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Abstract22

Data assimilation (DA) is integrated with machine learning in order to perform entirely23

data-driven online state estimation. To achieve this, recurrent neural networks (RNNs)24

are implemented as surrogate models to replace key components of the DA cycle in nu-25

merical weather prediction (NWP), including the conventional numerical forecast model,26

the forecast error covariance matrix, and the tangent linear and adjoint models. It is shown27

how these RNNs can be initialized using DA methods to directly update the hidden/reservoir28

state with observations of the target system. The results indicate that these techniques29

can be applied to estimate the state of a system for the repeated initialization of short-30

term forecasts, even in the absence of a traditional numerical forecast model. Further,31

it is demonstrated how these integrated RNN-DA methods can scale to higher dimen-32

sions by applying domain localization and parallelization, providing a path for practi-33

cal applications in NWP.34

Plain Language Summary35

Weather forecast models derived from fundamental equations of physics continue36

to increase in detail and complexity. While this evolution leads to consistently improv-37

ing daily weather forecasts, it also leads to associated increases in computational costs.38

In order to make a forecast at any given moment, these models must be initialized with39

our best guess of the current state of the atmosphere, which typically includes informa-40

tion from a limited set of observations as well as forecasts from the recent past. Mod-41

ern methods for initializing these computer forecasts typically require running many copies42

of the model, either simultaneously or in sequence, to compare with observations over43

the recent past and ensure that our best guess estimate of the current state of the at-44

mosphere agrees closely with those observations before making a new forecast. This re-45

peated execution of the computer forecast model is often a time-consuming and costly46

bottleneck in the initialization process. Here it is shown that techniques from the fields47

of artificial intelligence and machine learning (AI/ML) can be used to produce simple48

surrogate models that provide sufficiently accurate approximations to replace the orig-49

inal costly model in the initialization phase. The resulting process is self-contained, and50

does not require any further utilization of the original computer model when making daily51

forecasts.52

1 Introduction53

Numerical weather prediction (NWP) requires two primary components: a com-54

putational forecast model and an initialization method, both of which have been demon-55

strated to contribute approximately equally to the steady improvement in forecast skill56

over the past 40 years. We seek to replace the computational forecast model with a data-57

driven surrogate model and integrate these two critical components. Weather forecast58

models typically push the boundaries of computational feasibility, even on the largest59

supercomputers in the world, with a drive towards increased grid resolutions and bet-60

ter resolved physical processes. The most sophisticated initialization methods require61

executing the forecast model many times, using iterative loops and ensembles of fore-62

casts initialized from perturbed initial conditions. This creates a competing paradigm63

where computational resources must be balanced between model fidelity and initializa-64

tion accuracy. As a result, the models serve as a major limiting factor in the develop-65

ment of new initialization methods.66

The application of artificial intelligence and machine learning (AI/ML) methods67

in weather and climate is a rapidly growing activity. Boukabara et al. (2021) described68

multiple instances in which AI/ML is being developed for target applications in oper-69

ational NWP. An area of interest noted by Boukabara et al. (2021) is the synergy be-70

tween AI/ML and data assimilation (DA). Abarbanel et al. (2018) noted deep connec-71
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Figure 1. Data assimilation is applied to update the hidden/reservoir state space s(t). Obser-

vations yo are sampled from the nature state space x(N)(t), while the composition H ◦ Wout is

used as an observation operator to map the hidden/reservoir state space to an equivalent repre-

sentation that can be used to form the innovations d(t) = yo(t)−H◦Wout(s(t)) in the observation

space.

tions between ML and DA, and in special cases mathematical equivalences (further de-72

tails will be provided in an upcoming work (Abarbanel, 2022)). Recent approaches that73

have been applied to combine ML with DA include the application of a neural network74

design combined with a DA operation to train the network on noisy data (Brajard et75

al., 2020), the application of artificial neural networks for correcting errors in numeri-76

cal model forecasts in the DA cycle (Bonavita & Laloyaux, 2020), the use of a convo-77

lution neural network (CNN) to enforce conservation of mass in a DA procedure (Ruck-78

stuhl et al., 2021), the development of a NN-based tangent linear and adjoint model for79

use in variational DA methods (Hatfield et al., 2021), and an end-to-end application of80

a combined DA and model bias correction (Arcucci et al., 2021).81

Here we will focus on a simplified form of recurrent neural network (RNN), based82

on the reservoir computing (RC) paradigm, that can be used to replace the numerical83

model in the DA process. Integrating a data-driven model with DA techniques requires84

accurate characterization of dynamical error growth. We will demonstrate that the RNN85

architecture can produce sufficiently accurate representations of such error growth to the86

degree that the RNN-based models can replace key components of foundational DA al-87

gorithms such as the ensemble Kalman filter (EnKF) (Evensen, 1994) and the 4D vari-88

ational method (4D-Var) (Talagrand & Courtier, 1987; Courtier & Talagrand, 1987; Courtier89

et al., 1994). Such key components include forecast error covariance statistics derived90

from ensemble forecasts, and the tangent linear model and its adjoint.91

We introduce a method to achieve this in a direct manner by applying DA to up-92

date the ‘hidden’ or ‘reservoir’ space of the RNN/RC dynamics (Figure 1). Results are93

shown assimilating both fully observed and sparsely observed dynamics, with a range94

of observational noise levels, using an RNN-based ensemble transform Kalman filter (ETKF)95

(Bishop et al., 2001; Hunt et al., 2007) and an RNN-based strong constraint incremen-96

tal 4D-Var (Courtier et al., 1994).97
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2 Methods98

The weather and climate communities regularly produce three primary categories99

of data: (1) observations of the Earth system, either drawn directly from in situ mea-100

surements or from satellite-based sensors, (2) simulations produced on regular gridded101

fields, generated from numerical models derived from basic principles of physics, and (3)102

retrospective analyses (reanalyses), that attempt to optimally combine the previous two103

categories to produce historical reconstructions of the atmosphere or other components104

of the Earth system. All of these datasets have inherent weaknesses. Observations are105

generally sparse and irregular, and can contain unpredictable errors. Numerical mod-106

els have systematic errors that result from abstractions, approximations, and unresolved107

processes. Reanalysis products attempt to mitigate these weaknesses, but still inherit108

them to some degree. However, as these datasets have already been produced and archived,109

they are valuable resources that can be leveraged to develop data-driven methods.110

