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Abstract18

The next-generation global climate model from the NASA Goddard Institute for Space19

Studies, GISS-E3, contains many improvements to resolution and physics that allow for20

improved representation of tropical cyclones (TCs) in the model. This study examines21

the properties of TCs in two different versions of E3 at different points in its develop-22

ment cycle, run for 20 years at 0.5 degree resolution, and compares these TCs with ob-23

servations, the previous generation GISS model, E2, and other climate models. E3 shares24

many TC biases common to global climate models, such as having too few tropical cy-25

clones, but is much improved from E2. E3 produces strong enough TCs that observation-26

based wind speed thresholds can now be used to detect and track them, and some storms27

now reach hurricane intensity; neither of these was true of E2. Model development be-28

tween the first and second versions of E3 further increased the number and intensity of29

TCs and reduced TC count biases globally and in most regions. One-year sensitivity tests30

to changes in various microphysical and dynamical tuning parameters are also examined.31

Increasing the entrainment rate for the more strongly-entraining plume in the convec-32

tion scheme increases the number of TCs (though also affecting other climate variables,33

and in some cases increasing biases). Variations in divergence damping did not have a34

strong effect on simulated TC properties, contrary to expectations based on previous stud-35

ies. Overall, the improvements in E3 make it more credible for studies of TC activity36

and its relationship to climate.37

Plain Language Summary38

Tropical cyclones, storms known as hurricanes, typhoons, or cyclones in different39

parts of the world, are one of the most dangerous natural hazards, and it is an impor-40

tant question whether they will get more powerful or common in our changing climate.41

Global climate models, used by scientists to study climate change, can simulate trop-42

ical cyclones, but in the models these storms tend to be weaker and less numerous than43

in the real world, and this is especially true for the previous generation climate model44

developed by NASA, known as GISS-E2. We analyzed tropical cyclones in the newest45

version of this model, GISS-E3, running at its highest resolution, in which the world is46

divided into grid boxes about 50 kilometers wide. We found that the new version has47

more and stronger cyclones than the old version. While the storms are still weaker and48

less numerous than in the real world, GISS-E3 now simulates storms strong enough that49
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they would be called hurricanes instead of tropical storms, and it is comparable to its50

peer climate models in its representation of tropical cyclones. We also show that the storms51

in GISS-E3 got slightly stronger as the model was refined.52

1 Introduction53

Tropical cyclones (TCs) are among Earth’s most potent natural hazards affecting54

life and property. There is much interest in how these storms will change as a consequence55

of anthropogenic global warming, but predicting these changes with global climate mod-56

els (GCMs) has proven challenging due in part to the dependence of TC dynamics on57

processes that are unresolved at such models’ typical spatial resolutions. All else being58

equal, higher horizontal resolution in GCMs typically improves TC activity character-59

istics (Walsh et al., 2013; Shaevitz et al., 2014; Wehner et al., 2015; Moon et al., 2020a;60

Vidale et al., 2021), but models with similar resolutions can still vary widely in their rep-61

resentations of TC activity (Camargo et al., 2020), as differences in the model config-62

uration such as the convection scheme (Vitart et al., 2001; Murakami et al., 2012; Kim63

et al., 2012; Duvel et al., 2017), dynamical core (Reed et al., 2015), coupling to the ocean64

(Zarzycki, 2016; Scoccimarro et al., 2017; Li & Sriver, 2018) also affect TC properties.65

Given these differences between GCMs, and the rapid increase of computational expense66

with resolution, some progress in understanding changing TCs in future climates is be-67

ing gained from multi-model ensembles including models run at resolutions of about half68

a degree (currently, a plausible compromise between computational expense and TC sim-69

ulation fidelity), in projects such as the Coupled Model Intercomparison Project (CMIP;70

Taylor et al. (2012); Eyring et al. (2016)), in particular the HighResMIP (Haarsma et71

al., 2016; Roberts et al., 2020a, 2020b) and the U.S. Climate Variability and Predictabil-72

ity Program (CLIVAR) Hurricane Working Group experiments (Walsh et al., 2015; Shae-73

vitz et al., 2014).74

To better understand the behavior of TCs in such multi-model ensembles predict-75

ing future climates, it is helpful to analyze TCs in depth in the individual GCMs. The76

questions of how TCs are affected as models go through their development cycles, and77

the sensitivities of TC activity and other climate variables to the parameters often used78

to tune GCMs, are also of interest.79
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Here we characterize the properties of TCs in two development versions of the NASA80

Goddard Institute for Space Studies (GISS) ModelE3, the next generation GCM still un-81

der development at GISS: one from early in the model’s development and previously used82

by Cesana et al. (2019) and Camargo et al. (2020), and another after a further year of83

development. The previous generation GISS GCM, ModelE2 (Schmidt et al., 2014), has84

no version with horizontal resolution finer than 1◦, and lags behind other GCMs, even85

those of similar resolutions, in the intensity of its simulated TCs (Shaevitz et al., 2014;86

Camargo et al., 2016). A major goal of this study is to evaluate whether the simulation87

of TCs in the 0.5◦ version of E3 is now comparable to that of other GCMs (e.g. Shaevitz88

et al. (2014); Roberts et al. (2020a); Camargo et al. (2020)) and the extent to which this89

assessment has changed through the model development process. E3 is one of several com-90

ponents of GISS’s contributions to CMIP6, along with E2.1 (Kelley et al., 2020) and the91

high-top version E2.2 (Rind et al., 2020; Orbe et al., 2020), all successors of E2, which92

was GISS’s CMIP5 contribution. E3 differs from these other versions in that it uses a93

cubed sphere grid with the Putman and Lin (2007) dynamical core. In contrast to the94

E3 version being used for CMIP6, which uses a C90 grid, here we consider the C180 ver-95

sion of the cubed sphere, in which each face of the cube measures 180 grid cells in length;96

this is equivalent to about 0.5◦ or 55 km resolution. This is the first in depth analysis97

of TC activity in the high-resolution version of E3. By comparison, Camargo et al. (2016)98

analyzed TCs in a version of E2 with a C90 cubed sphere grid and the dynamical core99

of Suarez and Takacs (1995).100

In addition to making comparisons between the two versions of E3 analyzed here,101

and between these and observations, we are also interested in understanding how the GISS102

TCs depend on the model physics and the extent to which various parameters can be103

tuned to improve TC representation. To this end, we have run numerous short exper-104

iments with E3 in which individual tuning parameters were changed, and we examine105

the resulting changes in TC properties as well as other climate variables and the errors106

in these variables with respect to observations. These are inspired by past experiments107

showing the sensitivities of TC properties to entrainment rate parameters in E2 (Kim108

et al., 2012) and the scale-selective damping rate of divergent horizontal flow in the Geo-109

physical Fluid Dynamics Laboratory (GFDL) High-Resolution Atmospheric Model (Hi-110

