
GEOPHYSICAL RESEARCH LETTERS

Supporting Information for “Observations of the size

distribution of frazil ice in an Ice Shelf Water plume”
Eamon K. Frazer1, Pat J. Langhorne1, Greg H. Leonard2, Natalie J. Robinson3,

Dániel Schumayer1,4
1Department of Physics, University of Otago, Dunedin, New Zealand
2School of Surveying, University of Otago, Dunedin, New Zealand

3National Institute of Water and Atmospheric Research, Wellington, New Zealand
4The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, New Zealand

Contents of this file
1. Description of the AZFP

2. Details of data analysis

3. Notes on data filtering

4. Comparison with salt water laboratory studies

Description of the AZFP
The AZFP profiles the water column by pulsing acoustic

waves at four frequencies (125 kHz, 200 kHz, 455 kHz, and
769 kHz) using four separate monostatic transducers and re-
ceivers. The acoustic backscatter is recorded by the instru-
ment and converted to a volume backscatter strength. Ten
profiles were collected at each sampling interval and then
averaged. Samples were undertaken at 1 minute intervals.
The ASL Matlab Toolbox (version 1.1) was used to convert
raw instrument counts to acoustic volume backscattering
strength, Sv, related to the back-scattering cross section,
Σobs

bs .
The Sv data are taken as a time series at fixed ranges in

each deployment, such that they remain roughly equidistant
from the ice-ocean interface over time. Data are measured
in 0.1 m vertical cells, then spatially averaged over 0.5 m
centered on the depth specified in the analysis. The result-
ing spatially-averaged time series is smoothed using MAT-
LAB’s rlowess algorithm, a 1st degree polynomial model
with linear least square fitting. This process is repeated for
all depths of interest in the water column, from the ice-ocean
interface down to ≈2m from the AZFP. This range excludes
the bulk of the ice layer and the portion of the water column
affected by the near-field interference of the sonar.

Further details of the instrumentation and its mode of de-
ployment are available in Kungl et al. (2020), Frazer (2019)
and in the metadata files of Robinson et al. (2020b).

Details of data analysis
An overview of the data processing is shown in Figure S1.
The total back-scattering cross-section, Σth

bs(ν), at fre-
quency ν for a dilute population of scatterers with random
diameter D can be modeled by

Σth
bs(ν) = N

∫
g(D)σbs(ν,D) dD, (1)

where Σth
bs(ν) is the ratio of back-scattered intensity from

a unit volume of 1m3 to the intensity of the incident plane
wave (referenced to 1m), N is the number density of scatter-
ers, σbs is the scattering cross-section of a single obstacle,
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and g is a probability distribution of scatterers’ diameter
(Marko & Jasek, 2010). Below we model g and σbs, and
identify the left-hand side of this equation with the mea-
sured back-scattering cross-section Σobs

bs (ν), noting that

Sobs = 10 log10(Σobs
bs ) and Sth = 10 log10(Σth

bs).

Recent observations (Marko et al., 2015; McFarlane et
al., 2017, 2019; Schneck et al., 2019) and theoretical con-
siderations (Crow & Shimizu, 1988) recommend choosing a
log-normal distribution for g. This probability distribution
is governed by a location and a scale parameter, µ and σ.
Parameters µ and σ are the mean and standard deviation of
the transformed random variable ln(D), where ln() denotes
the natural logarithm. The physically important statistical
moments of D are

median(D) = exp(µ),

mean(D) = exp(µ+ 1
2
σ2),

mode(D) = exp(µ− σ2), and

variance(D) =
[
exp(σ2)− 1

]
exp(2µ+ σ2)

Assuming low scatterer number and a uniformly random
orientation of crystals, we have provided an analytic expres-
sion for the back-scattering cross-section σbs of an individual
crystal modeled as an oblate spheroid (Kungl et al., 2020).

Although g depends on yet unknown parameters, and σbs

is expressed in terms of a random variable D and known
frequencies, the integral (1) can be determined either ana-
lytically or numerically for any given set of {µ, σ,N}. Thus
there are three unknown quantities and four measurement
channels at a given depth and given time, hence the mathe-
matical problem is over-determined assuming perfect obser-
vation. However, since observed data are encumbered with
noise from different sources, it is more natural to re-interpret
the task of determining {µ, σ,N} as an optimization prob-
lem. We seek the parameter values that optimally approxi-
mate the observed back-scattering cross-sections, Σobs

bs , pro-
vided by observation. The goodness-of-fit is measured by
the standard residual sum of squares

R =

4∑
i=1

[
Sth(νi)− Sobs(νi)

]2
.

In order to limit R to ∼ 1dB (similar to the uncertainty of
the instrument) some constraints are placed on the param-
eter space to avoid non-physical solutions. An upper bound
is put on the total fractional ice volume, F , defined as the
volume of ice per cubic meter of ocean

F = N

∫
g(D)V (D, τ) dD =

π

6
Nτ exp

(
3µ+ 9

2
σ2), (2)

1
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where V (D, τ) = π
6
D3τ is the volume of a single oblate

spheroidal crystal of diameter D and thickness ratio τ . In
this work we use τ = 1/30 (Dempsey et al., 2010; McFar-
lane et al., 2012, 2014; Kungl et al., 2020) and employed the
numerical constraint, F < 10−1. This constraint is quite
permissive, much higher than expected values in the ocean
(Penrose et al., 1994). For the nonlinear constrained opti-
mization we used Matlab’s built-in interior-point algorithm,
fmincon. The optimization procedure terminates if

1. R has reached its minimum at a tolerance of 10−6, and

2. F does not change by more than 10−12.
The same process (see Figure S1) is repeated for the entire
time-series.

Notes on data filtering
Removal of data with Sobs > −45 dB value can be jus-

tified because such signals are present at all frequencies in-
dicating large scatterers. Most likely signals are from the
bottom of the sub-ice platelet layer or perhaps due to occa-
sional large marine life.

