio et al. (2001).  They 

found that the Z-ratios ranged from 0.75 to 7.7 and concluded that the most representative Z-ratio

is ~2 ± 30% in the latitudinal range of Australia and that there is not clear latitudinal dependence.

Soriano and de Pablo (2007) also analyzed both the satellite-based lightning data obtained by the

OTD and the ground-based lightning data obtained by the Spanish lightning detection networks 

to estimate Z-ratios over the Iberian Peninsula (35oN - 44oN).  It is found that the estimated Z-

ratio decreased according to the increase of latitude.  It is also found that the Z-ratios ranged 

from 2.2 to 6.0 and that the spatial and annual average of the Z-ratio in this latitudinal range was 

3.48.  de Souza et al. (2009) analyzed the OTD data and the ground-based lightning data from 

the Brazilian Lightning Detection Network (BrazilDat) and estimated Z-ratios over the southern 

3

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84



Confidential manuscript submitted to the journal of geophysical research: Atmospheres

part of Brazil (14oS - 25oS).  They reported that the latitudinal dependence of the Z-ratios was not

confirmed in this area and that there was no clear relation between the Z-ratios and the 

population of +CG discharges. 

Although the lightning data obtained by the space-borne and ground-based observations 

were analyzed in the previous studies in order to clarify the geographical distribution of Z-ratios, 

these studies focused on only a specific and limited area where the ground-based lightning data 

was available.  Therefore, the regional, latitudinal, and seasonal variations of Z-ratios in the 

global scale are not fully understood yet.  In this study, we analyzed 8354 lightning events 

measured by the Global Lightning and Sprite Measurements on Japanese Experiment Module 

(JEM-GLIMS) mission onboard the International Space Station (ISS) in order to estimate the 

regional, latitudinal, and seasonal variation of Z-ratios.  In section 2, the methodology to 

categorize the lightning discharge type using both JEM-GLIMS data and ground-based lightning 

data is introduced.  The results of the calculated Z-ratios are presented in section 3.  The 

latitudinal, seasonal, and regional variations of Z-ratios are also shown in this section.  Finally, 

the discussion and conclusions of this study are presented in section 4.

2. Method

In order to study the latitudinal, regional, and seasonal variations of Z-ratios, we analyzed

8354 lightning events detected by the JEM-GLIMS optical instruments between November 2012 

and August 2015.  These lightning events were detected over both oceanic and continental 

regions and from 51oS to 51oN as shown in Figure 1.  Note that, the gray hatched areas in Figure 

1 are the region where JEM-GLIMS did not conduct the observations because of the limitation of

the orbital inclination angle of the ISS.  The JEM-GLIMS optical instruments were designed to 

measure the optical emissions of lightning and transient luminous events (TLEs) in the nadir 

direction form the ISS (Ushio et al., 2014; Sato et al., 2015).  They consist of the six-channel 

spectrophotometers (PHs) and the Lightning and Sprite Imager (LSI).  The PHs measure absolute

optical intensity of lightning discharges in the wavelength range of 150-280 nm (PH1), 310-321 

nm (PH5), 332-342 nm (PH2), 386-397 nm (PH6), 599-900 nm (PH4), 755-766 nm (PH3), 

respectively (Sato et al, 2011a, 2015, 2016; Adachi et al., 2016).  The LSI consists of two CMOS

cameras: (1) the wind-band CMOS camera (LSI-1) with 768-830 nm optical filter, and (2) the 
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narrowband CMOS camera (LSI-2) with 760-775 nm filter (Sato et al., 2011b, 2015, 2016).  

These cameras are dedicated to measuring the optical shape of the lightning and TLE emissions. 

More information on the specifications and the operation of the JEM-GLIMS instruments can be 

found in the papers of Ushio et al. (2014), Sato et al. (2015, 2016), and Adachi et al. (2016).

Figure 1. The global distribution of the 8354 lightning events detected by JEM-GLIMS between 

November 2012 and August 2015 and used in this study to estimate the Z-ratios.