We assume that for a realistic application either a long numerical model simula-111

tion or retrospective historical analysis is available as training data. Thus, we train the112

RNN to generate accurate predictions using a dedicated training dataset that resolves113

all components of the target dynamics. For this study, we use the output from the model114

described in section 2.4 to train our RNN models. We focus our attention on develop-115

ing the capabilities to integrate the data-driven RNN model with an online DA process116

that repeatedly ingests new noisy and sparse observations, updates the state estimate117

of the system, and makes new short-term forecasts. This has applications ranging from118

operational NWP to the efficient reconstruction of historical Earth system states.119

2.1 Network Design120

Reservoir computing is a category of machine learning methods. It originated in121

the works of Jaeger (2001), who introduced Echo State Networks (ESN), and Maass et122

al. (2002) who introduced Liquid State Machines (LSM). Both methods assume that an123

input signal can be mapped to a fixed nonlinear system of higher dimension than the in-124

put. Such systems can be trained using a readout layer to map the state of the reser-125

voir to the desired output. The result is a simple model that can reproduce the poten-126

tially complex dynamics of the original system. A survey is provided by Lukoševičius &127

Jaeger (2009), while Konkoli (2017) provides further discussion on the generality of RC.128

Successful applications of RC have been demonstrated for the prediction of spatiotem-129

porally chaotic dynamics (Chattopadhyay et al., 2020; Pathak et al., 2018; Platt et al.,130

2021), and in particular of geophysical fluid dynamics (Arcomano et al., 2020; Lin & Penny,131

2021-submitted).132

RNNs have long been used as a preferred ML method for cases in which tempo-133

ral considerations are necessary. We use a basic RNN (Elman, 1990) with a simplified134

structure to produce a variant of the RC network. The RNN/RC design is useful for pre-135

diction because the ‘hidden’ or ‘reservoir’ state s(ti) provides a short-term memory of136

the target system trajectory x(t) up to time ti. Assuming an accurate forecast can be137

made of the hidden/reservoir state s(ti+1) by a well-trained RNN, then that forecast can138

be mapped to the target system space to produce a forecast x′(ti+1) of the true system139

state x(ti+1).140

As highlighted by Schrauwen et al. (2007), Steil (2004) showed that the state-of-141

the-art learning rule for RNNs at the time had the same weight dynamics as the meth-142

ods proposed by Jaeger (2001) and Maass et al. (2002). The Atiya & Parlos (2000) re-143

current learning rule trains the output weights while the internal weights are only glob-144

ally scaled up or down. Similarly, we classify the RNN model parameters as either ‘macro-145

scale’ or ‘micro-scale’. We note that what we call ‘macro-scale’ parameters were called146

‘global parameter’ by Lukoševičius (2012). In what follows, all matrix elements are clas-147

sified as micro-scale parameters while all scalars are classified as macro-scale parame-148
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ters. The general form of our RNN is given as,149

s(ti+1) = F (s(ti),x(ti)) = l ∗ f(ρWress(ti) + σWinx(ti)) + (1− l) ∗ s(ti), (1)

x′(ti+1) = G(s(ti+1)) = Wout(s(ti+1)), (2)

where x(ti) is the system state at time ti, provided from data, s(ti) is the hidden/reservoir150

state, and x′(ti+1) is the predicted system state at the next time ti+1. The parameter151

ρ determines the spectral radius of the reservoir adjacency matrix Wres, σ scales the in-152

put signal mapped to the reservoir space by Win, and l is the ‘leak’ parameter that gates153

new information into the system. We will use f = tanh.154

After training the RNN model parameters, we expect the predicted state x′(ti+1)155

to be close to the true system state x(ti+1). In a typical RNN, all parameters of the sys-156

tem described by equations (1) and (2) are trained, usually by a gradient descent type157

optimization method. For RC, all model parameters in equation (1) are assumed fixed.158

Equation (1) is then iterated to generate a time series s(t) of hidden/reservoir states that159

corresponds to the training data x(t). The ‘readout’ operator Wout in equation (2) is160

typically assumed to be linear.161

The micro-scale parameters in the Wout are trained (while the other parameters162

of our RNN remain fixed) by solving a regularized least squares equation using a loss func-163

tion that targets forecasts that are one time step in the future (Jaeger, 2001). The cor-164

responding loss function is,165

Lmicro (Wout) = ||WoutSdata −Xdata||2 + β||Wout||2, (3)

where Sdata and Xdata are matrices that comprise the vector-valued states s(t) and166

x(t) for the entire training dataset, ordered columnwise, and β is a Tikhonov regular-167

ization parameter.168

To move closer towards the approach of the general RNN, in which all parameters169

are trained, we regard the scalars l, ρ, σ, and β as macro-scale parameters subject to train-170

ing. The matrix Wres is initialized with a spectral radius of 1 prior to training, but oth-171

erwise the values are assigned randomly using a uniform distribution centered at 0. For172

computational efficiency, Wres is assumed to be sparse (i.e. only 1% of entries are nonzero).173

The matrix Win is initialized using a uniform random distribution with values ranging174

from -1 to 1.175

An extended forecast xf (t) is made with the RNN from time t0 to ti, for i > 0,176

by recursively replacing the input state with the RNN prediction initialized from the pre-177

vious time. Defined inductively, commencing with x(t0),178

xf (t1) = Wout ◦ F (s(t0),x(t0)), (4)
179

xf (ti) = Wout ◦ F (s(ti−1),xf (ti−1)). (5)

We note that due to the nature of chaotic dynamical systems (with leading Lyapunov180

exponent greater than 0), any error in one step of this recursion will accumulate and lead181

to exponential error growth over time.182

The macro-scale parameters are trained using a nonlinear Bayesian optimization183

method, which uses a surrogate model representation of the loss function (Jones et al.,184

1998; Ginsbourger et al., 2010). For this macro-scale optimization we use a loss func-185

tion that targets longer-range prediction,186
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Lmacro

(
xf (t)