RAM) (Zhao et al., 2012). These help us understand how much room there might be to111

further improve TCs in E3 through tuning at the same resolution, and whether such im-112
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provements would come at the cost of making other aspects of the climate less realis-113

tic.114

In Section 2 we describe the model versions, observational data sources, and the115

methods of our data analysis. Section 3 contains statistics of the overall distribution of116

storms, genesis, and Accumulated Cyclone Energy, globally, regionally and across in the117

seasonal cycle. Section 4 explores the physical properties of the simulated tropical cy-118

clones, such as maximum wind speed, minimum central pressure, and lifetime, and the119

storms’ spatial structure. Section 5 discusses the TC and climate responses to the 1-year120

tuning experiments. Section 6 summarizes our work and discusses possibilities for fur-121

ther improvement of TC representation.122

2 Methodology123

Version 1 (V1) of the model is an early version of E3 that was used for NASA’s con-124

tribution to the study by Camargo et al. (2020) on whether there are cross-model rela-125

tionships between TC climatology and environmental variables and for the study of trop-126

ical low cloud responses to sea surface temperature (SST) forcings by Cesana et al. (2019).127

Version 2 (V2) is a refined version of the model after a further year of model develop-128

ment. Structurally, V2 differs from V1 primarily in its treatment of stratiform cloud mi-129

crophysics, adding growth of snow by vapor deposition omitted from the scheme of Gettelman130

and Morrison (2015) and correcting several errors in the initial implementation of that131

scheme in V1. Altogether, these updates influence tropical upper-tropospheric relative132

humidity and latent heating, but we have not attempted to systematically quantify each133

effect individually. Also, in V1, inconsistent graupel densities were used in different parts134

of the convective ice parameterization, and this discrepancy has been corrected in V2.135

Convective precipitation drop size distributions were also modified, which resulted in larger136

precipitation effective radii. These changes in convective condensate characteristics led137

to a roughly 5-10% increase in cloud liquid water path, and a roughly 1-5 W m−2 increase138

in top of atmosphere (TOA) reflected shortwave (SW) radiation, varying regionally. The139

broad increase in reflected SW radiation contributed to a larger TOA energy imbalance140

found in V2, which is discussed in Section 5.141

The two model versions were run with default entrainment and divergence damp-142

ing parameters from 1980-2000, forming 21 northern hemisphere TC seasons (January143
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- December) and 20 complete seasons for the southern hemisphere (July - June) and are144

referred to as 20-year test runs. Most of this paper analyzes these test runs, while Sec-145

tion 5 analyzes TC and climate properties in 1-year sensitivity experiments in which var-146

ious entrainment and damping parameters were modified. The models were run in their147

atmosphere-only configurations, with specified, monthly varying SSTs from 1980-2000148

taken from the Met Office Hadley Centre SST dataset version 2.1 (Titchner & Rayner,149

2014). The 1-year sensitivity experiments were run for the year 1990, chosen for being150

an El Niño–Southern Oscillation neutral year.151

For our database of observed TCs, we use the International Best Track Archive for152

Climate Stewardship (IBTrACS; Knapp et al. (2010); Kruk et al. (2010)), using in par-153

ticular the data reported by the U.S. agencies: the National Hurricane Center for the154

North Atlantic and Eastern North Pacific and the Joint Typhoon Warning Center for155

the Western North Pacific, South Pacific, and Indian Oceans. For the observations, we156

only include best track data at 0, 6, 12, or 18 hours UTC, and we filter the storms so157

that only tropical cyclones that reach at least tropical storm strength (34-knot sustained158

winds, 1 minute average) are included. However, portions of the lifetimes of these TCs159

with the wind speed below 34 knots are included in the statistics. We include all por-160

tions of these tracks due to the inconsistency in labeling storms as extratropical or post161

tropical across basins, even within the U.S. agencies.162

TCs in the model simulations are tracked using the method described in Zhao et163

al. (2009), with specific options chosen as follows. A 12-model-grid-box-wide window (the164

standard in the code for C180 grids) is looped through each 6-hourly model output snap-165

shot to detect possible tropical cyclones. Each TC candidate is required to exceed an166

850 hPa cyclonic relative vorticity threshold of 3.5×10−5 s−1, to have a positive warm167

core temperature anomaly relative to the search window mean (averaged between 300168

and 500 hPa at the temperature maximum), have a sea level pressure minimum within169

4◦ of the vorticity maximum, and to be located between 70◦N and 70◦S. Once identi-170

fied, the storm candidates are tracked forward in time searching within 1500 km of the171

previous position (defined as the location of the SLP minimum), and further criteria are172

applied for tracks to be included. TCs must, on three separate (not necessarily consec-173

utive) days, exceed the cyclonic 3.5×10−5 s−1 vorticity threshold, have a warm core tem-174

perature anomaly exceeding 1◦C, and have maximum 10 m wind speed exceeding 15.2175

m/s (but the winds can drop below this threshold at times during the trajectory). In ad-176
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dition, winds must at some point exceed 17.0 m/s, or tropical storm intensity, the same177

threshold we impose for including observed TCs.178

For much of this analysis, in addition to global statistics, we also show statistics179

of TCs grouped by hemisphere, and by 8 standard TC basins indicated by the track col-180

ors in Figure 1 and defined in Table S1. For most statistics, the storm is labelled accord-181

ing the storm genesis basin, with the exception of Accumulated Cyclone Energy (ACE),182

for which we label the storm basin according to its location at each snapshot. We omit183

plots of the South Atlantic for most statistics given the paucity of storms there. ACE184

is defined as the sum of the squared maximum sustained wind speeds over 34 knots in185

observations (Bell et al., 2000). For the model, we instead use Modified Accumulated186

Cyclone Energy (MACE), which does not require a wind speed over 34 knots to be counted,187

following Camargo et al. (2005, 2016).188

3 Tropical Cyclone Climatology189

Figure 1 shows maps of tropical cyclone tracks in the model from 1980 through 2000190

in the two model versions and in the IBTrACS observations. Some features are readily191

apparent: both model versions under-represent the observed number of TC tracks in most192

regions, especially in the North Atlantic and the eastern North Pacific, regions in which193

such low biases in TC activity are common across models and reanalysis (e.g. Camargo194

(2013); Camargo and Wing (2016); Camargo et al. (2020); Roberts et al. (2020a); Aarons195

et al. (2021)). Conversely, both model versions have several TCs in the South Atlantic,196

while IBTrACS contains none in this region from 1980-2000. Historically, the South At-197

lantic has been considered a region free of TCs. However, since the occurrence of Hur-198

ricane Catarina (2004) and Subtropical storm Anita (2010) (Pezza & Simmonds, 2005;199