The flow chart showing how we identified the IC discharge and CG discharge of JEM-

GLIMS lightning events using the ground-based lightning network, i.e., the Japanese Lightning 

Detection Network (JLDN), the World Wide Lightning Location Network (WWLLN), the 

Global ELF Observation Network (GEON), and the NLDN is summarized in Figure 2. The full 

details of the methods used can be found in our previous paper (Bandholnopparat et al., 2017, 

2019). In brief, Firstly, we compared JEM-GLIMS data to the ground-based lightning data to 

identify discharge types of JEM-GLIMS lightning events, i.e., IC discharge and CG discharge. 

Then, we further analyzed the ELF magnetic field waveform data detected by the GEON and 

estimated the polarity of CG discharges, i.e., +CG or -CG, using the magnetic direction finding 

method, which is introduced by Sato et al. (2003).  

By comparing JEM-GLIMS lightning data and the ground-based lightning data, we 

succeeded in identifying the discharge type of 571 JEM-GLIMS lightning events.  It was found 

that 75, 102, and 394 events were determined to be IC, +CG, and -CG discharges, respectively.  

However, we could not succeed in classifying the discharge type of 6532 JEM-GLIMS lightning 

events.  One reason is the limitation of the area where we can compare JEM-GLIMS lightning 
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data to NLDN and JLDN data, i.e., the continents of North America, and Japan.  Another is the 

low detection efficiency of the WWLLN, though it covers whole globe (Rodger et al., 2006, 

2009; Hutchins et al., 2012).  Therefore, in order to identify the discharge type of both 6532 

ambiguous lightning events and 1251 CG events, we applied new criteria, which is the intensity 

ratio between blue and red emissions measured by PHs, i.e., PH2/PH3, PH5/PH3, PH6/PH3, 

PH2/PH4, PH5/PH4, and PH6/PH4 as the indicator of the discharge types.  This method is based

on the different height of lightning discharge channels and the different attenuation rate of blue 

and red emissions from lightning discharge channels to the ISS.  Blue emissions from lightning 

discharges (i.e., 310-321 nm, 332-342 nm, 386-397 nm) are more absorbed and attenuated than 

red emissions (i.e., 755-766 nm, 599-900 nm).  IC and +CG discharge channels tend to locate at 

the higher altitude than -CG discharge channels (Mackerras, 1968; Ballarotti et al., 2005; 

Stolzenburg et al., 2013; Lopez et al., 2016; Sun et al., 2016; Lyu et al., 2016).  Consequently, 

red emissions from -CG discharges mainly reach to the JEM-GLIMS optical instruments.  On the

other hand, IC  discharge channels are located between the main positive charge region and the 

main negative charge region (Mecikalski and Carey, 2018), and +CG discharge channels are 

located between the main positive charge region and the ground.  Hence, both red and blue 

emissions reach to the JEM-GLIMS optical instruments.  Then, the ratio between blue to the red 

emissions of IC and +CG discharges might be higher than that of -CG discharges.
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Figure 2. Flow chart showing how the discharge type of the JEM-GLIMS lightning events were 

categorized into “IC discharge”, “-CG discharge”, “+CG discharge”, “CG discharge (unknown 

polarity)”, and “ambiguous discharge events” using the ground-based lightning data provided by 

JLDN, NLDN, WWLLN, and GEON.

As a next step, the number of lightning events detected by JEM-GLIMS was counted at 

each 3.0o × 3.0o grid, which contains the FOV of PHs at the equator.  Then, the ratio of IC to CG 

discharges (Z-ratio) at each grid was calculated according to the following formula,

Z=
( N IC

DE IC)
( N−CGDE−CG)+(

N +CG

DE+CG
)

(1)

where NIC, N+CG, and N-CG are the number of IC, +CG, and -CG discharge events, and DEIC, 

DE+CG, and DE-CG are the detection efficiency of IC, +CG, and -CG discharges, respectively.  The
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JEM-GLIMS detection efficiency of IC, +CG, and -CG discharges are estimated to be 11.2%, 

28.3%, and 19.7%, respectively.  The detailed estimation method of these detection efficiency is 

presented at appendix A.