)
=

M∑
i=1

ti+N∑
t=ti

||xf (t)− x(t)||2 exp

(
− t− ti
ti+N − ti

)
, (6)

where M represents the number of separate initial times [t1, t2, t3, ..., tM ] used to187

make independent forecasts, selected randomly without replacement from the training188

dataset, and N represents the number of time steps used for each forecast. We apply an189

exponential scaling term in order to account for the exponential growth of errors that190

is typical of chaotic dynamics. This term gives the forecast errors in the earlier portion191

of the forecast more weight, as this period is more relevant for cycled DA applications.192

Recall that by definition a hyperparameter is any design decision that is set before193

the learning process begins, is generally tunable, and can directly affect how well a model194

trains. The hyperparameters of this optimization are provided in the appendix in Ta-195

ble A1. We note that Griffith et al. (2019) similarly applied long forecasts at multiple196

initial times in a reservoir computing application to identify model parameters that re-197

sulted in the reconstruction of the full system attractor.198

By computing the Jacobian of the forecast model defined by equations (1), (2), (4),199

and (5) with respect to the hidden/reservoir state, we can determine the linear propa-200

gator M of the reservoir dynamics from time ti to ti+1 as,201

W = ρWres + σWinWout, (7)
202

M[ti+1,ti](s(ti)) =
dF

ds
= l ∗ diag(1− tanh(Ws(ti))

2)W + (1− l) ∗ I. (8)

The linear propagator describes the evolution of small perturbations from a reference203

trajectory. It can be used in DA, in particular 4D-Var, where it is called the tangent lin-204

ear model (TLM). Further, the Lyapunov exponents of the system are determined by205

integrating the linear propagator from time t = 0 → ∞ and computing the eigenval-206

ues of the resulting system. Practical algorithms based on QR decompositions are pro-207

vided by Geist et al. (1990). For computational efficiency, we implement the TLM and208

its adjoint as linear operators to avoid matrix multiplications and allow for efficient matrix-209

vector operations applied within the iterative minimization schemes.210

2.2 Data Assimilation211

Trevisan et al. (2010), Trevisan & Palatella (2011a), and Palatella et al. (2013) showed212

that the number of observations needed to constrain any DA system is related to the num-213

ber of non-negative Lyapunov exponents in the system. Platt et al. (2021) indicated that214

reproducing the Lyapunov spectrum is critical to generating accurate predictions with215

reservoir computing models - with deviations from the true spectrum leading to signif-216

icantly degraded forecast skill. Considering these points, we presume that even if the hid-217

den/reservoir state space is large, if the RNN is trained to be sufficiently accurate such218

that the true Lyapunov spectrum is well approximated, then the number of observations219

required to constrain the hidden state space dynamics should be the same as is required220

to constrain the original system dynamics.221

Following this presumption, we apply DA in the hidden/reservoir space of the RNN222

system, and apply the composition of an observation operator with the readout oper-223

ator in order to compare hidden/reservoir states with observations of the original sys-224

tem. To test this approach, we apply two well known DA algorithms integrated with the225

RNN forecast model - the ensemble transform Kalman filter (Bishop et al., 2001; Hunt226

et al., 2007) and the strong constraint incremental 4-dimensional variational method (4D-227

Var) (Courtier et al., 1994).228

From the perspective of operational forecasting, the RNN provides a simple and229

low-cost replacement for the production of essential information needed for the online230
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DA cycle, such as forecast error covariance statistics and the tangent linear and adjoint231

model dynamics. From the machine learning perspective, the DA algorithms allow the232

RNN hidden/reservoir dynamics to be driven with a noisy and sparsely observed signal.233

We will show that in cases where the direct insertion of observations quickly corrupts234

the hidden/reservoir state and leads to inaccurate forecasts, the DA methods can pro-235

duce valid reconstructions of the system state as well as viable initial conditions for short-236

term forecasts.237

Kalnay et al. (2006) described the ideal initial ensemble perturbations as those that238

effectively span the space defined by the analysis error covariance. We use ensemble fore-239

cast statistics produced by the RNN model to generate dynamically estimated forecast240

error covariance statistics, and then apply an ETKF to assimilate noisy observations of241

the true system state and estimate the analysis error covariance. Bocquet & Carrassi (2017)242

showed that the minimum ensemble size required to constrain a (non-localized) deter-243

ministic ensemble filter such as the ETKF is equal to the number of non-negative Lya-244

punov exponents of the system dynamics. Thus, we expect that with a well-trained RNN245

that closely approximates the correct Lyapunov spectrum, the minimum number of en-246

semble members needed to constrain the ETKF will be the same as the number of mem-247

bers needed to constrain the original system.248

We define a new modified observation operator by composing the conventional ob-249

servation operator H(), which maps from the system space to the observation space, with250

the readout operator Wout(), which maps from the hidden/reservoir space to the system251

space (see Figure 1). Our implementation of the ETKF follows the formulation of Hunt252

et al. (2007). Let ȳb = H(Wout(s̄
b)), where s̄b is the background ensemble mean hid-253

den/reservoir state, and Yb = H(Wout(S
b)), where the columns of Sb are ensemble per-254

turbations around the mean, then255

P̃a =

[
k − 1

γ
I + (Yb)TR−1Yb

]−1
, (9)

Wa =
[
(k − 1)P̃a

] 1
2

, (10)

Sa = SbWa, (11)

w̄a = P̃a(Yb)TR−1
(
yo − ȳb

)
, (12)

s̄a = Sbw̄a + s̄b, (13)

where R is the observation error covariance matrix, k is the ensemble dimension,256

γ is a multiplicative inflation factor, P̃a is the analysis error covariance matrix represented257

in the ensemble perturbation subspace, Wa is applied as a transform operator to map258

the background ensemble perturbations to analysis ensemble perturbations, and w̄a de-259

termines the weighting coefficients of the column vectors Sb, which are used as a linear260

basis to form the new ensemble mean analysis state vector s̄a. For reference, the result-261

ing Kalman gain for the integrated RNN-ETKF is of the form,262

K = Sb
[
k − 1

γ
I +

[
H(Wout(S

b))
]T

R−1
[
H(Wout(S

b))
]]−1 [

H(Wout(S
b))
]T

R−1. (14)
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The control vector for 4D-Var can similarly be formed in the hidden/reservoir space.263