Veiga et al., 2008; Dias Pinto et al., 2013), recent studies have shown the regular occur-200

rence of TCs with subtropical characteristics there, similarly to the North Atlantic (Evans201

& Braun, 2012; Gozzo et al., 2014, 2017). There are generally more TCs in V2 than in202

V1, in all regions except the Eastern North Pacific.203

Figure 2 shows the density of storm tracks (colors) and genesis locations (contours)204

in each model version and in the observations, calculated as the number of storm-days205

or genesis occurrences in the dataset within the 10◦ by 10◦ box centered on any partic-206

ular point, divided by the number of years. The biases seen in Figure 1 are also appar-207
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(a) GISS Model E3 version 1

(b) GISS Model E3 version 2

(c) IBTrACS (U.S. agencies)

Figure 1. Maps of all tropical cyclone tracks in v1 (a) and v2 (b) of the model, and in the

IBTrACS observations (c), from 1980 through 2000. Tracks are colored according to the storm’s

genesis region: North Indian (red), Western North Pacific (green), Eastern North Pacific (blue),

North Atlantic (teal), South Indian (magenta), Australian Region (coral), South Pacific (ma-

roon), and South Atlantic (hot pink).
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(a) GISS Model E3 version 1 (2  Gaussian filter)
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(b) GISS Model E3 version 2 (2  Gaussian filter)
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(c) IBTrACS (U.S. agencies) (2  Gaussian filter)
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Figure 2. Maps of TC track density (colors) and genesis density (contours) in v1 (a) and v2

(b) of the model, and in the IBTrACS observations (c), from 1980 through 2000. Contours are

drawn at 0.1 and in increments of 0.5, starting from 0.5, in units of storm days per 100 square

degrees per year. A Gaussian filter with a σ value of 2 has been applied to the densities to create

smoother contours with small numbers of storms.
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ent here, as are the subtle changes from V1 to V2. The model versions capture many208

broad features of the spatial distribution of the observed storms, such as the local max-209

ima in the track and genesis densities over the Western North Pacific, the Bay of Ben-210

gal, and off the coast of Mexico, but they mostly underestimate the magnitude of these211

features, especially in the Eastern North Pacific and North Atlantic.212

Figure 3a-j shows the distributions of the number of TCs per year globally, by hemi-213

sphere, and in each region, in each model version and the observations. Globally (Fig-214

ure 3j), V2 has slightly more storms than V1, but both underestimate the observed num-215

ber of TCs by roughly a factor of 2. The model underestimation is strongest in the East-216

ern North Pacific, North Atlantic, and South Indian regions, while V2 produces simi-217

lar numbers to the observations in the North Indian Ocean and actually overestimates218

the observed TC counts in the South Pacific. The mean number of storms increases from219

V1 to V2 in every region except for the Eastern North Pacific, where V2 has even fewer220

TCs than V1.221

Figure 3k-t shows similar box plots but for ACE/MACE per season. The model222

generally underestimates this quantity relative to observations by more than it does the223

TC counts, indicating that the storms are weaker in the two model versions than in ob-224

servations, as can be expected for models at this resolution (Davis, 2018; Roberts et al.,225

2020a; Moon et al., 2020b) and which will be further explored in Section 4. Even with-226

out a minimum wind speed threshold to be counted towards MACE, the model under-227

estimates ACE by about a factor of 4 globally (Figure 3t), and by an order of magni-228

tude in the Eastern North Pacific and North Atlantic (Figure 3n,o), which arises mainly229

from the lack of strong TCs in the model. On the other hand, the high number of weak230

storms leads to similar values between V2 and the observations in the South Pacific (Fig-231

ure 3s).232

Figure 4a-i shows the seasonal cycle of the number of tropical cyclones in each hemi-233

sphere (Figure 4a,b) and region (Figure 4c-i). In both the Northern and Southern Hemi-234

sphere, the low bias in TC frequency is concentrated in the peak months of the TC sea-235

son, with the model doing better during the early and late seasons and correctly sim-236

ulating the lack of storms in the off season. Interestingly, in the North Indian Ocean, while237

V2 matches the observed total number of storms better than V1 does (Figure 3b), Fig-238

ure 4c shows that these additional storms occur at the wrong time, during the summer239
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Figure 3. Box plots showing distributions of TC counts (top 10 panels) and ACE/MACE

(bottom 10 panels) per year from 1980 through 2000 in V1, V2 and the observations, globally,

by hemisphere, and by genesis region. Years defined from January to December for the Northern

Hemisphere (21 years) and from July to June for the Southern Hemisphere (20 years, excluding

the two half seasons). Red asterisk indicates the mean. Notch indicates 95% confidence interval

of the median. Whiskers indicate the full range of data, with no provision for outliers.
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Figure 4. Mean number of tropical cyclones per year from 1980 to 2000 in each month, for

the two hemispheres (a,b) and in each of 7 regions (c-i), in observations (bars) and the two model

versions, and equivalent plots for ACE/MACE (j-r).
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monsoon. In reality, this basin has few tropical cyclones between the pre- and post-monsoon240

peaks (e.g Liu et al. (2021)). This bias was previously documented in the GISS Model241

E2 (Camargo et al., 2016), as well as other models (Camargo et al., 2005; Camargo, 2013;242

Shaevitz et al., 2014), and two possible reasons were considered, first the tracking algo-243

rithm having trouble distinguishing between monsoon depressions and weak model TCs,244

second the model producing TCs in the wrong season in the North Indian Ocean. How-245

ever, this bias is much smaller in either version of E3 than in E2 (cf. Figure 9 of Camargo246

et al. (2016)). V1 correctly reflects the lack of TCs in the North Indian ocean in mid-247

summer, but underestimates the spring and fall peaks by more than V2 does. The ex-248

cess storms in V2 in the South Pacific are confined to the months of February through249

April.250

We also show in Figure 4j-r the seasonal cycle of ACE (observations) and MACE251

(model) in each hemisphere and region. As with the annual box plots, the model biases252

in ACE are in most cases more pronounced than those in TC counts, due to compound-253

ing errors of storms being too few and too weak. The excess TC activity in V2 in the254

