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Abstract 14 

As all kinds of physics-based and data-driven models are emerging in hydrologic and hydraulic 15 

engineering, Bayesian model averaging (BMA) is one of the popular multi-model methods used 16 

to account for various uncertainty sources in the flood modeling process and generate robust 17 

ensemble predictions. The reliability of BMA parameters (weights and variances) determines the 18 

accuracy of BMA predictions. However, the uncertainty in BMA parameters with fixed values, 19 

which are usually obtained from Expectation-Maximization (EM) algorithm, has not been 20 

adequately investigated in BMA-related applications over the past few decades. Given the 21 

limitations of the commonly used EM algorithm, Metropolis-Hastings (M-H) algorithm, which is 22 

one of the most widely used algorithms in Markov Chain Monte Carlo (MCMC) method, is 23 

proposed to estimate BMA parameters. Both numerical experiments and one-dimensional HEC-24 

RAS models are employed to examine the applicability of M-H algorithm with multiple 25 

independent Markov chains. The performances of EM and M-H algorithms are compared based 26 

on the daily water stage predictions from 10 model members. Results show that BMA weights 27 

estimated from both algorithms are comparable, while BMA variances obtained from M-H 28 

algorithm are closer to the given variances in the numerical experiment. Moreover, the normal 29 

proposal used in M-H algorithm can yield narrower distributions for BMA weights than those 30 

from the uniform proposal. Overall, MCMC approach with multiple chains can provide more 31 

information associated with the uncertainty of BMA parameters and its performance is better 32 

than the default EM algorithm in terms of multiple evaluation metrics as well as algorithm 33 

flexibility. 34 
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1 Introduction 35 

Application of different numerical models based on physical processes as well as data driven 36 

approaches are playing a crucial role in simulating hydrologic and hydraulic systems to provide 37 

flood risk information to the public (Dottori et al., 2021; FEMA, 2018; Teng et al., 2017; Xie et 38 

al., 2021).  Given the temporal and spatial variability of flood events as well as the complexity of 39 

watersheds, the pursuit of a “perfect” model that can incorporate all hydrologic and hydraulic 40 

processes and handle different scenarios is encouraging, but this pursuit faces multiple 41 

challenges. The challenges in simulating flooding processes, including the limitations of 42 

governing mathematic principles, estimation of parameters, measurement of driving forces, and 43 

computational efficiency, are important issues that modelers need to take into consideration in 44 

order to provide reliable and robust predictions about flooding (Jafarzadegan et al., 2021; 45 

Kobarfard et al., 2022; Liu and Merwade, 2018; Merwade et al., 2008; F Pappenberger et al., 46 

2005; Florian Pappenberger et al., 2006; Sharma et al., 2022; Teng et al., 2017). Additionally, 47 

“equifinality” in hydrologic and hydraulic modeling may lead to multiple models or different 48 

model configurations to yield similar results that match the observations equally well (Beven and 49 

Binley, 1992; Refsgaard et al., 2012; Von Bertalanffy, 1972). Thus, it is not recommended to 50 

rely on streamflow predictions and flood inundation maps obtained by a single model 51 

implementation (Duan et al., 2007; Huang and Merwade, 2023; Liu and Merwade, 2018; 52 

Romanowicz and Beven, 2003; Zounemat-Kermani et al., 2021). 53 

 54 

Considering the uncertainty involved in simulating the hydrology and hydraulics of flooding, 55 

multi-model ensemble methods should be applied to capture various uncertainty sources for 56 

making robust predictions (Bates and Granger, 1969; Dickinson, 1973; Newbold and Granger, 57 
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1974; Teng et al., 2017; Zounemat-Kermani et al., 2021). Over the past few decades, different 58 

kinds of multi-model methods, for example the simple average method (Makridakis et al., 1982), 59 

the weighted average method (Makridakis and Winkler, 1983; Singh et al., 2010; Tebaldi and 60 

Knutti, 2007; Winkler, 1989), the multi-model super-ensemble method (Ajami et al., 2006; 61 

Krishnamurti et al., 1999) and the neural network method (Acharya et al., 2014; Chattopadhyay 62 

and Chattopadhyay, 2008; Shamseldin and O'Connor, 1999; Shamseldin et al., 1997; Zounemat-63 

Kermani et al., 2021), have been widely used in climate projections and hydrologic predictions. 64 

Among these multi-model ensemble approaches, the Bayesian model averaging (BMA) approach 65 

(Kass and Raftery, 1995; Leamer, 1978; Raftery et al., 2005) has been successfully applied to the 66 

flood modeling (Duan et al., 2007; Huang and Merwade, 2023; Liu and Merwade, 2018, 2019; 67 

Rings et al., 2012; Vrugt et al., 2008). More importantly, the BMA approach is able to produce 68 

accurate and reliable predictions due to its advantages over other multi-model techniques. 69 

Specifically, the BMA probability density function (PDF) of a predictive variable is a weighted 70 

average of PDFs from a model ensemble that covers multiple significant uncertainty sources. 71 

From the Bayesian perspective, the weight of a model member represents its relative prediction 72 

performance compared to the other model members and the sum of the nonnegative weights is 73 

equal to one, which is easy to interpret when performing the model evaluation and comparison 74 

(Raftery et al., 2005). Additionally, the BMA procedure can produce the prediction probability 75 

distribution which reflects the uncertainty associated with the mean prediction (Raftery et al., 76 

1997). Finally, the relative impacts of individual uncertainty sources and the uncertainty 77 

propagation in the modeling process can be demonstrated and quantified through a hierarchical 78 

BMA (HBMA) framework (Chitsazan and Tsai, 2015; Huang and Merwade, 2023; Liu and 79 

Merwade, 2019). 80 
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 81 

The performance of BMA predictions is primarily dependent on the accurate estimation of BMA 82 

parameters (weights and variances). However, the reliability associated with BMA parameters 83 

has not received enough attention. In past literature relevant to the applications of  BMA 84 

approach, both the weights and variances obtained through the Expectation-Maximization (EM) 85 

algorithm are assigned fixed values (Cao et al., 2021; Darbandsari and Coulibaly, 2021; 86 

Dormann et al., 2018; Duan et al., 2007; Huang and Merwade, 2023; Liu and Merwade, 2018; 87 

Madadgar and Moradkhani, 2014; Moknatian and Mukundan, 2023; Tsai, 2010). These fixed 88 

values cannot represent the uncertainty in the BMA parameters, especially when different 89 

datasets are used for training or a specific training dataset does encompass the overall prediction 90 

capacity of certain models (Madadgar and Moradkhani, 2014; Refsgaard et al., 2012; Rojas et al., 91 