3. Results and Discussion

3.1 PH and LSI intensity ratios of IC, +CG, and -CG discharges

The histogram of the PH intensity ratios, i.e., PH2/PH3, PH5/PH3, PH6/PH3, PH2/PH4, 

PH5/PH4, and PH6/PH4, of the identified 75 IC, 102 +CG, and 394 -CG discharges are shown in

Figure 3.  In this figure, the PH intensity ratios are indicated by the logarithmic values at the 

horizontal axis.  The median value of the logarithmic PH intensity ratios and the standard 

deviation (σ) are also summarized in Table 1.  As shown in Table 1, it is found that the PH 

intensity ratio of the IC discharges is the highest in all lightning types.  It is also found that the 

PH intensity ratio of the -CG discharges is always the smallest while those of +CG discharges 

are larger than those of the -CG discharges but smaller than those of the IC discharges, whereas 

Bandholnopparat et al. (2019) found that the PH intensity ratio of +CG is the highest, and they 

also found that the PH intensity ratio of the -CG discharges is always the smallest while those of 

IC discharges are larger than those of the -CG discharges but smaller than those of the +CG 

discharges. The primary cause of the discrepancy is due to the +CG discharges which initiate 

from the lower positive charge region (LPCR). Although the normal arc-type discharge channels 

of +CG discharges tend to occur at a higher altitude between the main positive charge region 

near the cloud top and the ground (Rust et al., 1981; Lu et al., 2012), some +CG discharges arise 

from the LPCR in the thundercloud (Pawar and Kamra, 2004).  The discharge channel of these 

+CG discharges locates between LPCR near the cloud bottom and the ground.  Consequently, the

median PH intensity ratios of +CG discharges in Table 1 are between IC and -CG discharges in 

all lightning types.
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Figure 3. Histograms of the PH intensity ratios with the logarithmic scale. The blue, red and 

green bars correspond to the ratio of IC, +CG, and -CG discharges, respectively. (a)-(f) are the 

ratios of PH2/PH3, PH5/PH3, PH6/PH3, PH2/PH4, PH5/PH4, and PH6/PH4, respectively.

The LSI intensity ratios of the identified lightning discharge events were also calculated, 

and the histogram of the calculated LSI intensity ratios is shown in Figure 4.  The median value 

and standard deviation are also presented in this figure.  The number of the lightning events used 

for the LSI intensity ratio calculation is smaller than that for the PH intensity ratio calculation 

analysis because the LSI-2 could detect lightning optical emissions only in 107 from 521 
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lightning events.  This is because the lightning emissions in 762 nm were severely absorbed by 

the atmospheric oxygen molecules.  As shown in Figure 4, the median values of IC, +CG and -

CG discharges were estimated to be 0.063, 0.049, and 0.038, respectively.  It is clear that the 

characteristics of the LSI intensity ratios are in good agreement with the result of PH intensity 

ratios. 

Figure 4. Histograms of the LSI intensity ratio of 45 IC (blue), 12 +CG (red), and 17 -CG (green) 

discharges. The median value and the standard deviation of the LSI intensity ratio of each lightning type 

are also indicated in this figure.

Table  1. Summary  of  the  PH and  LSI  intensity  ratios  of  75  IC,  102  +CG,  and  394  -CG

discharges.  In this table, the median value of the logarithmic PH and LSI intensity ratios and the

standard deviation (σ) are listed.