We use the strong constraint incremental 4D-Var, implemented using an outer and in-264

ner loop. In the outer loop, a nonlinear forecast sft =M[t,0](s0) is generated over a short265

optimization period, called the analysis window. In the inner loop, the linearized dynam-266

ics are used to find an improved guess for the initial state s0 using an iterative linear solver,267

and then the outer loop is repeated. If we let δs0 = (s0 − sf0 ), δsb0 = (sb0 − sf0 ), and268

dt = (yot −Ht ◦Wout(s
f
t )), then the objective function is,269

J(δs0) = Jb(δs0) + Jo(δs0), (15)

where,270

Jb(δs0) =
1

2
(δs0 − δsb0)TB−1(δs0 − δsb0), (16)

Jo(δs0) =
1

2

Nt∑
t=0

(
dt −Ht ◦Wout(M[t,0]δs0)

)T
R−1t

(
dt −Ht ◦Wout(M[t,0]δs0)

)
, (17)

M[0,0] = I, (18)

M[t+1,t] = l ∗ diag(1− tanh(Ws(t))2)W + (1− l) ∗ I, (19)

as in equation (8), and the initial condition in the original system space can be re-271

covered by,272

x0 = Wout(s0). (20)

In our implementation, Ht() and Wout() are linear, so we replace them with their273

matrix notation. When these operators are not linear, a linear approximation via Tay-274

lor series expansion is typically applied. The minimum is found when the gradient with275

respect to the control vector δs0 equals 0,276

∇δs0J = B−1
(
δs0 − δsb0

) Nt∑
t=0

MT
[t,0]H

T
t R−1t

(
dt −HtM[t,0]Woutδs0

)
= 0. (21)

We solve this by separating terms into the form ‘Ax=b’, where δs0 is the only unknown277

quantity,278

(
I + B

Nt∑
t=0

HtM[t,0]

)
δs0 = B

Nt∑
t=0

MT
[t,0]H

T
t R−1t di + δsb0 (22)

and then applying the biconjugate gradient stabilized method (Van der Vorst, 1992).279

Alternative forms of equation (22) are available, for example making the ‘A’ matrix sym-280

metric so that the conjugate gradient method can be applied. Returning to the outer281

loop, a new nonlinear forecast sf (t) =M[t,0](s
f
0+δs0) is generated and the entire pro-282

cess is repeated with the goal of converging to the optimal nonlinear trajectory.283
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2.3 Localization284

For the RNN model itself, scalability is enabled by partitioning the model system285

domain into smaller local patches, with a separate RNN trained for each patch (Pathak286

et al., 2018). Each local patch is assigned a small radius of ‘halo’ points that allow in-287

formation from neighboring patches as inputs to the RNN model, while computing a fore-288

cast only for the points within the patch. This follows a similar paradigm to that used289

for the domain decomposition of general circulation models. Localization of a geophys-290

ical forecast model is motivated by the presence of locally low dimensional chaotic dy-291

namics (Oczkowski et al., 2005). In previous works, Arcomano et al. (2020) demonstrated292

the use of RC for prediction of global scale atmospheric dynamics by applying the lo-293

calization scheme described above, while Lin & Penny (2021-submitted) further showed294

that this spatial localization approach could be improved for geophysical systems by ap-295

plying transformations into Fourier space.296

Localization has also been an important tool for scaling DA methods to enable ap-297

plication to high dimensional systems (Greybush et al., 2011). The same localization pro-298

cedure used to scale the RNN model can be applied in the context of DA, which pro-299

vides a path to scaling the RNN-based DA methods to more realistic high-dimensional300

applications. We apply localization of the DA using an approach similar to the Local En-301

semble Transform Kalman Filter (LETKF) (Hunt et al., 2007). In its original formula-302

tion, the LETKF computes a separate ETKF analysis at each model grid point, while303

only assimilating observations within a prescribed localization radius around that grid304

point. In our RNN-LETKF, we instead choose a radius around local patches. Observa-305

tions are selected from an area larger than the patch itself based on the RNN localiza-306

tion in order to promote consistency with the analyses computed for neighboring patches.307

We make the design decision to maintain correspondence with the local RNN model ar-308

chitecture by using a radius that aligns with the input field of the local RNN, which in-309

cludes the local patch and its halo points. As with the LETKF, the RNN-LETKF lo-310

cal analyses can be computed in parallel, after observation innovations are computed glob-311

ally and distributed to each local patch. The results of the local analyses are then com-312

municated to the neighboring patches in order to initialize the next forecast.313

2.4 Source Data for Training, Validation, and Testing314

Here we describe the underlying model equations that we use to generate data for315

training, validating, and testing the RNN models. Lorenz (1996) developed a simple model316

(L96) that includes advection, dissipation, and external forcing to describe basic wave-317

like dynamics in the atmosphere around a latitude ring. The L96 model is a frequently318

used test system for DA studies (Abarbanel et al., 2010; Penny, 2014, 2017; Goodliff et319

al., 2017; Chen & Kalnay, 2019; Brajard et al., 2020), and multiple varieties of RNNs320

have been applied successfully for emulation of L96 dynamics (Vlachas et al., 2020). The321

L96 system is defined by a set of ordinary differential equations on a discrete finite cyclic322

domain,323

fL96(xi) =
dxi
dt

= xi−1(xi+1 − xi−2)− xi + FL96. (23)

We use forcing FL96 = 8.0, which is sufficient to achieve chaotic dynamics, mean-324

ing that at least one Lypaunov exponent is greater than 0. This implies initial errors will325

grow exponentially on average. The model is integrated with a timestep of δt = 0.01326

model time units (MTUs). Lorenz (1996) scaled the coefficients of the model so that the327

error growth over 1 MTU is roughly equivalent to 5 days in the atmosphere, relative to328

the state-of-the-art atmospheric models of the time. In operational prediction centers,329

analyses are often produced with 6-hour, 12-hour, or 24-hour update cycles, thus we will330

focus on DA cycles ranging up to 0.2 MTU (≈ 24 hours).331
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2.5 Experiment Design332

We compare results using a variety of DA configurations. All model integrations333

are computed with a timestep of δt=0.01. Unless otherwise noted, we use the following334

parameter settings: each DA experiment is integrated for 100 MTU (or 10,000 time steps);335

we use observation noise of σnoise=0.5 and a corresponding estimated observation error336

of σobs=0.5 to form R; observations are sampled every τobs=0.02 MTU (≈ 2.4 hours);337

and we use an analysis cycle window of τda=0.2 MTU (≈ 24 hours).338

We use a 10-member ensemble for the RNN-ETKF, a 30-member ensemble for the339

RNN-LETKF applied to the higher dimensional L96-40D model configuration, and for340

the purposes of this discussion a 1-member ‘ensemble’ for the RNN-4DVar. Both the RNN-341