2010; Tebaldi and Knutti, 2007). Although the EM algorithm has been provided to be able to 92 

provide good estimates of  the BMA weight and variance for each model member with 93 

satisfactory computational efficiency (McLachlan and Krishnan, 2007; Vrugt et al., 2008), a few 94 

issues need to be addressed. First, the global optimal estimates of BMA parameters cannot be 95 

guaranteed especially for solving some high-dimensional problems (Duan et al., 2007; Vrugt et 96 

al., 2008). Second, the assumption that the conditional PDF of the variable of interest follows a 97 

normal distribution in the application of the default EM algorithm limits its wide application in 98 

other fields. Finally, a fixed value for the pre-processing parameter (e.g., transformation 99 

parameter in the Box-Cox method) used to transform the original datasets into the Gaussian 100 

space can add more uncertainty in the final predictions (Liu and Merwade, 2018). 101 

 102 
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Given the limitations of the default EM algorithm in the BMA analysis discussed above, the 103 

Markov Chain Monte Carlo (MCMC) sampling method (Robert et al., 1999) is proposed in this 104 

study to estimate the BMA parameters. It has been shown that the application of MCMC method 105 

for hydrology can provide a full view of the unknown parameter’s posterior probability 106 

distribution (Gaume et al., 2010; Nguyen et al., 2021; Reis Jr and Stedinger, 2005; Sharma et al., 107 

2022; Vrugt et al., 2008; Wang et al., 2017; Zhao et al., 2021), which can provide an explicit 108 

representation and quantification for the parameter uncertainty. Specifically, this method can be 109 

implemented by different algorithms to generate a sequence of stochastic samples that converge 110 

to the target probability density function of the unknown parameter (Luengo et al., 2020). In a 111 

previous study, differential evolution adaptive metropolis algorithm (Vrugt, 2016; Vrugt et al., 112 

2008) was developed to estimate the BMA weights and an integrated variance of the hydrologic 113 

model ensemble. This study also introduced more parameters, such as the number of chain pairs 114 

used to generate the proposed sample and the jump size among different modes, in the algorithm. 115 

Furthermore, an overall variance across different model members was assumed and the 116 

autocorrelation of the samples in each chain was not evaluated, which would add more 117 

uncertainty to the estimates of BMA parameters.  118 

 119 

The Metropolis-Hastings (M-H) algorithm (Hastings, 1970; Metropolis et al., 1953) is one of the 120 

most widely used algorithms in the MCMC method, but its feasibility for estimating BMA 121 

parameters has not been investigated in previous literature. For the solution to some high-122 

dimensional and multimodal problems (e.g., likelihood function in the BMA analysis), one single 123 

Markov chain may get stuck in a local optimal mode (Vats and Knudson, 2021), and hence 124 

multiple independent Markov chains is a possible option to explore the whole value space of 125 
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unknown parameters. Additionally, the MCMC method with the M-H algorithm does not require 126 

too many subjective judgments for setting-up of the sampling process and it is flexible in terms 127 

of modification based on the assumption of the target posterior distribution of the unknown 128 

parameter. Accordingly, the overall goal of this study is to investigate the feasibility of the M-H 129 

MCMC algorithm and assess any advantages over the default EM algorithm for estimating BMA 130 

parameters (weights and variances) of ensemble flood modeling. This broader goal is 131 

accomplished through the following objectives: (i) Apply BMA approach in flood modeling to 132 

estimate BMA parameters using different numbers of samples in each Markov chain with the M-133 

H algorithm; (ii) compare the performance of EM and M-H MCMC algorithms for estimating the 134 

BMA parameters; (iii) estimate the BMA weights using different proposal distributions in the M-135 

H algorithm; and (iv) investigate the impact of different conditional PDFs of the predictor 136 

variable on the BMA parameters. To examine the validity and applicability of the MCMC 137 

method with the M-H algorithm in the BMA analysis, both numerical experiments and hydraulic 138 

modeling using Hydrologic Engineering Center-River Analysis System (HEC-RAS) (Brunner, 139 

2016b; FEMA, 2018) are carried out in this study. 140 

2 Study area and data 141 

For hydraulic modeling to evaluate the uncertainty in the BMA parameters and verify the 142 

applicability of the MCMC method on the parameter estimation, two river reaches (see Figure 1 143 

and Table 1) in the states of Indiana and Texas of the United States are selected. Both reaches 144 

have existing HEC-RAS models from the Federal Emergency Management Agency’s (FEMA) 145 

Flood Insurance Rate Map program and have both upstream and downstream streamflow 146 

measurements from the United States Geological Survey (USGS) gauges. These study reaches 147 
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are located in the midwestern and southern regions of the United States and provide distinct 148 

geomorphic characteristics, thus making them good test beds for the BMA analysis. The HEC-149 

RAS models for all counties in Indiana are available from the Indiana Department of Natural 150 

Resources’ hydrology and hydraulics library (INDNR, 2018), and the HEC-RAS models for the 151 

central and western regions in Texas can be accessed from FEMA’s Estimated Base Flood 152 

Elevation Viewer (FEMA, 2015). Available HEC-RAS models from FEMA studies are 1D 153 

steady-state, but to reduce the uncertainty from the steady-flow assumption and also enable 154 

comparison of simulation output from the model ensemble to the observation from the USGS 155 

gauges, they are modified to perform 1D unsteady-flow simulation. The unsteady state 156 

modification did not involve any changes to the model structure and parameter, including the 157 

layout and geometry of river cross-sections and Manning’s n for the main channel and the 158 

floodplain. Unsteady state simulations for 100 days from March to July 2021 covering a couple 159 

of flood events are performed. Daily streamflow data (upstream input for HEC-RAS) and water 160 

stage data (downstream output for the BMA analysis) used in this study are obtained from the 161 

corresponding USGS gauges at each study reach. 162 
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 163 
Figure 1. Layout map of study areas in Indiana and Texas, USA. 164 

 165 
Table 1. Basic information of study area. 166 

Study 
stream 

Channel 
length 
(km) 

Average 
channel 

width (m) 

Channel 
slope 
(%) 

Upstream 
USGS 
gauge 

Downstream 
USGS gauge 

Simulation 
Period 

(100 days) 

White 6.76 64 0.0631 03348000 03348130 2021-3-15 to 
2021-6-22 

East Fork 
San Jacinto 50.11 76 0.0438 08070000 08070200 2021-4-15 to 

2021-7-23 
 167 

3 Methodology 168 

3.1 Numerical Experiment and Hydraulic Modeling 169 

(1) Numerical experiment 170 

Considering the complexity of residual patterns in hydrologic and hydraulic models (Beven, 171 

2016), it is necessary to conduct numerical experiments based on pre-defined model errors as 172 
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this is the first study to apply the MCMC method for estimating BMA parameters. Given the 173 

basic assumption of EM algorithm and the relatively small size (less than 10) of the model 174 

ensemble in practice (Cao et al., 2021; Huo et al., 2019; Moknatian and Mukundan, 2023; 175 