+CG IC -CG

median σ+CG median σIC median σ-CG

log(PH2/PH3) -0.33 0.48 0.097 0.32 -0.36 0.32

log(PH5/PH3) -0.72 0.57 -0.62 0.23 -1.0 0.46

log(PH6/PH3) 0.019 0.38 0.099 0.17 -0.27 0.36

log(PH2/PH4) -1.5 0.67 -0.71 0.48 -1.6 0.49

log(PH5/PH4) -1.5 0.68 -1.44 0.28 -2.2 0.55

log(PH6/PH4) -0.79 0.55 -0.68 0.29 -1.5 0.54
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As shown in Figures 3 and 4 and Table 1, the distribution of PH and LSI intensity ratios 

of the IC, +CG, and -CG discharges show the clear difference.  Therefore, we can conclude that 

these PH and LSI intensity ratios are useful indicators for distinguishing the discharge type of 

other 7783 JEM-GLIMS lightning events.

3.2 Regional Dependence of Z-ratio

Figures 5(a)-5(c) show the global distribution of the identified IC, +CG, and -CG 

discharges measured by JEM-GLIMS.  In order to estimate regional dependences of the Z-ratio, 

the lightning detection numbers in each 3.0o × 3.0o grid are counted, and the Z-ratio was 

calculated every grid.  The spatial distribution of the Z-ratio is shown in Figure 6.  It is found that

the Z-ratio varies from 0.2 to 17.1 and that the average value is 1.6, though Mackerras and 

Darveniza (1994) estimated the mean Z-ratio to be 1.9 from the analysis of the lightning data 

obtained by the fourteen CGR3 counters.  Interestingly, our result also shows that the higher Z-

ratio tends to occur over the continental region than the oceanic region.  Especially, the Z-ratio 

tends to be high near the equator.  The average Z-ratio over the continental and oceanic areas is 

1.7 and 1.1, respectively.  It should be noted that the definition of the continental and oceanic 

areas used in this study is the same as that introduced by Mackerras et al. (1998).  The possible 

explanation for this finding may be that the thundercloud structure and the electrical charge 

distributions in the thunderclouds are different in the continental and oceanic thunderclouds.  It 

was reported that the lightning occurrence frequency is related to the strong upward velocity in 

thunderclouds and the convective available potential energy (CAPE) (Lhermitte and Williams, 

1983).  It was found that the high CAPE values are usually observed in the continental air 

masses, while the low CAPE values are usually observed in the oceanic air masses.  This causes 

the weaker updrafts in the oceanic thunderclouds than the continental thunderclouds (Zipser, 

1994; Zipser and Lutz, 1994).  The weaker updrafts in the oceanic thunderclouds cause a less 

efficient charge separations (Takahashi, 1984; Ziegler et al., 1991; Norville et al.,1991; 

Stolzenburg et al., 1998a, 1998b, 1998c).  Thus, the main negative charge region inside the 

oceanic thunderclouds tends to locate at the lower altitude than that inside the continental 

thunderclouds, which enhances the occurrence rate of CG discharges.  However, this hypothesis 
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needs to be verified in a future study.It should be noted that the continental and oceanic areas 

used in this study is the same definition as that introduced by Mackerras et al. (1998).

Figure 5. The global distribution of the identified (a) IC discharges, (b) +CG discharges, and (c) 

-CG discharges detected by JEM-GLIMS in the period from November 2012 – August 2015.
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Figure 6. Spatial distribution of the Z-ratio over the latitudinal range of ±51o.

3.3 Seasonal dependence

Figures 7(a)-7(d) show the global map of the Z-ratio in the period of December - 

February, March - May, June - August, and September - November, respectively.  In the period 

of December - February, the pixels where the Z-ratio exists can be found mainly in the southern 

hemisphere, especially, between the equator to 30oS, as shown in Figure 7(a).  While, in the 

period from June - August, these pixels can be found mainly in the northern hemisphere between

the equator to 30oN, as shown in Figure 7(c).  However, the distribution of those pixels in the 

period of March - May and September - November can be found both in the northern and 

southern hemispheres, and they are mainly located in the latitudinal range of 30oS – 30oN, as 

shown in Figures 7(b) and 7(c).  It is found that in the northern tropics (from 0o to 20o N) the 

average Z-ratio value in the local summer season (June - August) is 2.4 times higher than that in 

the local winter season (December - February).  Similarly, it is found that in the southern tropics 