ETKF and the RNN-4DVar were applied to the L96-6D model. All DA experiments are342

initialized by first preparing a set of perturbed spinup datasets, one for each ensemble343

member, applying Gaussian random noise with standard deviation σinit=0.5 to the true344

state over a 1000 time step window (2000 for the L96-40D system). Each RNN ensem-345

ble member is synchronized with its corresponding perturbed dataset in order to pro-346

duce an initial ensemble of hidden/reservoir states that reflect the uncertainty present347

in the noisy input data.348

As noted by Lorenc (2003), additional covariance inflation is needed in the pres-349

ence of model error if that error is not addressed explicitly. Covariance inflation is also350

typically needed due to the use of a finite ensemble size. We found an inflation param-351

eter of 1-5% (i.e. γ = 1.01 to 1.05) to be effective for the ETKF when applied with the352

‘perfect’ numerical model. To account for model error in the RNN, we increase the in-353

flation parameter to 20% (γ=1.2) for the RNN-ETKF and 30% (γ=1.3) for the RNN-354

LETKF to account for errors in the RNN model. The 4D-Var uses an empirically cho-355

sen static error covariance that is diagonal with standard error equal to σb = σobs, an356

analysis time at the start of the window, and uses 2 outer loops.357

To mimic a realistic scenario of geophysical prediction, we focus mainly on cases358

where the variables are sparsely observed. If not otherwise stated, the L96-6D model is359

observed only at the first, second, and fourth nodes. For the L96-40D model, we limit360

the observing network to only 15 nodes.361

3 Results362

3.1 Assessment of error growth rates363

An essential consideration of DA is the behavior of long and short term error growth,364

which can be characterized by the Lyapunov exponent (LE) spectrum and finite-time365

(also known as ‘local’) Lyapunov exponents (FTLEs) (Abarbanel et al., 1992; Abarbanel,366

1996). If one considers DA as the synchronization of a model with the natural process367

from which measurements are drawn, then the conditional LE spectrum of this coupled368

model-nature system must be driven negative to ensure the model synchronizes with the369

observed system (Penny, 2017). Previous studies (Pathak et al., 2018; Griffith et al., 2019;370

Platt et al., 2021) have already shown that reservoir computing can be used to repro-371

duce the Lyapunov spectrum of the source system. This spectrum characterizes the long372

time average exponential growth rates of small errors in the system trajectory. However,373

at very short timescales, we find that the error growth rates of our trained RNNs are not374

well representative of the error growth rates produced by the source system dynamics.375

We find instead that the FTLEs of the RNN dynamics converge towards the Lyapunov376

exponents of the source system dynamics over a transient period of a few Lyapunov timescales377

(Figure 2). While the growth rates of errors in the RNN models take some time to con-378

verge to the true growth rates, the forecast error correlations appear to be estimated rel-379

atively accurately at short lead times (an example is shown in Figure 3). This indicates380

that while it may be desirable to improve the convergence rates of the FTLEs produced381
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by the RNN, the effect can be compensated for by using a scalar multiplicative inflation382

applied to the forecast error covariance matrix.383

Figure 2. Convergence of the leading FTLE (λ1) for a trained RNN (model 1 in Table A2)

averaged over 100 initial conditions of the L96-6D system. As the RNN is integrated for longer

periods of time, the error growth rates generated by the RNN model become more accurate.

However, over the same period there is an exponential growth of errors in initial conditions.

3.2 Control RNN case384

To demonstrate the need for DA, we commence our cycled forecast experiments385

with a control case that sets a baseline for the performance of the RNN without using386

DA. Here, observations are inserted directly into the RNN as defined by as in equations387

(1) and (2). If the system is fully observed, then this amounts to replacing x(ti) in equa-388

tion (1) with observed data.389

Lu et al. (2017) examined a ‘sparse in space’ case that limited the forcing of an RC390

model to only a subset of inputs. Their results showed that synchronization of the full391

state can be achieved even when observing only a subset of the variables of the system.392

However, we find that this type of direct insertion method for synchronization fails as393

the observations become more sparse in time (see Figure 4 and the middle and bottom394

rows of Figure 5).395

Before further evaluating the RNN, we first consider for reference the case of di-396

rect insertion of observations into the original L96-6D numerical model, using the up-397

date equation,398

xa = xb + HT (yo −Hxb). (24)
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Figure 3. (Top) RMSE of the forecast error correlation matrix over time for the L96-6D

system, comparing an example RNN ensemble forecast (blue) to the climatological error corre-

lation matrix (orange), both evaluated versus a 100-member ensemble forecast using the perfect

reference model. The initial conditions are sampled from the test dataset, and initial ensemble

perturbations are generated using a Gaussian distribution with standard deviation 0.1. (Bottom)

Forecast error correlation matrix for the reference perfect numerical model and the RNN model

over the same forecast period, valid at times 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. The color scale ranges

from 0 to 1.

As should be expected, providing perfect observations of all variables at every model time399

step (δt=0.01) produces exact synchronization between the driver signal and the numer-400

ical model trajectory. Increasing the timestep between observations as high as 0.2 MTU401

does not significantly degrade the state estimates, with errors peaking at 2.5e-7. Increas-402

ing the observational noise generally increases the error in the state estimates by a sim-403

ilar magnitude. When the number of observed variables is reduced (e.g. to 3 or 2 out404

of 6), the system experiences transient synchronization with occasional bursting. While405

still using perfect observations, combining reduced observations (e.g. 50%) and using longer406

timesteps (e.g. δt=0.1) actually improves stability compared to using a time step of δt=0.01,407

and leads to synchronization. However, when observation noise is added to this combi-408

nation of sparseness in space and time, the bursting phenomena return, particularly in409

the unobserved variables (see top row of Figure 5).410

The situation is quite different with the RNN model. Increasing the time step be-411

tween the (noise-free) observations significantly degrades the RNN estimates, first adding412

high frequency oscillations (e.g. with δt=0.02 to δt=0.1), and then leading to trajecto-413

ries with little discernible connection to the L96 dynamics (e.g. at δt=0.2). Recall that414

for these experiments the RNN is trained on data that have a temporal resolution match-415

ing the underlying model timestep δt=0.01. Reducing the frequency of the input driv-416

ing signal allows the hidden/reservoir state to drift. Observing frequently (δt=0.01) but417

removing the observation of one variable degrades the estimates of that variable with-418

out noticeably affecting the rest, while removing the observation of more than one vari-419

able can cause occasional degradation of the remaining observed variables. Due to the420

presence of the hidden/reservoir state, which maintains a memory of the past trajectory,421

the RNN itself is relatively insensitive to the introduction of noise to the observations.422