Raftery et al., 2005; Tian et al., 2021; Tsai, 2010; Vrugt et al., 2008), a total of 10 sets of 176 

hydrologic data (100 days of daily observed water stage data, denoted as D, of the White river in 177 

Indiana) that contain random errors (denoted as ε)  are generated. These synthetic datasets are 178 

created assuming a normal distribution with zero mean and standard deviations ranging from 179 

0.06 m (0.2 ft) to 0.30 m (1 ft) with an increment of 0.06m (0.2 ft).  These 10 datasets (see Table 180 

2) will serve as the predictions obtained from the flood model ensemble. Next, both EM and M-181 

H MCMC algorithms are applied to these predictions to estimate the BMA parameters (weight 182 

and variance) of each candidate model. Due to the randomness in model errors, it is expected that 183 

the value of BMA parameters will vary to some extent even though the standard deviations of the 184 

normal distribution are the same. For example, both Model 1 (f1) and Model 2 (f2) have the same 185 

standard deviation of 0.06 m in Table 2. 186 

Table 2. BMA ensemble model members for numerical experiments. 187 

No. Model Predictions (m) No. Model Predictions (m) 
1 f1 = D+ ε, where ε ~ N (0, 0.062) 2 f2 = D+ ε, where ε ~ N (0, 0.062) 
3 f3 = D+ ε, where ε ~ N (0, 0.122) 4 f4 = D+ ε, where ε ~ N (0, 0.122) 
5 f5 = D+ ε, where ε ~ N (0, 0.182) 6 f6 = D+ ε, where ε ~ N (0, 0.182) 
7 f7 = D+ ε, where ε ~ N (0, 0.242) 8 f8 = D+ ε, where ε ~ N (0, 0.242) 
9 f9 = D+ ε, where ε ~ N (0, 0.302) 10 f10 = D+ ε, where ε ~ N (0, 0.302) 

Note: D = 100 days of daily water stage data, and ε = random model errors that follow a normal 188 
distribution. 189 

 190 

(2) Ensemble Flood Modeling in 1D HEC-RAS 191 
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A 1D HEC-RAS model is a simplified representation of the river network, i.e., river centerlines, 192 

left and right bank lines, and horizontal cross-sections along the reach. During the simulation 193 

process, the water surface elevation at discrete cross-sections is estimated for given boundary 194 

conditions. Using the water surface elevations from all cross-sections, a 2D inundation extent 195 

map can be generated by interpolating the positive differences between the topographical data 196 

(e.g., digital elevation model) and the water surface layer. More technical details about the 1D 197 

HEC-RAS can be referred to the software manual (Brunner, 2016a, 2016b). In terms of the 198 

model configuration, a HEC-RAS project is a collection of multiple files including the river 199 

geometry, relevant parameters, and boundary conditions. Based on previous studies about the 200 

uncertainty in the modeling of FEMA’s flood inundation maps, an uncertainty range of ± 20% 201 

around values of channel roughness and upstream flow input used in the model are considered in 202 

simulations (Huang and Merwade, 2023; Liu and Merwade, 2019). Accordingly, the ensemble is 203 

made up of 10 sets of model predictions from the HEC-RAS ensemble (see Table 3), 9 of which 204 

are obtained based on different combinations of geometry files (including channel roughness) 205 

and unsteady flow files (including upstream flow series), and the last one is the average of 206 

simulations from the other 9 members. 207 

Table 3. Model configurations in HEC-RAS for BMA analysis. 208 

Model 
Configuration No. Channel Roughness Upstream Flow Input HEC-RAS Plan Files 

1 0.8n 0.8Q g01 & u01 
2 0.8n Q g01 & u02 
3 0.8n 1.2Q g01 & u03 
4 N 0.8Q g02 & u01 
5 N Q g02 & u02 
6 N 1.2Q g02 & u03 
7 1.2n 0.8Q g03 & u01 
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Model 
Configuration No. Channel Roughness Upstream Flow Input HEC-RAS Plan Files 

8 1.2n Q g03 & u02 
9 1.2n 1.2Q g03 & u03 
10 Average of simulations from No.1-No.9 

Note: n is the Manning’s n value for the main channel in the original HEC-RAS models, Q is the 209 
streamflow from USGS gauge stations, g** represents a geometry file of a HEC-RAS project, 210 
and u** represents a flow data file of a HEC-RAS project. 211 
 212 

3.2 Bayesian modeling averaging (BMA) analysis 213 

BMA (Kass and Raftery, 1995; Raftery et al., 2005) is a statistical method that averages the 214 

predictions from an ensemble of multiple competing models instead of from a single “perfect” 215 

model through the corresponding BMA weights. According to the law of total probability, the 216 

PDF of the BMA probabilistic prediction of the variable of interest (daily water stage in this 217 

study) is given by Equations (1) - (2). 218 

1 1
( | ) ( | ) ( | , ) ( | , )

K K

k k k k k k
k k

p y D p f D p y f D w p y f D
= =

= ⋅ = ⋅     (1) 219 

1
1

K

k
k

w
=

=                                                                (2) 220 

where y is the predictor variable; 1 2[ , ,... ]obs obs obs
TD y y y= is the observed hydrologic data (daily 221 

water stage data from the USGS gauges) with data length T; kf is the prediction of the kth model. 222 

( | )k kp f D w= is the posterior probability of the predictions of kth model given the observation 223 

data. The weight (wk) reflects how well a specific model prediction matches the observed data, 224 

and hence better-performance models have higher weights, which is nonnegative and goes up to 225 
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one. ( | , )k kp y f D is the posterior distribution of y given both the predictions of the kth model and 226 

the observation data. 227 

 228 

Based on Equation (1), a log-likelihood function is constructed for estimating the BMA weight 229 

and variance that can maximize the likelihood. By convention, it is assumed that the conditional 230 

probability ( | , )k kp y f D  follows a normal distribution. Thus, the log-likelihood function is 231 

shown in Equation (3). 232 

,1
2

,
1 1 1 1

1( ) log ( | , ) log
2

t k t

k

y f
T K T K

k k t k t k k
t k t k k

L w p y f w e σθ σ
σ π

− 
−  

 

= = = =

    = ⋅ = ⋅      
               (3) 233 

where θ  is the unknown BMA parameters (weight and variance of each model member), kw is 234 

the BMA weight of kth model, ,k tf is the prediction of the kth model at time step t, ty is the 235 

predictor variable at time step t, and the mean and standard deviation of the normal distribution,236 

,  and k t kf σ . 237 

Because some of the hydrologic variables (e.g., water stage, streamflow, rainfall, etc.) are 238 

nonnegative, the corresponding distributions tend to be skewed to some extent (Sloughter et al., 239 