Indian summer monsoon is still apparent in the ACE plot (Figure 4l), while the high num-255

ber of storms compensates for their low intensity in V2 in the South Pacific.256

4 Tropical Cyclone Physical Properties257

4.1 Storm intensity and lifetime258

Having explored the statistics of TC activity and seasonality, we now delve into the259

physical properties of the storms as simulated by E3, starting with the maximum wind260

speed and minimum central pressure. Figure 5a shows box plots of the maximum wind261

speed of TCs in E2 at 1◦ resolution (results from Camargo et al. (2016)), versions V1262

and V2 of E3, and observations. Recall that TCs in E3 must reach at least 17 m/s to263

be counted, whereas in E2 a wind speed threshold of 9 m/s was used in the Camargo264

and Zebiak (2002) tracking scheme to account for the inability of low-resolution mod-265

els to produce the wind speeds typical of real tropical cyclones (Walsh et al., 2007; Davis,266

2018; Moon et al., 2020b). E3 has sufficient resolution at 0.5◦ that a substantial num-267

ber of tropical cyclones — albeit a substantially lower number per year than observed,268

as shown above — are found in the model even if we use the same threshold as in ob-269

servations.270
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Figure 5. Distributions (a) of TC peak intensity sustained winds in the E2 control runs

(Camargo et al., 2016), V1 and V2 of E3, and observations, and probability density functions of

winds (b) and pressure (c) among TCs globally at peak intensity, in the observations (gray filled

bars) and the two model versions (colored step plots). For the wind speed, each histogram bin

includes two of the 5-knot increments used in observational reporting.
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The maximum wind speeds have also improved significantly from E2 to E3. The271

median TCs in E3 are of similar strength to those in the upper quartile for E2, and the272

strongest storms in E3 reach hurricane intensity. However, TCs in excess of 80 knots are273

still absent from E3. The further refinements of E3 from V1 to V2 led to still stronger274

TCs, but the improvement is much less than from E2 to E3. Notably, the median life-275

time maximum wind speed of about 25 m/s in V2 is comparable to those of other GCMs276

at similar resolution (cf. Figure 8a of Shaevitz et al. (2014)), including the approximately277

40 km High-Resolution Hadley Center Global Environmental Model Version 3 (HadGEM3),278

50 km HiRAM, and 56 km Goddard Earth Observing System Model Version 5 (GEOS-279

5). This suggests that with E3, the GISS GCM is now competitive with other models280

in its TC representation, at least for tropical storms, with the caveats that the upper tail281

of wind speed distribution does not extend into Category 2 or 3 on the Saffir-Simpson282

scale in E3 as it does in these other models. (In addition, the CMIP6 versions of these283

other models may contain subsequent improvements to their TC representations even284

at the same resolution, compared to what was shown in Shaevitz et al. (2014).)285

Figure 5b,c shows histograms of TC maximum wind speed and minimum central286

pressure at peak intensity, in V1, V2, and the observations, normalized by the number287

of storms in each dataset. For the wind speed (Figure 5b), storms in both model ver-288

sions are much weaker than those observed, with very few storms reaching hurricane in-289

tensity (exceeding 64 knots) in V1, and some Category 1 storms in V2 but still none ex-290

ceeding 80 knots. The minimum central pressures, however (Figure 5c), show better model291

performance at simulating stronger storms, especially for V2, with some reaching as low292

as 920 hPa. Since the wind speed is related to the pressure gradient, the pressure gra-293

dient for a given minimum central pressure is related to storm size, and storm size is con-294

strained by horizontal resolution, it is not surprising that, at this resolution, higher storm295

intensities are captured if pressure is used as a metric than if wind is. This character-296

istic has been noticed in many other models, e.g. Roberts et al. (2015). Comparing the297

probability density functions in Figure 5b to those of the GCMs in Figure 7b of Roberts298

et al. (2020a) confirms that E3 simulates TCs of comparable intensity to those of sim-299

ilar resolution GCMs after a further 6 years of model development since Shaevitz et al.300

(2014). When using maximum wind speed as TC intensity, only the 25 km resolution301

version of the Euro-Mediterranean Centre on Climate Change coupled climate model (CMCC-302

CM2-VHR4; Cherchi et al. (2019)) and the 50 km Centre National de Recherches Météorologiques303
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version 6-1 model (CNRM-CM6-1-HR; Voldoire et al. (2019)) have an appreciable frac-304

tion of storms of at least category 2 intensity, with the rest, like E3, having very few if305

any storms exceeding 80 knots.306

Figure 6 shows the relationship between wind and pressure in each model version,307

including least-squares power law fits to all data points and those at peak intensity, along308

with empirically derived relationships from observations (Atkinson & Holliday, 1977; Knaff309

& Zehr, 2007), similar to Figure 2 of Kim et al. (2018). The modeled storms generally310

do seem to follow a power law structure, especially at peak intensity, with the slope be-311

ing shallower in V2 (cf. red and blue curves in Figure 6), indicating stronger winds for312

the same pressure. Both versions have a much steeper slope than the observations, con-313

sistent with the better agreement of the probability density functions for pressure than314

for wind speed shown in Figure 5.315

Figure 7 shows the distribution of TC lifetime in the model and observations, glob-316

ally and in the different regions. The model only slightly underestimates the observed317

TC lifetimes, consistently across different regions, with no significant differences between318

V1 and V2, except in the Eastern North Pacific (Figure 7d) where TCs are about a day319

shorter-lived in V2. The model also qualitatively reproduces some of the observed dif-320

ferences in average lifetime between regions, such as TCs being longer-lived in the West-321

ern North Pacific (Figure 7c) than in the North Indian ocean (Figure 7b). Note that our322

storm tracker settings impose a minimum lifetime of 3 days for TCs to be counted, which323

is reflected in the box plots. We also made similar plots for the distributions of peak wind324

speed and pressure by region (not shown) and found that these quantities vary little by325

region.326

4.2 Storm structure327

To better understand the physical properties of the storms, we show in Figure 8328

several properties of TCs at peak intensity in a 15◦ by 15◦ box centered on the storm329

center, averaged over five pressure bins following Figure 8 of Roberts et al. (2020a). The330

< 920 hPa bin is excluded because no storms reached that pressure in V1 and only one331

did in V2; we include this storm in Figure 9 as a case study. We include only storms in332

the northern hemisphere to better show any asymmetry between different quadrants. While333

the sea level pressure contours (colors, top two rows of Figure 8) are generally concen-334
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Figure 6. Scatter plots of maximum sustained wind versus minimum sea level pressure

(MSLP) across all storms in V1 (a) and V2 (b), with lighter dots indicating all intensities dur-

ing the storm’s lifetime, and darker dots indicating the peak intensity as defined by maximum

sustained wind. Power law fits to the modeled storms are shown as dashed and solid curves for

the full set and peak intensity data points, respectively, in red for V1 and blue for V2. Wind

and pressure observations from IBTrACS (all intensities, not peak intensity, up to 100 knots) are

shown as gray dots, and empirically derived power law relations from observations (Atkinson &