(0o to 20o S) the average Z-ratio value in the local summer season (December - February) is 2.3 

times higher than that in the local winter season (June - August).  In contrast, the averaged Z-

ratio values in the northern and southern hemispheres in the period of March - May are almost 

comparable to those in the period of September - November. 
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Figure 7. Spatial distribution of the Z-ratio in the period of (a) December-February, (b) March-

May, (c) June-August, and (d) September-November, respectively.
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A possible explanation for the difference of the Z-ratio values in the local summer/winter 

seasons may be related to the altitude difference of the main negative charge region in the 

thunderclouds.  As we describe in Section 3.1, the height of the main negative charge region in 

thunderclouds is the function of the freezing levels and CAPE.  In the local summer season, the 

ground temperature is higher compared to the local winter season.  Consequently, the main 

negative charge region tends to locate at the higher altitude and tend to be closer to the main 

positive charge region.  The smaller distance between the main positive and negative charge 

regions enhances the occurrence frequency of IC discharges than CG discharges, which brings 

the enhancement of the Z-ratio.

3.4 Latitudinal Dependence of Z-ratio

The zonal-mean Z-ratio was calculated, and its latitudinal dependences in the northern 

and southern hemispheres are plotted in Figures 8(a) and 8(b), respectively.  The vertical bars 

attached to each data point represent the standard deviation (±1σ level) of the Z-ratio variation in 

each latitudinal range.  It is found that the Z-ratio gradually decreases from the equator to the 

higher latitude from 2.9 to 0.2 in the northern hemisphere as shown in Figure 8(a), while from 

2.9 to 0.5 in the southern hemisphere as shown in Figure 8(b).  These characteristics are well 

comparable to the results reported by Pierce (1970), Prentice and Mackerras (1977), Mackerras 

and Darveniza (1994), Mackerras et al. (1998), and Boccippio et al. (2001).  The comparison 

between the Z-ratios derived from this study and previous studies are summarized in Table 2.  As

shown in this table, the mean value of the Z-ratio, which is shown in the bracket in the latitudinal

range of 20ºS-20ºN, is estimated to be 2.5 with a standard deviation of 0.46.  This value is 

smaller than the tropical (20ºS-20ºN) Z-ratio (6.2 and 5.9) estimated by Pierce (1970) and 

Prentice and Mackerras (1977), while this value well agrees with the Z-ratio estimated by 

Mackerras and Darveniza (1994), where the mean Z-ratio in the tropics was 2.3.  At the 

latitudinal range of 20ºN - 40ºN and 20ºS - 40ºS, the mean value of Z-ratio is 1.9 with a standard

deviation 0.33, again it is considerably lower than the ratio of 4.2 by Prentice and Mackerras, 

(1977) and 2.2 by Mackerras and Darveniza (1994) in the same latitudinal range.  As for the 

result of the Z-ratio in the latitudinal range of 40ºN - 60ºN and 40ºS - 60ºS, the mean Z-ratio 

value derived from this study is 1.1.  It is lower than the ratio of 1.3 by Mackerras and Darveniza
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(1994) in this latitudinal range.  There are two possible explanations for this disagreement.  First,

there were limitations of the visual and flash counter observations in the previous studies.  The 

obtained results were not reliable in the high lightning activity regions because of the difficulty 

in distinguishing between IC and CG discharges.  Second, there were limitations of the 

observation areas.  In the previous studies, Z-ratios were estimated from the lightning data 

obtained over the land region, and they did not include the ratios over the oceanic areas where 

the Z-ratios are believed to have lower values than those over land regions as we presented in 

Section 3.1.