2007). Hence the assumption of normal distribution does not rigorously hold in this case. To 240 

explore the effect of conditional PDFs on the estimates of BMA parameters, it is assumed that 241 

the conditional probability ( | , )k kp y f D  follows a gamma distribution (PDF = 0 for y ≤ 0) with 242 

two parameters (α and β) (Qi et al., 2021; Vrugt et al., 2008; Vrugt and Robinson, 2007), and the 243 

log-likelihood function is shown in Equation (4). The gamma distribution is not symmetric 244 
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around the mean like the normal distribution. Specifically, its mean is identical to kfμ αβ= = , 245 

and its variance is identical to 2 2
k kfσ αβ β= = , which depends on the specific prediction ( kf ) 246 

and hence is heteroscedastic. 247 

1
,

1 1 1 1

1( ) log ( | , ) log
( )

tyT K T K

k k t k t k k t
t k t k

L w p y f w y eα β
αθ σ

α β
−

−

= = = =

  = ⋅ = ⋅    Γ   
               (4) 248 

where α  is the shape parameter of gamma distribution and 2 2
, /k t kfα σ= , and β  is the scale 249 

parameter of gamma distribution and 2
,/k k tfβ σ= . 250 

3.3 Expectation-Maximization (EM) Algorithm 251 

Generally, it is not easy to obtain an analytical solution for the BMA log-likelihood function (see 252 

Equation (3)) so the EM algorithm is recommended, and has been commonly used in previous 253 

BMA applications (Duan et al., 2007; Huang and Merwade, 2023; Liu and Merwade, 2018; 254 

Madadgar and Moradkhani, 2014; McLachlan and Krishnan, 2007; Moknatian and Mukundan, 255 

2023; Parrish et al., 2012; Raftery et al., 2005). To find a numerical solution that can maximize 256 

the log-likelihood function, this algorithm alternates iteratively between the E (i.e., Expectation) 257 

step (see Equation (5)) and the M (i.e., Maximum) step (see Equations (6) and (7)). The value of 258 

log-likelihood function is updated with the weight and variance estimated through each iteration. 259 

The iteration will not stop until the difference between the previous value and the current value 260 

of the log-likelihood function is within a pre-assigned threshold (10-4 is taken in the study). The 261 

EM algorithm can guarantee that the likelihood function will be increasing monotonically at each 262 

iteration (Saul and Lee, 2002; Wu, 1983), and thus the parameters that maximize the likelihood 263 

can be obtained from the last M step. A few previous studies pointed out that the EM algorithm 264 
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can only converge to the local optimum rather than the global optimal results (Duan et al., 2007; 265 

McLachlan and Krishnan, 2007; Vrugt et al., 2008), but this issue has not been addressed 266 

adequately in the literature. 267 

1 1
,

,
1 1

,
1

( | , )

( | , )

i i
k k t k t ki

k t K
i i
k k t k t k

k

w g y f
z

w g y f

σ

σ

− −

− −

=

=
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              (5) 268 
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i t
k T

i
k t

t
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z
σ =

=

⋅ −
=



                      (7) 270 

where ,
i
k tz  is the latent variable depending on the performance of the kth model at time t in the ith 271 

iteration of the EM algorithm, i
kw  and i

kσ  is the BMA weight and standard deviation of the kth 272 

model in the ith iteration, respectively. 273 

3.4 Metropolis-Hastings (M-H) Algorithm 274 

In the conventional BMA analysis, optimal estimates of BMA weights and variances yielded 275 

from the EM algorithm are fixed values. These fixed values cannot be considered with certainty 276 

to be the global optimal solutions and provide enough information about the uncertainty 277 

associated with the estimates of the BMA parameters. Therefore, the MCMC method with the 278 

M-H algorithm is proposed to estimate the most likely values of the BMA parameters and 279 

produce their underlying posterior distributions. The MCMC sampling is usually conducted 280 

based on one single chain, but one single Markov chain may get stuck in a local mode for a high 281 
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dimensional problem (in the order of 20 unknown variables in this study). Thus, multiple 282 

independent chains are also tried in this study to explore the parameter space simultaneously and 283 

adequately, and then posterior distribution of each parameter is generated by using the local 284 

mode yielded by each chain. The flowchart in Figure 2 shows the procedure of the M-H 285 

algorithm with multiple MCMC chains. Without enough prior knowledge about the target 286 

distribution of the BMA parameters, a uniform distribution ranging from 0 to 1 or the normal 287 

distribution with a standard deviation of 0.1 is proposed to generate new samples of weights. A 288 

uniform distribution ranging from 0 to 1.5 x RMSE (root mean square error) is proposed to 289 

generate new samples of standard deviations during the MCMC sampling process. Since the 290 

dimensions and units of BMA standard deviations are different for different hydrologic variables 291 

of interest, it is difficult to propose another generalized proposal distribution and hence only a 292 

uniform proposal distribution is used in this study. The benefits of these assumptions mentioned 293 

above are that the proposal (prior) distribution is symmetric, and hence q(θ*| θn) = q(θn |θ*). 294 

Thus, the posterior density distribution of the parameters, π(θ | D), is directly equal to the 295 

likelihood function (see Equations (3) and (4)). The improved method can maintain the 296 

ergodicity based on multiple Markov chains and is expected to provide a full view of the 297 

posterior distributions of the BMA parameters. Moreover, multiple sizes of each MCMC chain 298 

are attempted to investigate its effect on the estimates of BMA parameters. In addition, compared 299 

with the traditional EM algorithm, which requires the assumption of a conditional normal PDF, 300 

the MCMC simulation is easy to set up without any major algorithmic modifications when using 301 

different conditional PDFs for the variable of interest in the BMA analysis. 302 
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 303 

Figure 2. Procedure of Metropolis-Hastings (M-H) algorithm with multiple Markov chains. 304 
 305 

3.5 Evaluation Metrics for Model Performance 306 

Both RMSE (Equation (8)) and four types of uncertainty coefficients (UC1 - UC4, see Equations 307 

(9) - (12)) (Huang and Merwade, 2023) defined based on the reliability of BMA prediction 308 

distribution and the accuracy of BMA mean predictions are employed to evaluate the overall 309 

model performance under EM and MCMC algorithms. In general, lower values of these metrics 310 

indicate less uncertain model predictions, a “perfect” model will have can uncertainty coefficient 311 

of zero. It is also important to note that these four types of uncertainty coefficients are 312 

independent from each other, thus the model performance and the associated uncertainty can be 313 

evaluated and quantified comprehensively from different perspectives. 314 
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%
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y
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where n is the total number of data points,  obsy  is the mean value of the observations ,obs iy  at each 320 

step i, ,BMA iy is the ith BMA mean prediction value, 90%obsN −  is the number of observed data 321 

points located outside the 90% prediction interval, obsσ  is the standard deviation of the observed 322 

data, r is the correlation coefficient between BMA mean predictions and observations,  BMAσ  is 323 

the standard deviation of BMA mean predictions, BMAy  is the mean of the BMA mean 324 

predictions, R2 is the coefficient of determination of a linear regression equation in the form of 325 