Holliday, 1977; Knaff & Zehr, 2007) are shown as black curves. A few model pressures greater

than 1010 hPa were omitted to avoid complex numbers in the fit calculation. Equations for the

best fit curves are shown in the figure legend, where vm is the storm’s maximum sustained wind

speed and MSLP is the mean sea level pressure.
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Figure 7. Box plots showing the distribution of TC lifetime in V1, V2, and observations,

globally (j), by hemisphere (a, f), and by genesis region (b-e, g-i). Mean value indicated by red

asterisk; notch indicates 95% confidence interval for the median.

tric and elliptical, the tangential winds (black contours, all rows) are more kidney-shaped,335

indicating stronger winds north and east of the center, as would be expected given gen-336

erally westward and northward motion at the times when storms are typically at peak337

intensity. Precipitation, meanwhile (third and fourth rows of Figure 8), is strongest in338

the southwest and northeast quadrants (at least in the core of heavy precipitation in-339

dicated by the 20 mm/day contour) and for the strongest storms, the precipitation max-340

imum is west of the center. The precipitation minimum in the northwest quadrant is likely341

due to entrainment of subtropical and mid-latitude dry air into the storm following its342

cyclonic and radially inward circulation. These spatial structures in precipitation are sim-343

ilar for V1 and V2, with the main difference between versions being greater numbers of344

storms in the higher intensity bins in V2. For V2, we also had the necessary (instanta-345

neous, 6-hourly) data available for outgoing longwave radiation (OLR), which is shown346

in the 5th row of Figure 8. This shows a similar pattern to precipitation of having the347

lowest OLR southwest and northeast of the center, which would be expected given the348

known correspondence between increased precipitation and decreased OLR.349

The pattern of kidney-shaped tangential wind contours and more concentric pres-350

sure contours is also seen in the modeled and reanalysis TCs shown in Roberts et al. (2020a),351
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Figure 8. Composite, storm-centered properties of northern hemisphere tropical cyclones,

binned by peak intensity pressure. Contours show tangential velocity, in 5 m/s intervals, with a

thicker contour at 20 ms. Colors show: sea level pressure in V1 and V2 storms (top two rows);

precipitation in V1 and V2 (third and fourth rows); and outgoing longwave radiation in V2 (fifth

row). The number of storms in each pressure bin is indicated by n.
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Figure 9. Tangential winds (contours, interval 5 m/s) and sea level pressure (a), precipitation

(b), and OLR (c) at peak intensity for the strongest storm by minimum central pressure in the

V2 20-year test, and map of the track (d) with the location at lowest pressure marked with a dot.

Thicker dashed contour is at 20 m/s.

especially at the lower resolution they analyze. However, the equivalent wind speed con-352

tours are much closer to the center in our plots, indicating some combination of smaller353

storms and weaker winds at the same pressures. Vannière et al. (2020) and Zhang et al.354

(2021) also analyzed storm-centered precipitation composites in multiple GCMs and in355

satellite-derived rainfall rates (see their Figures 1 and 8-11, respectively), and found that356

a southwest-to-northeast orientation of the core of heavy precipitation is a common fea-357

ture of northern hemisphere TCs in observations and in other GCMs. Zhang et al. (2021)358

showed that this orientation is flipped vertically for southern hemisphere TCs, and that,359

as in E3, there is more precipitation equatorward than poleward of the storm further away360

from the center, although interestingly this is flipped in observations for the strongest361

TCs in the northern hemisphere.362
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The strongest storm in the V2 20-year integration, whose properties correspond-363

ing to Figure 8 are shown in Figure 9a-c, provides a useful case study of a strong TC in364

E3 without averaging artifacts. This storm originates in the Western North Pacific re-365

gion in June 1994 at 10.75◦N, 143.75◦E, as shown in the track map in Figure 9d, and366

reaches its lowest minimum central pressure of 918 hPa at 21.75◦N, 129.25◦E. The ty-367

phoon’s peak wind speed of 73.8 knots is reached 6 hours after the time of its lowest pres-368

sure, at which point the maximum wind speed is 69.9 knots and the storm is moving west-369

northwestward. At the time of its lifetime minimum pressure as shown in the figure, the370

storm exhibits a kidney-shaped wind maximum east-southeast of the center and a cen-371

tral minimum indicated by the reappearance of the 20 m/s contour. In this case precip-372

itation (Figure 9b) is also maximized east of the storm center, but the broader core re-373

gion of precipitation indicated by the 20 mm/day contour is aligned perpendicular to374

the axis of the 20 m/s wind contour, a similar pattern to that seen in Figure 8. Unlike375

the averages shown in Figure 8, this individual storm has a broad region of little to no376

precipitation (< 0.5 mm/day) surrounding the core, while there are isolated areas of heavy377

precipitation to the south of the TC. This suggests that the broad swath of light pre-378

cipitation surrounding the TCs in Figure 8 could be an artifact of averaging mesoscale379

precipitation features across different TCs. The OLR for this storm (Figure 9c) shows380

several interesting features: there is a local maximum of OLR, indicative of reduced cloud381

cover, which would be suggestive of an eye from an infrared satellite image, but it is cen-382

tered northwest of the pressure minimum and wind speed maximum, suggesting that the383

vertical structure of the storm is tilted. There is also a band of cloud cover about 5◦ north384

of the storm that extends east to the edge of the plot, and corresponds with a streak of385

precipitation, suggesting that the model might be capturing some outer rainbands as-386

sociated with TCs.387

We have also examined TC structure from a radial-height perspective, following388

the methodology of Kim et al. (2018) and Moon et al. (2020a), who analyzed 8 differ-389

ent GCMs. Figure 10 shows azimuthally averaged temperature anomalies and pressure390

velocities (Figure 10a,c) and tangential and radial velocities (Figure 10b,d) for V1 TCs391

with maximum sustained winds between 18-21 m/s (Figure 10a,b) and 30-33 m/s (Fig-392

ure 10c,d), averaged across all 6-hourly storm data points that fit into these wind speed393

bins in 1994 and 1995. These correspond to Figures 2 through 5 of Moon et al. (2020a).394

Temperature anomalies are defined as the mean within a 1000-km-wide square centered395
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Figure 10. Azimuthally averaged temperature anomaly, pressure velocity, and tangential

and radial velocity for TCs in V1 in 1994 and 1995, grouped into maximum sustained wind

speed bins of 18-21 m/s (a, b) and 30-33 m/s (c,d), following Kim et al. (2018) and Moon et al.

(2020a). Contour interval is 0.3 Pa/s for pressure velocity and 3 m/s for radial velocity, with

negative values dashed. Note different horizontal scales for the two columns.