When observing the full system state, noisy observations supplied as driving data to the423
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RNN simply increase high frequency noise in the analyzed state estimate, without re-424

sulting in divergence between the RNN and the true signal. Combining any of these con-425

straints on the RNN appears to have additive effects. A comparison of the errors in the426

RNN using direct insertion with a range of observation noise and observing frequency427

(of which Figure 4 is one instance) is shown in Figure 5.428

We note that even for this simple L96 model, the total set of direct insertion ex-429

periments using RNN model 1 was about 10% faster, and RNN model 2 about 30-40%430

faster, than the total set of direct insertion experiments using the conventional numer-431

ical integration of the L96 differential equation (23). We do not claim that these results432

can be easily extrapolated to other applications. However, we do emphasize that the pro-433

jection of the system dynamics to the higher dimensional hidden/reservoir state does not434

necessarily imply that the computations become more costly.435

To summarize - simply providing the sparse and noisy observation data directly436

to the RNN is not adequate for initializing forecasts, which provides motivation for the437

use of a more sophisticated DA strategy.438
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Figure 4. Direct insertion using the RNN with perfect (σnoise=0) observations of the system

at points (1,2,4), sampled with τobs=0.05 (≈6 hours), which is every 5 model time steps. The

RNN alone cannot successfully recover the true trajectory when observations are sparse and

noisy. This figure provides a corresponding entry in figure 5.

3.3 RNN-DA with sparsely observed dynamics439

DA methods provide most of their value when observations are sparse and noisy.440

Here, we restrict the observing network to only the first, second, and fourth nodes of the441

6-dimensional cyclic L96 system (L96-6D). This leaves two patches that are unobserved442

for the duration of each experiment - the third node and the combined fifth and sixth443

node. We noticed no qualitative differences in other configurations of the observing sys-444

tem layout at the same 50% coverage level.445

We first implement the RNN-ETKF and compare to the conventional ETKF us-446

ing the ‘perfect’ numerical model. We find that with the exception of the case in which447

analyses are updated frequently (τDA=τobs=δt = 0.01), the RNN-ETKF using both RNN448

models 1 and 2 performs quite well in comparison (Figures 6 and 7). We note that the449
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Figure 5. Normalized RMSE using direct insertion using (Top) the ‘perfect’ numerical model

and (Bottom) the RNN model 1. Both are applied to the L96-6D system integrated over 100

MTU, varying the observation noise σnoise and the observation timestep τobs. (Left) RMSE of

observed points (indexes 1,2,4). (Right) RMSE of points that are not observed (indexes 3,5,6).

A normalized RMSE of 1.0 equals the L96 system’s climatological standard deviation. Note

that the conventional model is more sensitive to increased noise, while the RNN model is more

sensitive to the observing frequency.

total set of ETKF experiments using RNN model 1 had about equal run time, while RNN450

model 2 was about 25% faster, compared to the run time of the total set of ETKF ex-451

periments using the conventional numerical integration of the L96 differential equation452

(23).453

The RNN-4DVar method performs well when the observational noise is small, but454

is sensitive to increasingly sparse and noisy observing sets (Figures 8 and 9). As the un-455

derlying RNN model is improved (from model 2 to model 1 in Table A2), this appears456

to improve the performance of the 4D-Var correspondingly. The sensitivity of the RNN-457

4DVar to observational noise may be exacerbated by errors in the RNN model equations458

from which the TLM and adjoint operators are derived, and also the approximated back-459

ground error covariance matrix. A further drawback is that the experiments using the460

RNN-4DVar required 1-2 orders of magnitude more computational time than the con-461

ventional 4D-Var applied using the numerical integration of the L96 differential equa-462

tion (23) and its TLM and adjoint equations.463

The difference between FTLEs estimated by the RNN and the numerical model at464

short lead times indicates that the linearized dynamics (i.e. the TLM and adjoint) are465

not well represented at these timescales. The RNN models used here generally under-466

represent the magnitude of error growth at short timescales. This affects the ETKF as467

well but is alleviated by the application of multiplicative inflation, and gives some ex-468

planation for why the ETKF is more stable than 4D-Var. The strong-constraint 4D-Var469

used here assumes a ‘perfect’ model. We expect that transitioning from the strong-constraint470

4D-Var formulation to the weak-constraint 4D-Var approach should further improve the471

RNN-4DVar performance, as the latter explicitly accounts for errors in the model.472
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Figure 6. The RNN-ETKF, assimilating observations at only three points (1,2,4) at incre-

ments of τobs=0.2 (i.e. every 20 model time steps), converges to the true system trajectory within

a few timesteps. Note the true and estimated trajectories are nearly indistinguishable. This

figure provides a corresponding entry in figure 7.

Figure 7. Normalized RMSE of (Top) conventional ETKF using the ‘perfect’ numerical

model, (Middle) the RNN-ETKF using RNN model 2 (hidden/reservoir dimension 800), and

(Bottom) the RNN-ETKF using RNN model 1 (hidden/reservoir dimension 1600). All are ap-

plied to the L96-6D system integrated over 100 MTU, varying the observation noise σnoise and

the observation time step τobs. The analysis cycle is adjusted for each case so that τDA=τobs.

(Left) RMSE of observed points (indexes 1,2,4). (Right) RMSE of points that are not observed

(indexes 3,5,6). Surprisingly, the RNN-ETKF outperforms the conventional ETKF (which uses

the perfect model) when both the observational noise and observing timestep are large.
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Figure 8. The RNN-4DVar, assimilating observations at only three points (1,2,4) at incre-

ments of τobs=0.02 (i.e. every 2 model time steps), with observation noise set to σnoise=0. The

analysis cycle is τobs=0.2 (i.e. every 20 model time steps). This figure provides a corresponding

entry in figure 9.