“Observation = Slope*BMA mean prediction”, and Slope is the slope of the linear regression 326 

equation. 327 
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4 Results and Discussion 328 

4.1 Effect of Sample Sizes in M-H MCMC Algorithm 329 

The MCMC method aims to find a finite number of local moves that produce samples 330 

asymptotically from the “correct” distribution of the variables of interest, which are the BMA 331 

weights and variances in this study. However, an appropriate sample size for generating a 332 

MCMC chain that mixes rapidly is still based on modelers’ experience and this size varies 333 

significantly for different cases (Gelman et al., 1995; Robert et al., 1999). Moreover, a strong 334 

autocorrelation among the samples within a chain can reduce the effective sample size, thus 335 

reducing the efficiency of sampling (Luengo et al., 2020). For the high-dimensional problem in 336 

this study (i.e., BMA likelihood function), Figure 3 shows that the conventional MCMC method 337 

with one single chain gets trapped in a set of local optimal solutions, and all the trace plots of 338 

BMA weights and standard deviations tend to be stagnant. Even after the sample size reaches 339 

100,000, which is much larger than the values used in previous literature, the mixing of any 340 

MCMC chain does not improve. In other words, the proposed samples are always rejected due to 341 

the low acceptance rate α (see Figure 2) and it is hard for a chain to jump outside the local mode 342 

of the posterior distribution of BMA parameters. 343 

 344 

Given the poor mixing of the MCMC sampling with one single chain, multiple independent 345 

MCMC chains are considered in this study by using the last point of each chain to form a new 346 

chain (see Figure 2), which presents the target posterior distribution. The trace plots (see Figure 347 

3) of multiple MCMC chains with different sample sizes show that a chain is very unlikely to 348 

accept a new sample after about 2000 iterations. Thus, 2000 samples are generated in each chain 349 

and the number of chains is set to be 100. The trace plots and autocorrelation functions (ACF) of 350 
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the BMA weights and variances of Model 1 (a model member with the lowest variance of model 351 

errors) and Model 9 (a model with the largest variance of model errors) in the numerical 352 

experiments (see Figures 4 and 5) indicate that the samples drawn from multiple independent 353 

MCMC chains are mixing very well and the autocorrelation is quickly dropping within the 5% 354 

significant interval (shown in the light blue region in the ACF in Figures 4 and 5), which means 355 

the entire space of the BMA parameters has been fully explored, and individual samples in the 356 

MCMC chain follow stationary and independent identical distributions. The histograms in 357 

Figures 4 and 5 represent the posterior distributions of the BMA weights and standard deviations, 358 

and more importantly, these statistical distributions demonstrate the uncertainty of the mean 359 

estimates. The histograms of the BMA parameters of Model 1 are close to a normal distribution, 360 

while the histograms of the BMA weights and standard deviations of Model 9 seem to follow a 361 

positively skewed distribution and a uniform distribution, respectively. It should be noted that 362 

similar analyses can also be performed on the posterior distributions of BMA parameters of other 363 

model members. 364 

 365 

As shown in the mixing trace plots and the ACFs in Figures 4 and 5, the posterior distribution of 366 

BMA parameters is stationary, and then the results from the 2000th sample in 100 independent 367 

chains are taken as a benchmark compared to the results obtained from multiple sizes of each 368 

chain. The comparison of mean BMA weights and standard deviations obtained from 100 369 

MCMC chains with different sample sizes is shown in Figures 6 and 7. The estimates from 370 

multiple sizes (3000, 4000, 5000, and 10000) are linearly regressed with those from 2000 371 

samples of each chain. The intercept of the regression equation is set to be zero, so only Slope is 372 

involved in the equation. The results show that the estimates of BMA parameters do not change 373 
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significantly (all the data points in Figure 6 are lying near the 45-degree line, and R2 is within 374 

0.95-1 and Slope is within 0.95-1.05 as shown in Figure 7) as the sample size increases, while 375 

the elapsed time of the sampling process carried out in a local personal computer becomes longer 376 

and longer (see Figure 7). Therefore, from the parsimony point of view, 2000 samples for each 377 

MCMC chain are adequate to guarantee the convergence of the target distribution of BMA 378 

parameters of the flood model ensemble with 10 or fewer members. 379 

 380 

Table 4 and Table 5 present the BMA parameters estimated through EM and MCMC algorithms, 381 

respectively. Because the model errors of Model 1 and Model 2 have the smallest variance, the 382 

results from different algorithms show good agreement that these two models are assigned the 383 

highest BMA weight among the 10 model members. The EM algorithm can quickly identify the 384 

model member with lower-variance errors (i.e., Model 1 and Model 2) and a small weight that is 385 

close to zero is assigned to the other model members with poorer prediction performances (i.e., 386 

Model 3 - Model 10). Since the prior distribution of BMA weights spans from 0 to 1, it is 387 

unlikely for the weight to be zero in the MCMC sampling process. However, it is important to 388 

highlight that the magnitudes of BMA weights obtained via these two algorithms are similar and 389 

the 90% confidence intervals from the MCMC algorithm do contain the deterministic value from 390 

the EM algorithm. The histograms in Figures 4 and 5 also show that the EM estimates are 391 

located around the mode of the statistical distribution. On the other hand, the BMA standard 392 

deviations of Model 3 - Model 10 estimated from the EM algorithm is quite close to zero, which 393 

is far away from the “true” standard deviation of the given model errors. This issue may be due 394 

to the original set up of the EM algorithm for the standard deviation (see Equations (5) and (7)) 395 

and hence it makes the estimates difficult to interpret. On the contrary, corresponding estimates 396 
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from the MCMC algorithm are quite close to the known standard deviation and it makes much 397 

more sense that a model member with a larger BMA variance usually gets a lower BMA weight. 398 

Additionally, it is important to note that even though the given errors have the same variance for 399 

two model members (e.g., Model 1 and Model 2, Model 3 and Model 4, and so on) in the 400 

numerical experiment, the BMA parameters of each pair are slightly different due to the 401 

randomness of the model errors. This further implies that fixed values of BMA parameters would 402 

introduce more uncertainty to these estimates. Thus, the posterior statistical distribution obtained 403 

through the MCMC algorithm is a more reliable way to demonstrate and quantify the uncertainty 404 

associated with BMA parameters. 405 

 406 

 407 

(a) BMA weights obtained from a single MCMC chain (100k samples & top 10k samples in the 408 
grey region). 409 

 410 
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 411 
(b) BMA standard deviations obtained from a single MCMC chain (100k samples and top 10k 412 

samples in the grey region). 413 
Figure 3. Trace plots of BMA parameters from M-H algorithm with a single MCMC chain with 414 

100k samples. 415 
 416 

 417 
(a) BMA weight. 418 

 419 
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 420 
(b) BMA standard deviation (m). 421 

Figure 4. Posterior distribution of BMA parameters of Model 1 from M-H MCMC algorithm. 422 