–22–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

on the storm, minus the mean inside a concentric 2000-km-wide square but outside the396

smaller square, as in Kim et al. (2018). The warm core temperature anomaly structures397

are comparable to those in the models analyzed by Moon et al. (2020a), with maxima398

at the upper end of the range of those models. The updrafts, however, are weaker in V1399

than in any of the Moon et al. models, for both wind speed bins. Consistent with this,400

radial profiles of precipitation (Figure S1) show that the precipitation maximum is weaker401

in GISS TCs than in other GCMs shown in Figure 6 of Moon et al. (2020a). Most GCMs,402

especially at higher resolutions, tend to produce more rain near the center of TCs than403

in satellite retrievals (Moon et al., 2020c) suggesting that the GISS-E3 model may be404

closer to reality than the other models in terms of having weaker precipitation and up-405

drafts. The vertical structures of the tangential velocities in V1 are similar to those of406

the other models for both intensity bins, as would be expected from thermal wind bal-407

ance (or the analogous nonlinear balance appropriate for TCs) given similar thermal struc-408

tures. Radial inflows near the surface are much weaker in V1 than in the Moon et al.409

models, never reaching the -3 m/s contour when the other models reach at least -6 and410

with the zero contour indeed hovering near the surface. For the 30-33 m/s storms, how-411

ever, the surface inflow in V1 is similar in magnitude to the other GCMs. The upper level412

outflow is weaker in V1 than in the other GCMs for both intensity bins. The weaker up-413

drafts and weaker radial winds compared to other models are qualitatively consistent given414

conservation of mass. The peak of the updrafts is located about 50 km away from the415

storm center in E3, in contrast to some GCMs in Moon et al. (2020a) in which the strongest416

updrafts are at the storm center, and more consistent with real TCs, where updrafts are417

strongest in the eyewall. We were not able to do these calculations for V2 because they418

require 6-hourly 3D fields which were not saved for V2.419

5 Sensitivity Tests420

In this section, we present the results of various 1-year experiments that were done421

with V1 and V2 of the model to aid in model development and explore the space of sen-422

sitivity of various tropical cyclone and other climate variables to a number of parame-423

ters. A total of 51 such experiments are examined for V1, and four for V2, in addition424

to the same year (1990) from the 20-year runs with the default values of the parameters425

analyzed in the previous sections. The parameters changed in the experiments and their426

default values are listed in Table 1. These parameters include dimensionless multipliers427
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Table 1. Parameters varied in sensitivity tests, abbreviations, and default values.

Parameter Abbreviation Default value

Entrainment rate multiplier for weaker-entraining plume ε1 0.2

Entrainment rate multiplier for stronger-entraining plume ε2 0.6

Divergence damping for sponge layer Ds 0.03

Divergence damping for internal mode Di 0.05

Divergence damping for external mode De 0.02

Scaling factor for area fraction into which rain evaporates (kg/m2) Fe 100

for the entrainment rates for the more weakly and strongly entraining plumes, referred428

to as ε1 and ε2, respectively, in the two-plume cumulus convection parameterization, orig-429

inally described by DelGenio and Yao (1993), which was used in previous versions of the430

GISS GCM (Schmidt et al., 2014; Kelley et al., 2020) and has been retained in E3.431

Figure 11 illustrates the results of the V1 sensitivity tests of TC and climate vari-432

ables to varying entrainment and damping parameters, in a similar format to Figure 3433

of Mauritsen et al. (2012). The TC and climate variables shown include global TC counts434

(6th row), the strongest observed TC winds (7th row), and five global mean climate state435

variables: TOA radiative imbalance, cloud fraction, ratio of convective to large scale cloud436

fraction, liquid water path, and ice water path. Of the five model parameters shown, only437

ε2 has a systematic effect on TC properties, with higher values of ε2 associated with more438

and stronger TCs. Accordingly, many of the sensitivity tests were redone with ε2 increased439

to 0.9 from its default value of 0.6; these experiments are shown as green curves in Fig-440

ure 11, whereas those with the default value of ε2 are shown in black. The experiments441

with ε2 = 0.9 consistently have higher TC counts and stronger TCs than those with ε2442

= 0.6 across all of the values tried for the other parameters. However, increasing ε2 also443

affects other climate variables. Most importantly, the ε2 = 0.9 runs consistently have a444

TOA radiative imbalance of about -6 W m−2 (defined positive downward) in the annual445

mean, versus a default value that is close to 0, and this imbalance is insensitive to chang-446

ing any of the other parameters. Increasing ε2 also leads to greater cloud cover (albeit447

decreasing ε2 from the default value also does this), a greater fraction of convective cloud,448

and a higher liquid water path, while having little effect on ice water path. Physically,449
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Figure 11. Results of 1-year sensitivity tests conducted for V1 varying five different entrain-

ment and damping parameters, including global means of, from top to bottom: TOA radiative

imbalance, cloud fraction, ratio of convective to large-scale cloud cover, liquid water path, ice

water path, global TC count, and the strongest sustained wind for any TC. X indicates default

value, with the y-value showing the global mean for year 1990 of the 20-year test run. For non-ε2

tests, black curves indicate default value of ε2, while green curves indicate tests repeated with ε2

= 0.9. Envelopes show the standard deviation across the 12 months.
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these results are suggestive of a mechanism in which the increased entrainment rate leads450

to less deep convection, less convective subsidence drying, more shallow convection, a451

moister lower troposphere, and more clouds. The greater cloud cover causes a higher plan-452

etary albedo, which leads to the greater radiative imbalance, and the greater liquid wa-453

ter path makes TC formation easier.454

Besides ε2, the other parameters, especially the damping ones, have little system-455

atic effect on any of the TC or climate variables. In particular, we find little sensitiv-456

ity to the divergence damping parameters. This is in contrast to Zhao et al. (2012), who457

found a strong sensitivity of TC properties to divergence damping parameters in the GFDL458

HiRAM model, and is somewhat surprising given that HiRAM uses the same dynam-459

ical core as E3 and was run at the same C180 resolution in Zhao et al. (2012). Increas-460

ing ε1 leads to modestly lower cloud cover and higher ice water path in V1.461

Experiments varying ε1 and ε2 were repeated for V2, and these results are plotted462

in Figure 12 (blue lines) along with the equivalent V1 experiments (red lines). In V2,463

decreasing ε2 to 0.3 reduces TC counts, but increasing it to 0.9 barely increases them.464