Figure 9. Normalized RMSE of (Top) conventional 4D-Var using the ‘perfect’ numerical

model, (Middle) the RNN-4DVar using RNN model 2 (hidden/reservoir dimension 800), and

(Bottom) the RNN-4DVar using RNN model 1 (hidden/reservoir dimension 1600). All are ap-

plied using an analysis cycle of τDA=0.2 (i.e. every 20 model time steps). The RNN-4DVar

performs best with frequent observations and relatively low observational noise, but otherwise has

degraded performance.

3.4 Scaling RNN-DA to higher dimensions473

Next we demonstrate that the components of the RNN-DA system can scale as the474

system size increases. Given the results of the previous section, we will focus the RNN-475
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ETKF. We increase the dimension of the L96 system from 6 to 40 in order to demon-476

strate the scalability of the system via the aforementioned localization scheme. The sys-477

tem is partitioned into 20 local subgroups of 2 points each, and a separate RNN is trained478

for each local subgroup. The input signal to each RNN is made up of the 2 points in its479

associated local subgroup, plus 4 neighboring points on either side, giving each RNN an480

input dimension of 10 and an output dimension of 2. For each local subgroup, observa-481

tions are assimilated if they are located within the range of the local RNN input domain.482

In this example we observe 15 nodes of the system, leaving 25 nodes unobserved.483

The Normalized Root Square Error (NRSE) of the trajectory estimated by the RNN-484

LETKF is shown in Figure 10 using observation noise σnoise=0.5, and in Figure 11 with485

reduced observation noise σnoise=0.1. An additional perturbation is added at the first486

timestep to ensure that the background estimate of the system state is far from truth.487

After roughly 20 MTU, the cycled DA system converges and provides an accurate es-488

timation of the system trajectory. The lower panels in Figures 10 and 11 show the Nor-489

malized Root Mean Square Error (NRMSE) of the observed and unobserved nodes of490

the L96-40D system separately. The RNN-LETKF system appears to provide an accu-491

rate transfer of information from the observed to the unobserved variables. We note that492

producing accurate predictions for the L96-40D system requires the use of a larger hid-493

den/reservoir dimension, a larger training dataset, and a longer spinup time. The results494

shown here use a 6000-dimensional reservoir for each local subgroup and 200,000 time495

steps of training data, with each local reservoir trained independently and in parallel.496

We note that with much longer training datasets, the training of the micro-scale param-497

eters can easily be applied in batches with equivalent results, with the macro-scale pa-498

rameters estimated from a sample of batches.499

4 Conclusions500

One of the most common procedures in the field of data assimilation (DA) is to com-501

bine a computational model with observations to estimate the state of a partially ob-502

served system. This procedure is used for applications such as initializing models to make503

real-time forecasts, or creating historical reconstructions based on a limited archive of504

observation data. An essential element of modern DA algorithms is the expectation that505

the forecast model responds accurately to small perturbations in the initial conditions.506

By integrating recurrent neural networks (RNN) with the ensemble Kalman filter and507

4D-Variational DA methods, we have demonstrated that RNNs can produce reasonable508

representations of the system response to uncertainty in initial conditions. Critical to509

this demonstration was the assimilation of sparse observation data, which requires suf-510

ficiently accurate ensemble forecast error covariance statistics and tangent linear model511

dynamics to propagate information from observed to unobserved variables.512

Comparing the application of a DA method using RNN-based forecast models to513

the same DA method using a ‘perfect’ model provides a useful analogue to the real-world514

scenario in which an imperfect numerical model is used to estimate the true state of a515

natural system. Beyond the practical applications that a ML model may have, there is516

also much to be learned from determining the necessary elements for ML models to be517

used applications like reanalysis and operational numerical weather prediction. One ex-518

ample provided was the reproduction of the finite-time Lyapunov exponents (FTLEs).519

We note that while the RNN-DA methods have been applied to training data gen-520

erated from a known model, as long as adequate training data exists the methods ap-521

ply equally to systems for which no known theoretical or computational model is avail-522

able. Further, the RNN-4DVar can be produced for models in which the tangent linear523

and adjoint models are either not available or are too difficult to calculate. The RNN-524

4DVar could easily be implemented in hybrid forms in which a conventional numerical525

model is used for the outer loop and RNN-based tangent linear model is used for the in-526
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Figure 10. Normalized error of the RNN-LETKF based state estimation for the L96-40D

system using RNN Model 3. (Top) Normalized Root Square Error (NRSE) shown for each node

of the L96 system (y-axis). (Bottom) NRMSE computed separately for the observed and unob-

served nodes of the Lorenz system, with 15 nodes of the system observed. Note the y-axis is loga-

rithmic in the lower plot. The error in both plots are normalized by the temporal standard devia-

tion of the true trajectory. The RNN-LETKF uses a 30 member ensemble, with σobs=σnoise=0.5,

and macro-scale parameters indicated by RNN model 3 in Table A2. The observed nodes of the

system are [0, 3, 5, 8, 10, 14, 16, 19, 20, 25, 27, 30, 34, 36, 39].

ner loop, or alternatively the RNN could be used as the nonlinear model in the outer loop527

to reduce computational costs while still using a numerical tangent linear model and ad-528

joint in the inner loop. We also note that while the RNN models were trained once on529

historical data and held fixed during the RNN-DA cycling, it is straightforward to per-530

form online retraining of the RNN model during the DA cycle, e.g. as suggested by Bra-531

jard et al. (2020).532

Further methods are needed to optimize the design and training of the ML model533

used in this study to replace the numerical forecast model. More development is needed534

in ML modeling of chaotic dynamics to ensure a rapid convergence of the finite time Lya-535

punov exponents toward the true values. While a simplified RNN resembling the reser-536

voir computing approach was applied here, we expect that our approach could be ap-537

plied with more sophisticated types of RNN that also use hidden state representations,538

such as Long Short Term Memory (LSTM) or Gated Recurrent Unit (GRU) architec-539

tures.540
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Figure 11. As in Figure 10, but with σnoise=0.1.