 423 

(a) BMA weight. 424 
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 425 
(b) BMA standard deviation (m). 426 

Figure 5. Posterior distribution of BMA parameters of Model 9 from M-H MCMC algorithm. 427 

 428 

(a) BMA weights. (b) BMA standard deviations (m). 
Figure 6. Comparison of BMA weights from M-H algorithm with 100 MCMC chains with 429 

different sample sizes. 430 
 431 
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(a) BMA weights. (b) BMA standard deviations. 
Figure 7. Comparison of elapsed time (Desktop processor specifications: Intel(R) Core(TM) i7-432 

9700 CPU @ 3.00GHz) and R2 & Slope of linear regression from M-H algorithm with 100 433 
MCMC chains with different sample sizes. 434 

Table 4. BMA parameters obtained from EM algorithm. 435 

No. Model Weight σ (m) 
1 ε ~ N (0, 0.062) 0.492 0.04 
2 ε ~ N (0, 0.062) 0.497 0.04 
3 ε ~ N (0, 0.122) 0.0002 0.02 
4 ε ~ N (0, 0.122) 0 0.05 
5 ε ~ N (0, 0.182) 0 0.08 
6 ε ~ N (0, 0.182) 0 0.02 
7 ε ~ N (0, 0.242) 0 0.11 
8 ε ~ N (0, 0.242) 0 0.05 
9 ε ~ N (0, 0.32) 0.01 0.001 
10 ε ~ N (0, 0.32) 0 0.09 

 436 

Table 5. BMA parameters obtained from MCMC algorithm. 437 

No. Model Mean weight 90% interval 
of weight Mean σ (m) 90% interval 

of σ (m)
1 ε ~ N (0, 0.062) 0.332 [0.05, 0.65] 0.05 [0.02, 0.08] 
2 ε ~ N (0, 0.062) 0.32 [0.07, 0.60] 0.04 [0.01, 0.07] 
3 ε ~ N (0, 0.122) 0.068 [0, 0.17] 0.08 [0.02, 0.14] 
4 ε ~ N (0, 0.122) 0.059 [0, 0.16] 0.09 [0.01, 0.17] 
5 ε ~ N (0, 0.182) 0.04 [0, 0.11] 0.14 [0.02, 0.27] 
6 ε ~ N (0, 0.182) 0.044 [0, 0.12] 0.12 [0.02, 0.23] 
7 ε ~ N (0, 0.242) 0.035 [0, 0.10] 0.16 [0.02, 0.30] 
8 ε ~ N (0, 0.242) 0.032 [0, 0.09] 0.2 [0.04, 0.35] 
9 ε ~ N (0, 0.32) 0.037 [0, 0.11] 0.2 [0.01, 0.41] 
10 ε ~ N (0, 0.32) 0.033 [0, 0.09] 0.21 [0.02, 0.43] 
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 438 

4.2 Impact of Proposal Distributions in M-H MCMC Algorithm 439 

The proposal distribution in the MCMC method is a conditional distribution (see q(θ*| θn) and 440 

q(θn |θ*) in Figure 2) that is used to generate a new sample θ* given the current sample θn, and 441 

vice versa. However, the selection of the proposal distribution tends to be subjective in practice. 442 

To investigate the effect of proposal distributions on the estimates of BMA weights, a normal 443 

proposal distribution is proposed to compare with the uniform proposal distribution used in the 444 

previous section. The standard deviation of the normal prior distribution is taken as 0.1 through a 445 

trial and error procedure. If the standard deviation is too small, it is very likely that a new sample 446 

BMA weight to be rejected; if the standard deviation is assigned a large value, a new sample 447 

BMA weight might be negative, which would contradict the assumption of nonnegative BMA 448 

weights. Similarly, the number of samples in each chain is assigned to be 2000 since the larger 449 

sample size does not change the estimates significantly. Figure 8 shows that the trace plots of 450 

BMA weights generated based on both proposal distribution are already stagnant when the 451 

sample size reaches 2000. To be consistent with the sampling based on a uniform proposal 452 

distribution, the number of independent chains is also set to be 100. The estimates of BMA 453 

weights based on the normal proposal distributions in the M-H MCMC sampling are presented in 454 

Table 6. Comparing Tables 5 and 6, the mean estimates of BMA weights obtained from both 455 

uniform and normal proposal distributions are quite close to each other. However, the 90% 456 

confidence interval of the BMA weights based on the normal proposal distribution is narrower 457 

compared to that from the uniform proposal distribution, which means the former one gives a 458 

more precise and confident assessment on the performance of individual model members. 459 

 460 
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Based on the BMA parameters estimated from the EM algorithm and the MCMC method with 461 

different proposal distributions, the prediction distributions of water stage produced through a 462 

Monte Carlo sampling procedure are shown in Figure 9 and the model uncertainty quantified 463 

based on multiple independent evaluation metrics are presented in Table 7. Figure 9 shows that 464 

these three sets of BMA mean predictions match the observations very well and the difference in 465 

model performance is similar visually. However, it is obvious that the 90% confidence interval 466 

of the BMA prediction distribution obtained from the EM algorithm is narrower due to its 467 

extreme low values of the BMA variances. The values of RMSE and UC1 - UC4 indicate that the 468 

overall model performance based on MCMC method is better than the EM algorithm, and the 469 

normal proposal distribution in the M-H MCMC algorithm is slightly better than the uniform 470 

proposal distribution. Therefore, the results of the numerical experiment demonstrate that the 471 

MCMC method with multiple independent chains and a normal proposal distribution in the M-H 472 

algorithm can be a better alternative to the default EM algorithm for estimating the reliable BMA 473 

parameters (weights and variances) in the BMA analysis. 474 

 475 

(a) Uniform proposal distribution. (b) Normal proposal distribution. 
Figure 8. Trace plots of BMA weights from M-H algorithm with different proposal distributions. 476 

 477 
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Table 6. BMA weights obtained from normal proposal distributions in M-H MCMC algorithm. 478 

No. Model Mean weight 90% interval of weight
1 ε ~ N (0, 0.062) 0.354 [0.23, 0.50] 
2 ε ~ N (0, 0.062) 0.35 [0.21, 0.49] 
3 ε ~ N (0, 0.122) 0.062 [0, 0.14] 
4 ε ~ N (0, 0.122) 0.053 [0, 0.14] 
5 ε ~ N (0, 0.182) 0.034 [0, 0.09] 
6 ε ~ N (0, 0.182) 0.033 [0, 0.09] 
7 ε ~ N (0, 0.242) 0.029 [0, 0.09] 
8 ε ~ N (0, 0.242) 0.028 [0, 0.08] 
9 ε ~ N (0, 0.32) 0.028 [0, 0.07] 
10 ε ~ N (0, 0.32) 0.028 [0, 0.07] 

 479 

(a) EM algorithm. 
 

(b) Uniform proposal distribution in M-H 
MCMC algorithm. 