In fact, V2 with ε2 = 0.6 has as many TCs as V1 with ε2 = 0.9. At the default param-465

eter values, V2 has a slightly larger TOA energy imbalance, lower cloud cover, greater466

fraction of convective cloud, lower liquid water path and higher ice water path relative467

to V1. These variables respond in similar ways to changes in ε1 and ε2 in V2 as in V1,468

except that in V2, raising ε1 reduces ice water path, and raising ε2 to 0.9 reduces liq-469

uid water path (a variable that generally seems to go with TC counts in these tests). Changes470

in liquid and ice water path tend to oppose each other in V2 to a greater degree than471

in V1.472

To further assess how climate and TC properties vary across these sensitivity tests473

in relation to each other and to observations, we plot matrices of error metrics in the V1474

sensitivity tests relative to observations in Figure 13 and for V2 in Figure 14. Observa-475

tion sources are given in Table 2. All observations are averaged across the years 1981 through476

2010, except for the satellite-derived quantities which were averaged over the shorter pe-477

riods available: the International Satellite Cloud Climatology Project (ISCCP; July 1983478

through December 2009), Clouds and the Earth’s Radiant Energy System (CERES; March479

2000 through March 2018), and Moderate Resolution Imaging Spectroradiometer (MODIS;480

March 2000 through October 2018) datasets. Two different metrics of error are shown:481
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Figure 13. Errors in the V1 default 20-year test (left column) and 1-year sensitivity tests

relative to observations. (a) Difference in global means of the quantities, normalized by divid-

ing by the median of the absolute value for each row. (b) RMSE weighted by cosine of latitude,

normalized by dividing by the inter-quartile range of each row and subtracting the row median.

Parameters listed in Table 1. Key to observations given in Table 2.
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Table 2. Observations analyzed in RMSE plots in Figures 13 and 14, with data sources in-

cluded.

Label Variable Data Source Reference

Pr. (GP) Precipitation GPCP version 2.3 Adler et al. (2018)
Pr. (C1) Precipitation CMAP (standard) Xie et al. (2007)
Pr. (C2) Precipitation CMAP (enhanced) Xie et al. (2007)
τcld Cloud optical depth ISCCP Schiffer and Rossow (1983)
SLP (1) Sea level pressure over ocean ERA-I Dee et al. (2011)
SLP (2) Sea level pressure over ocean ICOADS Freeman et al. (2017)
Ts (1) Land surface air temperature CRUTEM4 (standard) Jones et al. (2012)
Ts (2) Land surface air temperature CRUTEM4 (variance adj.) Jones et al. (2012)
OLR Outgoing LW radiation (TOA) CERES EBAF Ed4.0 Loeb et al. (2018)
OSR Outgoing SW radiation (TOA) CERES EBAF Ed4.0 Loeb et al. (2018)
u850 850 hPa zonal wind ERA-I Dee et al. (2011)
v850 850 hPa meridional wind ERA-I Dee et al. (2011)
u200 200 hPa zonal wind ERA-I Dee et al. (2011)
v200 200 hPa meridional wind ERA-I Dee et al. (2011)
zg,500 500 hPa geopotential height ERA-I Dee et al. (2011)
[Ta] Zonal mean air temperature ERA-I Dee et al. (2011)
τu,sfc. Surface zonal wind stress ICOADS Freeman et al. (2017)
τv,sfc. Surface meridional wind stress ICOADS Freeman et al. (2017)
[u] Zonal mean zonal wind ERA-I Dee et al. (2011)
[v] Zonal mean meridional wind ERA-I Dee et al. (2011)
Qnet,surf.(1) Net surface heat flux ISCCP, OAFlux Schiffer and Rossow (1983); Yu et al. (2008)
Qnet,surf.(2) Net surface heat flux CERES, OAFlux Loeb et al. (2018); Yu et al. (2008)
[q] Zonal mean specific humidity ERA-I Dee et al. (2011)
Snow Frac. Snow fraction MODIS Aqua and Terra Hall et al. (2002)
Track Dens. TC track density IBTrACS Knapp et al. (2010); Kruk et al. (2010)
Gen. Dens. TC genesis density IBTrACS Knapp et al. (2010); Kruk et al. (2010)

the difference in the global mean of each quantity (Figure 13a), and the latitude-weighted482

root-mean-square error (RMSE; Figure 13b). Zonal mean height-varying quantities are483

averaged across the pressure levels and latitudes with latitude area weighting. To bet-484

ter visualize the errors across different variables simultaneously, we apply a normaliza-485

tion for each variable: for the difference in global means, we divide by the median ab-486

solute value across all of the experiments for each variable, and for the RMSE, we di-487

vide by the inter-quartile range (IQR) across the experiments and subtract the median.488

The latter normalization is similar to the method described by Gleckler et al. (2008) and489

used, e.g., by Zhao et al. (2018) for visualizing relative error metrics across model ex-490

periments, except that we normalize RMSE by the IQR instead of the median in order491

to better draw out inter-model differences when the median RMSE is large and the IQR492

is small. These normalizations allow us to easily see how changing a given tuning pa-493

rameter affects the error for each variable, but they are not useful for comparing the mag-494

nitude of error across different variables.495

From Figure 13a we can see how the tuning parameters affect errors in global mean496

quantities while retaining information about the sign of the error. Tropical cyclone track497

density is consistently too low in the global mean, while increasing ε2 to 0.9 allows gen-498

esis density to sometimes exceed observations when other variables are changed (though499
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the TCs are not necessarily in the correct locations). We find that changing the Fe pa-500

rameter, which affects the rain reevaporation rate, does not much affect TC track or cy-501

clone density, or global mean precipitation, in contrast to the study with E2 by Kim et502

al. (2012), which found that rain reevaporation had a major impact on these variables.503

The model has a high bias in precipitation in most sensitivity tests, which is further in-504

creased by increasing ε1 and is only reduced by decreasing ε2 from the default value, which505

exacerbates the low bias in TCs frequency. (Note that some, e.g. Stephens et al. (2012),506

have argued that the satellite-derived precipitation estimates to which we compare the507

model may have a low bias compared to reality, based on energy budget calculations.)508

The increase of precipitation with ε1 is consistent with the results of Kim et al. (2012),509

who changed the same parameter in E2 and found that it led to a high precipitation bias.510

Some variables, like cloud optical depth and sea level pressure, have consistent biases that511

are not much affected by changing the tuning parameters. The low ε2 tests also reverse512

the sign of the surface temperature bias, but also have larger biases in OLR, upper level513

zonal winds, zonal mean specific humidity, and surface radiation. In addition to the greater514

TOA radiative imbalance shown in Figure 11, the tests with higher ε2 have greater bi-515

ases in the surface radiation imbalance, and the greater (negative) TOA imbalance is mainly516

due to too much outgoing shortwave radiation, consistent with the increase in cloud cover517

shown in Figure 11.518

Measuring error by differences in global mean quantities does not account for the519

possibility that the model could get the global mean right but have the wrong spatial520

distribution. The normalized RMSE shown in Figure 13b accounts for this, albeit not521

considering error sign. Looking at the TC properties for the experiments where ε2 is in-522

creased from its default value, we see that while errors in the global means are small, in523

some cases RMSE is relatively large compared to other experiments. Given the small num-524

ber of TCs in one year, errors in the spatial distribution especially for genesis density525

would be expected. However, the experiments with ε2 set to 0.9 generally have higher526