Appendix A Details of the RNN Training541

Bayesian optimization is an optimization technique that “minimizes the expected542

deviation from the extremum” of a target loss function Močkus (1975). The technique543

is useful mainly for global optimization of expensive nonlinear functions for which no gra-544

dient is computed. The specific algorithm used here is the efficient global optimization545

algorithm described by Jones et al. (1998) and implemented by Bouhlel et al. (2019), us-546

ing a Kriging surrogate model. In short, the algorithm starts by sampling a number of547

initial points over the search space. It then fits a Gaussian process regression across those548

points, enabling interpolation and extrapolation. After the fit, the algorithm computes549

the “expected improvement” of searching a new region of the space and then chooses points550

based on maximizing this criterion.551

The loss function chosen is based on computing the scaled mean squared error (MSE)552

of long-range predictions over the test data set, as described by equation (6). Hyperpa-553

rameters of this optimization are shown in Table A1, and include the length of the train-554

ing data for the RC, the number of forecasts in the validation set, and the length of those555

forecasts over which the MSE is computed. The following options for the Bayesian op-556

timization algorithm are kept fixed: the number of iterations of the algorithm (15), the557

number of parallel samples computed (4), and the number of optimization start points558

(100).559

All RNNs here use a sparsity of 99% (density of 1%) for the reservoir adjacency560

matrix Wres. For L96-6D experiments, we use the following hyperparameters for the Bayesian561

optimization: M=100 initial points for validation forecasts, chosen randomly without562

replacement; a forecast length of 10.0 MTU, or N=1000, equal to ≈10 Lyapunov timescales.563
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Table A1. Hyperparameters used for the Bayesian optimization. For model 3, we perform

the optimization using a reduced reservoir size (2,000) due to the computational cost of the

algorithm. Predictions are made with a larger reservoir (6,000), see text for details.

Hyperparameter RNN model 1 RNN model 2 RNN model 3

hidden/reservoir dimension 1600 800 2,000 (6,000)

size of training set 100,000 100,000 200,000

number of long forecasts (M) 100 100 100

length of long forecasts (N) in MTU 10.0 10.0 10.0

sparsity of reservoir matrix 99% 99% 99%

input weighting (σ) limits [0.001, 1.0] [0.001, 1.0] [0.001,1.0]

leak rate (l) limits [0.001, 1.0] [0.001, 1.0] [0.001, 1.0]

spectral radius (ρ) limits [0.1, 1.5] [0.1, 1.5] [0.1, 1.5]

Tikhonov parameter (log β) limits [log(1e-8), log(1.0)] [log(1e-8), log(1.0)] [log(1e-8), log(1.0)]

Table A2. Trained values of the macro-scale parameters for the RNNs used as forecast models

by the data assimilation algorithms.

Trained Parameter RNN model 1 RNN model 2 RNN model 3

spectral radius (ρ) 0.10036271 0.10000000 0.34378377

input weighting (σ) 0.06627321 0.05343709 0.05219330

leak parameter (l) 0.70270733 0.69460913 0.40813549

Tikhonov parameter (β) exp(-18.41726026) exp(-14.33030495) exp(-12.53138825)

The macro-scale parameters learned from the Baysian optimization process are provided564

in Table (A2).565

The Bayesian optimization algorithm is computationally intensive for Model 3, as566

each iteration of the algorithm requires training the micro-scale parameters for 20 local-567

ized RC models and evaluating their forecast skill. Lukoševičius (2012) suggested that568

using a reduced reservoir size while searching for optimal hyperparameters is an effec-569

tive means to reduce computational costs. Vlachas et al. (2020) also showed that increas-570

ing the reservoir size for a localized RC model trained on the L96 system with fixed macro-571

scale parameters simply increases the valid prediction time. Thus, to make the training572

of Model 3 more tractable, we use a reduced reservoir size within the Bayesian optimiza-573

tion algorithm to identify the best-performing macro-scale parameters (Table A2). We574

use a hidden/reservoir dimension of 2,000 during the optimization, while for all Model575

3 forecasts used in DA experiments and statistical tests we use the larger hidden/reservoir576

dimension of 6,000 (Figures 10, 11, and A5).577

A visualization of the macro loss function landscape in the (σ, ρ) plane is shown578

in Fig. A1 based on RNN forecasts of the 6 dimensional Lorenz 96 model (described in579
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Figure A1. Normalized macro loss function, Lmacro (see equation 6) for various M visualized

in the (σ, ρ) plane. Increasing M regularizes the loss function, revealing an approximate global

minimum in parameter space. The loss function shown here is based on an 800 dimensional

hidden/reservoir state RNN model prediction of the L96-6D system.

Section 2.4). When M=1, the macro loss function exhibits many local minima. This in-580

dicates that the resulting trained RNN may produce accurate forecasts for a particular581

set of initial conditions, but does not generalize well to other points on the system at-582

tractor. Evaluating forecasts from a greater number of initial conditions results in a smoother583

loss function landscape. However, increasing M also carries a corresponding increase in584

cost for the evaluation of the macro loss function. We select M=100 to balance the com-585

putational cost and the diminishing returns observed beyond this point.586

We establish a ‘Valid Prediction Time’ (VPT) as the length of time that the RMSE587

of any forecast starting at time t0 remains below a threshold ε. The VPT is defined pre-588

cisely as,589
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σclimi =

√√√√√ ttrain
N∑

t=ttrain
0

xi(t), (A1)

590

xfRMSE(t, t0) =

√√√√ D∑
i=1

(
xfi (t, t0)− xi(t)

σclimi

)2

, (A2)

591

V PT (t0) = max{t : xfRMSE(t, t0) < ε, ∀t > t0}. (A3)

where σclimi is the standard deviation in time of the ith model variable, xfi (t, t0)592

is the forecast from t0 to t, xi is the true state, D is the number of model variables, and593

xfRMSE(t, t0) is the corresponding RMSE of the forecast error at time t. An example RNN594

forecast using RNN model 1 is shown in Figure A2, with the VPT shown using ε = 0.2.595

We reiterate that the Bayesian optimization is used to identify parameters that produce596

the best average forecast skill across the training dataset. Data assimilation experiments597

are applied using a separately generated test dataset. Figures A3 and A4 demonstrate598

the distribution of prediction skill for Models 1 and 2 initialized from 100,000 initial con-599

ditions from the test dataset. The RMSE is normalized by climatological variability, de-600

fined as the standard deviation in time of each model variable calculated over the train-601

ing dataset.602
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