(c) Normal proposal distribution in M-H 
MCMC algorithm. 

Figure 9. Water stage predictions obtained from EM and M-H MCMC algorithms with different 480 
proposal distributions. 481 
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Table 7. Comparison of model performance under different algorithms. 482 

Algorithm 
RMSE of 

mean 
predictions 

(m) 

Average 
90% 

prediction 
interval 

(m) 

UC1 (%) UC2 (%) UC3 (%) UC4 (%) 

EM 0.041 0.19 5.00 1.61 1.06 2.00 
M-H 

MCMC 
(uniform) 

0.037 0.47 0.00 1.33 1.04 1.66 

M-H 
MCMC 
(normal) 

0.037 0.41 0.00 1.33 0.96 1.64 

 483 

4.3 Influence of Conditional PDFs in BMA analysis 484 

One of the advantages of using the MCMC method, compared to the EM algorithm, in the BMA 485 

analysis is its flexibility in assuming a conditional PDF. The EM algorithm is strictly limited to 486 

the normal conditional PDF (see Equation (3)). Even though the normal conditional PDF is 487 

assumed initially in the BMA analysis (Raftery et al., 2005), it is probably true for some climate 488 

variable (e.g., temperature), but some nonnegative hydrologic variables (e.g., rainfall, streamflow, 489 

and water stage) may not be normally distributed. Because the probability of the negative 490 

hydrologic variable must be equal to zero, the corresponding PDF should be skewed to some 491 

extent. To explore the impact the conditional PDFs on the BMA parameters, the results from ten 492 

HEC-RAS model configurations of the two study reaches in Indiana and Texas under both 493 

normal and gamma conditional distributions are compared. Figures 10 and 11 exhibit the 494 

posterior distribution of the BMA parameters of individual model members under different 495 

conditional PDFs, and Tables 8 and 9 present their mean estimates. For the HEC-RAS models 496 

used in this study, the statistical distributions obtained from both normal and gamma conditional 497 

PDFs are slightly different, but the overall patterns are quite similar. For the White River in 498 
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Indiana, the BMA weight of Model 9 ranks first and its distribution tends to be normal. The 499 

BMA weights of Model 6 and Model 8 come second and third, respectively. The statistical 500 

distributions of the BMA weights of other model members are highly positively skewed and the 501 

mean values are less than 0.1. Figures 10(c) and 10(d) show that the statistical distributions of 502 

the BMA standard deviations of the model members with a good performance (i.e., a higher 503 

BMA weight) are usually narrowly dispersed and the corresponding mean values in Table 9 are 504 

also lower than those of the model members with a poor performance (i.e., a lower BMA weight). 505 

 506 

For the East Fork San Jacinto River in Texas, the performance of most of the model members is 507 

very close, and hence produce similar posterior distributions and mean values for the BMA 508 

parameters are yielded (see Figure 11). Among the model ensemble, Model 9, Model 3, and 509 

model 10 are assigned a relatively higher BMA weight and a relatively lower BMA standard 510 

deviation. Overall, this conclusion based on the HEC-RAS models from the two study reaches is 511 

consistent with the findings obtained from the numerical experiment. More importantly, the 512 

MCMC method can provide a comprehensive view of the uncertainty associated with the BMA 513 

parameters, and hence more informed decisions on the flood risk control can be made based on 514 

the flood model members with robust and consistent prediction capacities. 515 

 516 

Based on the BMA parameters estimated from the MCMC method under different conditional 517 

PDFs, the prediction distributions of water stage are created through a Monte Carlo sampling 518 

procedure and are shown in Figure 12. The rank of water stage RMSEs from each model member 519 

is presented in Figure 13 and the values of different uncertainty coefficients (Equations 8-12) to 520 
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quantify the model performance are presented in Table 10. Both visual and the quantitative 521 

comparison  of the water stage predictions demonstrate that the model performance under the 522 

normal and gamma conditional PDFs are comparable, because all the model members of these 523 

two study reaches presents relatively good prediction skills (e.g., RMSEs < 0.5m and UCs < 15%) 524 

and the model residuals do not demonstrate a dominated pattern (e.g., either normal or gamma 525 

PDF in this study). It is, however, important to note that that the gamma conditional PDF yields a 526 

slightly better performance, which means the pattern of model residuals fit a gamma distribution 527 

better than a normal one. Additionally, it is interesting to note in Figure 13 that the RMSEs of 528 

Model 6 for the White River and Model 3 for the East Fork San Jacinto River rank first 529 

compared to other model members and two sets of BMA mean predictions. It implies that some 530 

other types of conditional PDF that fits the water stage residuals of the model members better 531 

than the normal or gamma PDF used in this study might exist, which, however, has to be found 532 

through a trial-and-error procedure. 533 

(a) BMA weights (normal conditional PDF). 
 

(b) BMA weights (gamma conditional PDF). 
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(c) BMA standard deviations in meters 
(normal conditional PDF). 

(d) BMA standard deviations in meters 
(gamma conditional PDF). 

Figure 10. Comparison of the BMA parameters obtained from different BMA conditional PDFs 534 
for White River. 535 

 536 

 537 

(a) BMA weights (normal conditional PDF). 
 

(b) BMA weights (gamma conditional PDF). 
 

(c) BMA standard deviations in meters 
(normal conditional PDF). 

(d) BMA standard deviations in meters 
(gamma conditional PDF). 

Figure 11. Comparison of the BMA parameters obtained from different BMA conditional PDFs 538 
for East Fork San Jacinto River. 539 

Table 8. Comparison of mean BMA weights under different conditional PDFs. 540 
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River 
Model No. 

White East Fork San Jacinto 
Normal Gamma Normal Gamma 

1 0.022 0.02 0.041 0.045 
2 0.032 0.035 0.1 0.083 
3 0.083 0.066 0.15 0.17 
4 0.023 0.025 0.064 0.054 
5 0.057 0.055 0.104 0.097 
6 0.193 0.184 0.105 0.108 
7 0.039 0.037 0.069 0.076 
8 0.11 0.112 0.071 0.085 
9 0.387 0.411 0.178 0.162 
10 0.054 0.054 0.119 0.121 

 541 
 542 

 543 

Table 9. Comparison of mean BMA standard deviations (m) under different conditional PDFs. 544 

River 
Model No. 

White East Fork San Jacinto 
Normal Gamma Normal Gamma 

1 0.22 0.21 0.49 0.5 
2 0.12 0.11 0.4 0.4 
3 0.07 0.07 0.37 0.38 
4 0.18 0.17 0.4 0.38 
5 0.1 0.09 0.3 0.33 
6 0.05 0.05 0.41 0.41 
7 0.14 0.12 0.32 0.35 
8 0.05 0.06 0.4 0.45 
9 0.03 0.03 0.19 0.16 
10 0.09 0.09 0.31 0.32 

 545 
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(a) Normal conditional PDF for White River. 
 