Figure 8. (a) Latitudinal dependences of the Z-ratio in the northern hemisphere.  (b) Same as (a) 

except for the southern hemisphere.  In these figures, the zonal-mean Z-ratio values are 

calculated every 3º latitudinal range and plotted.  Vertical bars at each data point represent the 

±1σ of Z-ratio values in the corresponding 3º latitudinal range.
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Table 2. Comparison between the Z-ratios derived from this study and the previous studies.

This study Pierce, 1970 Prentice and

Mackerras,

1977

Soriano and

de Pablo,

2007

Mackerras and

Darveniza,

1994

Coverage 50S - 50N – – 50S - 50N 50S - 50N

20S - 20N 2.9 - 1.7

(2.5)

9.0 - 4.4

(6.2)

6.3 - 5.2

(5.9)

– 3.4 - 0.5

(2.3)

20N - 40N,

20S - 40S

2.4 - 1.2

(1.9)

4.4 - 2.8

(3.5)

5.2 - 3.1

(4.2)

6.1 - 2.2

(3.5)

3.8 - 1.1

(2.2)

40N - 60N,

40S - 60S

1.9 - 0.19

(1.1)*

2.8 - 2.2

(2.5)

3.1 - 2.0

(2.4)

1.5 - 1.0

(1.3)

* latitudinal range = 40N - 51N and 40S - 51S

The relation between the occurrence ratio (%) of IC, -CG, and +CG discharges and Z-

ratio at each 3.0º×3.0º grid is plotted in Figure 9. In Figure 9(a), each data point shows the 

pairwise value of the Z-ratio and the percentage of IC discharges for each 3.0º×3.0º grid block. 

The Z-ratio in this plot is the corresponding to Figure 6. Figure 9(b) and 9(c) same as 9(a) except

for +CG and -CG discharges, respectively. Prior studies have reported a significant relationship 

between Z-ratio and +CG discharges.  The high Z-ratio values tend to appear in the regions 

where the occurrence percentage of +CG discharges is high (Boccippio et al., 2001; Pinto et al., 

2003; Soriano and de Pablo, 2007).  In this study, however, we found that the occurrence 

percentage of +CG discahrges decreases when the Z-ratio increases as shown in Figure 9(b).  We

also found clear relations between the increasing Z-ratio and the increasing occurrence 

percentage of IC discharges (Figure 9(a)) and between the decreasing Z-ratio and the increasing 

occurrence percentage of -CG discharges (Figure 9(c)). 
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Figure 9.  Scatter plot of the estimated Z-ratio toward the occurrence percentage of (a) IC, (b) 

+CG, and (c) -CG discharges, respectively.
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4. Conclusion

The occurrence ratio of IC discharges to CG discharges (Z-ratio) was estimated using the 

lightning optical data obtained by the JEM-GLIMS mission in the period from November 2012 

to August 2015.  The results derived from our analysis show that the Z-ratio in the continental 

thunderclouds is higher than that of the oceanic thunderclouds, especially in the area where the 

lightning activities are high, i.e., central Africa, south-east Asia, and central America.  It is also 

found that the Z-ratio in the local summer season is higher than that in the local winter season.  

The latitudinal dependence of the Z-ratio is clearly found, which is comparable to the previous 

studies (Pierce, 1970; Prentice and Mackerras, 1977; Mackerras et al., 1998).  The estimated Z-

ratio varies from 2.9 - 0.19 from the tropics (20ºS - 20ºN) to the mid-latitude (20ºS - 40ºS and 

20ºN - 40ºN) with the global mean of 1.6.  The decrease of the Z-ratio from the tropics to the 

mid-latitude is confirmed both in the northern and southern hemispheres.  This present finding is 

useful to quantitatively estimate the occurrence number of IC discharges by combining to the 

ground-based lightning data, such as WWLLN, which we currently proceed in the development 

of the three-dimensional global electrical circuit (GEC) model in order to investigate the 

contribution of global lightning activities to GEC as the electrical generator. 

Appendix A.