RMSE for precipitation and zonal mean atmospheric temperature than those with vary-527

ing divergence damping terms and ε2 at its default value. Other variables, such as OLR528

and outgoing shortwave radiation (OSR), show more straightforward relationships be-529

tween the two error metrics, with smaller global mean errors corresponding to smaller530

RMSEs, while some variables with little change in the global mean error across exper-531
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iments, such as sea level pressure and cloud optical depth, have no apparent pattern in532

the normalized RMSEs due to amplification of noise by the RMSE normalization.533

To see how these errors are affected by the change from V1 to V2, we show in Fig-534

ure 14 the same difference in global means quantity as in Figure 13a but for the V2 de-535

fault run and the four V2 sensitivity tests, along with their counterparts for V1. The me-536

dian normalization is applied across this set of 10 experiments. Global TC track and gen-537

esis density errors are smaller in the V2 default run than in V1, with sensitivity tests pro-538

ducing little further improvement. Some climate variables, however, have greater global539

mean biases in V2 than in V1, particularly precipitation, land surface temperature, and540

the net surface heat flux. Interestingly, biases in both OLR and OSR are smaller in V2541

than in V1, likely owing to the changes in the microphysics scheme in the case of OSR,542

but the TOA radiative imbalance shown in Figure 12 still increases since the compen-543

sation between these biases is reduced. The normalized RMSE metric (Figure S2) shows544

that errors in most climate variables (though not precipitation for the default case) are545

larger in V2 than in V1. RMSE values for TC track density and genesis density are also546

larger in the default case for V2 than V1, despite the number of tropical cyclones be-547

ing higher. This is likely due to V2 having fewer TCs than V1 in the Eastern North Pa-548

cific (Figure 1), which is the place with the highest TC track and genesis density in the549

real world.550

The similarity of V1 and V2 storms, combined with the relative insensitivity of TC551

variables to most tuning parameters and the common cube-sphere dynamical core with552

E2, suggests that the improvement in TCs from E2 to E3 is primarily a result of increased553

resolution, but the improvements from V1 to V2, which retained the same default val-554

ues of the entrainment and damping parameters, show that improving model physics can555

still lead to better representation of TCs. Future model runs with the final version of556

E3 at C180 resolution will likely show reduced biases in climate variables relative to V2,557

especially in the TOA radiation imbalance that was corrected in subsequent model de-558

velopment, with TC representation perhaps slightly further improved. It may also be pos-559

sible to increase the number of TCs, as well as improve the representation of the seasonal560

cycle of TCs and reduce other climate biases, using stochastic parameterizations, as was561

done by Vidale et al. (2021) for two other GCMs. However, our results from V1 and V2562

are already sufficient to show that E3 has substantially improved TC representation rel-563
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Figure 14. As in Figure 13a but for the sensitivity tests conducted for V2 and the equivalent

tests also done for V1, with the normalization by median absolute value applied across the ten

experiments for each row.
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ative to E2, and that it performs in many ways comparably to other GCMs run at sim-564

ilar resolution.565

6 Conclusions566

In this study, we have explored the characteristics of the 0.5◦ resolution version of567

the GISS ModelE3 GCM, in two different versions across its development cycle. The rep-568

resentation of TCs is much improved from the CMIP5 GISS-E2 GCM, with some TCs569

reaching hurricane intensity and the average storms in E3 having similar wind speeds570

to those of other half-degree GCMs, obviating the need to use a tracker with a wind speed571

threshold well below that in observations. The model continues to show common biases572

in GCMs, such as having too few TCs, especially in the North Atlantic, and lacking storms573

of major hurricane intensity, although it is better at capturing more intense minimum574

central pressures than E2. The changes made between April 2018 (V1) and March 2019575

(V2) further reduced biases in TC counts, intensities, and lifetimes, while also re-introducing576

the excess of TCs in the North Indian basin during the summer monsoon (though to a577

much lesser degree than in E2). Our analysis of the simulated TCs’ composite spatial578

structures shows that E3 reproduces spatial structures in winds, OLR and precipitation579

comparable to those seen in other models at similar resolution. Our analysis of azimuthally580

averaged TC properties (Figure 10) shows that the thermal structure of the simulated581

TCs is similar to that in other GCMs shown by Moon et al. (2020a), but updrafts, peak582

precipitation, and radial flows are weaker in E3 than in other GCMs for storms with equiv-583

alent intensity.584

Our various sensitivity tests show that the most important parameter affecting TC585

numbers and intensity in E3 is the entrainment rate constant for the strongly entrain-586

ing plume in the two-plume convection scheme. Increasing this parameter, ε2, leads to587

more TCs. It also introduces greater errors in global mean energy imbalances at the sur-588

face and top of atmosphere, but experience suggests that these can be largely reduced589

by adjustments to other parameters, such as ice fall speed, without losing the benefits590

gained by increasing entrainment. We did not find divergence damping terms to be im-591

portant for TCs, in contrast with experiments with the GFDL model by Zhao et al. (2012),592

who found that increasing the divergence damping parameter consistently increased TC593

counts, while increasing cumulus mixing rates caused TC counts to first increase then594

decrease. Kim et al. (2012) found that changing the convection scheme in E2 to a one-595

–33–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

plume scheme with an entrainment rate multiplier of 0.6 (in contrast to the control two-596

plume experiment with ε1=0.3 and ε2=0.6) led to reduced TC counts, but subsequently597

increasing rain reevaporation dramatically increased them. Our results suggest that re-598

taining the two-plume scheme and changing the evaporation rate of the more strongly599

entraining plume instead of the weaker one provides a more useful, singular “knob” to600

optimize TC properties, without the need to change rain evaporation rates. Overall, bi-601

ases in most climate variables across the sensitivity tests are slightly larger in V2 than602

in V1, but with both versions being snapshots in a years-long process of model devel-603

opment that has not neared its end — particularly as there is no C180 version of Model604

E3 in the CMIP6 ensemble — it would be wrong to draw any inference of a trajectory605

in these errors from just these two versions.606

Overall, we can conclude that the E3 version of the GISS GCM, when run at ap-607

proximately 0.5◦ resolution, has much improved representation of TCs from the previ-608

ous generation, and is now comparable to other GCMs of similar resolution, at least ac-609

cording to the average intensity storms. This indicates that E3 will be useful for future610

studies of TC responses to climate variability and change, whether on its own or as part611

of multi-model ensembles.612
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