(b) Gamma conditional PDF for White River. 
 

(c) Normal conditional PDF for East Fork San 
Jacinto River. 

(d) Gamma conditional PDF for East Fork San 
Jacinto River. 

Figure 12. Water stage predictions from different BMA conditional PDFs for study area. 546 
 547 

(a) White River. (b) East Fork San Jacinto River. 
Figure 13. Rank of RMSEs of daily water stage from model ensembles for study area. 548 

Table 10. Comparison of prediction performances under different BMA conditional PDFs. 549 

Study Conditional RMSE of Average 90% UC1 UC2 UC3 UC4 
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stream PDF mean 
predictions 

(m) 

prediction 
interval (m) 

(%) (%) (%) (%) 

White 
Normal 0.075 0.32 5.00 3.43 5.94 4.87 

Gamma 0.074 0.32 5.00 3.34 5.97 4.62 
East Fork 

San 
Jacinto 

Normal 0.421 1.32 13.00 7.54 5.69 7.76 

Gamma 0.419 1.34 11.00 7.48 5.67 7.71 
 550 

5 Conclusions 551 

Reliable, robust, and accurate flood predictions are critical for understanding flood risk and 552 

taking actions. A computational model based on certain assumptions and simplifications of the 553 

complicated hydrologic system is subject to uncertainty that must not be ignored. Thus, it is wise 554 

to make decisions based on predictions from multiple competing candidate models rather than 555 

relying on one single model even if it has been well calibrated.  Among all kinds of multi-model 556 

methods, quite a few studies have shown successful applications of the BMA method in the 557 

fields of hydrologic and hydraulic engineering. Accurate estimates of BMA parameters (weights 558 

and variances) determine the performance of BMA predictions. However, the uncertainty 559 

associated with BMA parameters estimated through the default EM algorithm has not been 560 

investigated systematically. Given the research gap in the previous literature, the M-H MCMC 561 

method with multiple independent chains is proposed in this study to address the limitations of 562 

the EM algorithm that provide deterministic estimates for the BMA parameters. The applicability 563 

of the MCMC method is examined based on both numerical experiment with known patterns of 564 

model errors and the case studies of two 1D HEC-RAS models in the states of Indiana and Texas 565 

of the United States. Following major conclusions are drawn from this study:  566 
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(1) Results of the numerical experiment show that the estimates of BMA parameters obtained 567 

from the MCMC method do not change significantly beyond a sample size of 2000, but 568 

the computational cost of the sampling process increases as the sample size increases. 569 

Considering both the accuracy of estimates and the sampling efficiency, 2000 samples 570 

per individual MCMC chains are adequate to generate a stationary distribution of BMA 571 

parameters for the model ensemble of 10 or fewer members. As the posterior distribution 572 

estimated from the M-H algorithm is found to be stationary, the chain number that is 573 

greater than 30 should be sufficient to draw inferences for the population properties of 574 

BMA parameters, but  100 independent chains are employed in this study to be more 575 

conservative. 576 

(2) The numerical experiment demonstrates that the prediction performance of the M-H 577 

MCMC algorithm in the BMA analysis is less uncertain than the default EM algorithm in 578 

terms of multiple independent evaluation metrics (RMSE and UC1 - UC4). The 579 

magnitudes of BMA weights estimated from both algorithms are similar, but the standard 580 

deviations estimated from the MCMC method are closer to the “true” values of model 581 

errors in Table 2. Furthermore, the normal proposal distribution with a standard deviation 582 

of 0.1 for the BMA weight can slightly improve the performance of the MCMC method. 583 

Overall, the BMA parameters obtained from the MCMC method are more interpretable in 584 

terms of the model performance comparison than the EM algorithm, since the model 585 

members with a better prediction performance are assigned a higher BMA weight and a 586 

lower BMA variance, and vice versa. 587 

(3) Results of the case studies based on two HEC-RAS models show that the estimates of 588 

BMA parameters based on both the normal and gamma conditional PDFs are close to 589 



manuscript submitted to Water Resources Research 

 

38 

each other. As a result, BMA predictions under these two assumptions of the posterior 590 

distribution of the predictor variable yield a similar performance. However, it should be 591 

noted that the gamma conditional PDF is slightly better in terms of multiple evaluation 592 

metrics, which implies that the posterior distribution of the water stage data fits the 593 

gamma PDF better than the normal PDF for these two study areas. 594 

(4) This study indicates that the M-H MCMC method with multiple independent chains is 595 

valid in estimating the BMA parameters and it is superior to the default EM algorithm in 596 

the BMA analysis. The application of MCMC method makes it easy and flexible to 597 

release and modify the strict assumption of the model residuals which are assumed to 598 

follow a normal distribution in the EM algorithm. A better fit of the conditional PDF of 599 

the variable of interest will produce more accurate and reliable BMA predictions. Most 600 

importantly, the MCMC sampling approach can provide a complete perspective and a full 601 

picture of the uncertainty in the BMA parameters through the corresponding posterior 602 

distributions. 603 

 604 

As per authors’ knowledge, this is the first study to apply the M-H MCMC method with multiple 605 

independent chains to estimating the BMA parameters of ensemble flood modeling. The basic 606 

M-H algorithm is used in this study since it is relatively easy to set up, the computational cost is 607 

feasible, and it requires few subjective selections of algorithm parameters. Some more 608 

appropriate prior and proposal distributions besides uniform and normal distributions can be 609 

attempted in the M-H algorithm to investigate any further improvement in the results. The slight 610 

improvement in the performance of the gamma conditional PDF in the case studies also imply 611 
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the potential room for better BMA predictions due to a better fit of specific hydrologic variables. 612 

In the case that the sufficient knowledge of the shape of conditional PDFs is not available, some 613 

transformation procedures (Box and Cox, 1964) might be required for pre-processing the raw 614 

data, but whether the desired assumption of the conditional PDF is satisfied after the 615 

transformation needs to be carefully validated. Moreover, some advanced and more complicated 616 

MCMC algorithms, such as the Hamiltonian Monte Carlo (Gebraad et al., 2020; Ulzega and 617 

Albert, 2022), particle filtering (Fan et al., 2022; Shen et al., 2022), reversible-jump MCMC 618 

(Jiménez et al., 2016; Ouarda and El‐Adlouni, 2011), etc., can also be attempted in this specific 619 

issue of BMA parameter estimation, but the benefits of more efficient sampling and better 620 

hydrologic predictions may not be guaranteed. Furthermore, more hydrologic and hydraulic 621 

models of regions with different geomorphic features should be employed to extend and 622 

reinforce the findings obtained in this study. 623 

Data Availability 624 

All the data used in this study, including the daily streamflow and water stage data, are publicly 625 

available from the United States Geological Survey (USGS) website. FEMA’s HEC-RAS 626 

models used in this study are available from the Indiana Department of Natural Resources’ 627 
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