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Verification of Electron Beam Irradiation as a L|p|d Decontammatlon Method for Life Detection Instrumentation
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OVERVIEW

We studied Electron Beam Irradiation (EBI) as a potential decontamination technique for destroying molecular lipid contaminants from the Extractor for Chemical Analysis of Lipid Biomarkers in Regolith (ExCALiBR),
our novel life detection instrument. We found EBI was unable to significantly degrade lipids at doses tolerable by instrument materials and should not be implemented for lipid CC. However, resistance to degradation
suggests that lipids are an ideal biomarker, and further research is needed to determine longevity in planetary environments experiencing high electron fluxes. (rig1,2)
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| Large diversity of radiolytic products observed
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. C16:0 saturated fatty acid (1-Pentadecanecarboxylic ¥ Flgure 6 GC-MS chromatogram of C18:1 Fatty Acid standard following 100 kGy of irradiation; tallest peaks are
GCid) . experimental compound and internal standard by abundance, compounds in boxes are radiolytic products Table 2: Percent reduction in C18:1 Fatty Acid by EBI
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C18:1 monounsaturated fatty acid (cis-9-Octadecenoic =
GCId) C21 alkane compound standard C21 Alkane
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. C27 stanol (5a-Cholestan-36-ol)
Prepared samples for irradiation by dissolving lipids in CH,CI,,
partitioning aliquots into glass vials, and drying lipids down
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| diated linids at Steri-Tek™ R AL 4 _ Figure 7: GC-MS chromatogram of C21 Alkane standard following 100 kGy of irradiation; tallest peaks are
LreleliEude Ml = SUElE B R IO S E I CE S s i experimental compound and internal standard by abundance, no significant radiolytic products were resolved Table 3: Percent reduction in C21 Alkane by EBI dose
under a DualBeam™ processor (10 MeV, 20 KW linear

accelerator) at doses:

. 5 kGy, 10 kGy, 25 kGy, 50 kGy, 100 kGy
Prepared samples for analysis by re-dissolving CH,Cl,, adding
an internal standard, and derivatizing as needed
Analyzed irradiated lipids via Gas Chromatography-Mass
Spectrometry (GC-MS) (Fig 5-9)

. Quantified percent reduction (Tables 1-5)
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L|P|D BIOMARKERS | e e 5o-Cholestan-3f-ol * Find and verify a contamination control

method that will destroy lipids without

© harming the materials used to construct
" ExCALIBR
| Further explore lipid longevity under irradiation

Control

5a-Cholestan-3p-ol

Required for all life as we know it (primarily for comprising wcs) | Startng compount
membranes that protect cells from water)
Survive in the terrestrial geologic record for orders of magnitude
longer than any other biomarker (~gyrs)
Can form through biotic or abiotic processes
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Found on Earth, in meteorites, and likely on Mars and the moon Figure 9: GC-MS chromatogram of C27 5a-Cholestan-3B-ol standard following 100 kGy of irradiation; tallest peaks IN S|mUIatEd I\/IarS, Europa, and Enceladus
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