Lightning Detection Efficiency of JEM-GLIMS

As we mentioned in section 2, the JEM-GLIMS optical instruments were designed to 

detect optical emissions of lightning discharges and lightning-associated TLEs.  The event 

triggering threshold of these instruments was set to be high due to the limitation of the telemetry 

speed between the ISS and the ground, and the average detection number was ~10 events/day.  

Therefore, JEM-GLIMS optical instruments detected only intense lightning emissions and 

missed many weak lightning emissions, that tend to have smaller optical energy.  Figure 10 

shows the optical energy distribution of JEM-GLIMS lightning events measured in the period 

from November 2012 to August 2015.  Each data point shows the optical energy in the 

wavelength range of 400 - 1000 nm which was calculated from PH4(599-900 nm) lightning 

curve data. The optical energy in the wavelength range of 599 - 900 nm is 29.2% of the optical 
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energy radiated by lightning discharges in the wavelength range of 400 - 1000 nm (Orville and 

Henderson, 1984). Therefore, we also included this percentage in the calculation of the optical 

energy in the wavelength range of 400 - 1000 nm for all JEM-GLIMS lightning flashes. It is 

found that these events have the optical energy larger than 2.1 × 106 J.  This means that the JEM-

GLIMS optical instruments missed lightning flashes having the optical energy less than 2.1 × 106

J.  In order to estimate the JEM-GLIMS detection efficiency of lightning emissions, i.e., the ratio

between detected lightning events and total lightning events, we first performed further analysis 

to classify the relation between the optical energy of lightning discharges and the detection 

number of lightning discharges.  Figure 11 shows the relation between the detection number of 

lightning discharges by the JEM-GLIMS optical instruments and optical energy.  For this plot, 

the optical energy of each data point was estimated every 0.001 MJ step.  Then, we use the linear

regression to find the correlation between the occurrence number and the optical energy in the 

optical energy range from 0.08 × 106 J to 102.0 × 106 J, as shown by the solid and dashed lines in

Figure 11.  The reason why we used this optical energy range is that the average optical energy 

of IC, +CG, and -CG discharges are 1.5× 106 J, 9.7 × 106 J, and 3.5 × 106 J, respectively, and that 

these numbers well agree with the optical energies reported by the earlier studies (Orville, 1980; 

Orville and Henderson, 1984; Quick and Krider, 2013).  We found the correlation between the 

occurrence number of IC, +CG, and -CG discharges, and the occurrence number of lightning 

discharges can be empirically estimated by the following linear regression functions,

N IC (E )=−336.1ln (E )+1352 (2)

N+CG (E )=−12.21 ln (E )+69.53 (3)

N−CG (E )=−89.15 ln (E )+417.4 (4)

where NIC(E), N+CG(E), and N-CG(E) are the occurrence number of IC, +CG, and -CG discharges 

having the optical energy of E, respectively.  Then, the total occurrence number of IC, +CG, -CG

discharges, i.e., (NIC, N+CG, N-CG), can be estimated by integrating the equations (2), (3), and (4) in

the energy range from 0.08 × 106 J to 102.0 × 106 J.  Finally, the detection efficiency (DE) is 

estimated by

DEIC=100×N IC glims /N IC (5)

DE+CG=100×N+CG glims/N+CG (6)
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DE−CG=100×N−CGglims/N −CG (7)

where NIC glims, N+CG glims, and N-CG glims are the number of IC, +CG, and -CG discharges detected by 

JEM-GLIMS optical instruments.  Using this method, the JEM-GLIMS detection efficiency of 

IC, +CG, and -CG discharges are estimated to be 11.2%, 28.3%, and 19.7%, respectively.

Figure 10. Optical energy distribution of lightning events detected by JEM-GLIMS optical 

instruments in the wavelength range of 400 - 1000 nm.

Figure 11. Relationship between the number of lightning events and the optical energy in the 

wavelengths 400 - 1000 nm.  The solid and dashed lines are the linear regression functions.
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