The bimodality of the distribution of Sv in Figure 2a
of the main manuscript suggested that there could be two
(or more) distinct cohort of scatterers. That histogram
represents the 200 kHz channel of the dataset taken 5–
9 November 2017. Therefore we chose to fit two Gaus-
sian distributions to this histogram and obtained mean and
standard deviations of (µ1, σ1) = (−101.00, 10.96) dB and
(µ2, σ2) = (−75.00, 7.23) dB. From these parameters we se-
lect a cut-off value in the range (−90,−83) dB.

Unlike the oblate spheroidal scattering model, or the opti-
mization algorithm, this choice was heuristic. Consequently
we repeated the optimization algorithm calculation for a few
cut-off values in this range. These optimization runs all led
to similar {µ10, σ,N} results. Hence we concluded that the
optimization was not sensitive to the precise value of the cut-
off value of −85 dB. It is apparent from Figure 2b-d of the
main text that the blue and orange data points, determined
by their Sv values, do represent physically distinct groups
of {µ10, σ,N} parameters and the cohort colored blue cor-
responds to very large number of extremely small particles,
which –on physical grounds– we managed to exclude from
any analysis by imposing the cut-off values on the Sv data.

Two remarks are due here.
(i) In selecting the 200 kHz channel for determining the

cut-off value we considered two counteracting argu-
ments. First, we wanted to select a channel which is the
‘loudest’, i.e., has the highest frequency, as it picks up
more features in the insonified volume. On the other
hand we wanted a channel which is insensitive against
details our model does not contain. This second con-
sideration means that we wish all scatterers to scatter
within the Rayleigh regime, i.e., the frequency cannot
be too high. Thus we opt for the 200 kHz channel.

(ii) While not all deployments and all channels show such
clear bimodality, we checked the 200 kHz channel of
other deployments and fitted a mixture of two Gaus-
sians on these histograms too. Those transition ranges
did contain the −85 dB value.

Comparison with salt water laboratory studies
Figure S2 shows the log-normal population density func-

tion using the mean parameter values at 15 mBSL in 2017 in
comparison to the frazil ice distributions in saline water of
35 ppt found by Schneck et al. (2019). Distribution mean,
standard deviation, and mode are shown. The larger stan-
dard deviation of the present work probably arises because
we are unable to separate individual crystals from flocs as
has been done by Schneck et al. (2019).

References

Crow, E. L., & Shimizu, K. (1988). Lognormal distri-
butions: theory and applications (E. L. Crow &
K. Shimizu, Eds.). New York: M. Dekker.

Dempsey, D. E., Langhorne, P. J., Robinson, N. J.,
Williams, M. J. M., Haskell, T. G., & Frew,
R. D. (2010, jan). Observation and modeling
of platelet ice fabric in McMurdo Sound, Antarc-
tica. Journal of Geophysical Research, 115 (C1).
doi: 10.1029/2008jc005264

Frazer, E. (2019). Characterising Frazil Ice Popula-
tions using Acoustic Techniques (M. Sc. thesis).
University of Otago.

Kungl, A. F., Schumayer, D., Frazer, E. K.,
Langhorne, P. J., & Leonard, G. H. (2020).
An oblate spheroidal model for multi-frequency
acoustic back-scattering of frazil ice. Cold Re-
gions Science and Technology , 177 , 103122.
doi: https://doi.org/10.1016/j.coldregions.2020
.103122

Marko, J. R., & Jasek, M. (2010). Sonar detection and
measurements of ice in a freezing river I: Methods
and data characteristics. Cold Regions Science
and Technology , 63 (3), 121–134.

Marko, J. R., Jasek, M., & Topham, D. R. (2015,
feb). Multifrequency analyses of 2011–2012 Peace
River SWIPS frazil backscattering data. Cold Re-
gions Science and Technology , 110 , 102–119. doi:
10.1016/j.coldregions.2014.11.006

McFarlane, V., Loewen, M., & Hicks, F. (2012). Labo-
ratory experiments to determine frazil ice proper-
ties. In Proceedings of the Annual General Confer-
ence of the Canadian Society of Civil Engineers,
Edmonton, Alberta, Canada, June (Vol. 6).

McFarlane, V., Loewen, M., & Hicks, F. (2014, oct).
Laboratory measurements of the rise velocity of
frazil ice particles. Cold Regions Science and
Technology , 106-107 , 120–130. doi: 10.1016/
j.coldregions.2014.06.009

McFarlane, V., Loewen, M., & Hicks, F. (2017, Oc-
tober). Measurements of the size distribution of
frazil ice particles in three Alberta rivers. Cold
Regions Science and Technology , 142 , 100–117.
doi: 10.1016/j.coldregions.2017.08.001

McFarlane, V., Loewen, M., & Hicks, F. (2019).
Field measurements of suspended frazil ice. part
ii: Observations and analyses of frazil ice proper-
ties during the principal and residual supercool-
ing phases. Cold Regions Science and Technol-
ogy , 165 , 102796. doi: https://doi.org/10.1016/
j.coldregions.2019.102796

Penrose, J. D., Conde, M., & Pauly, T. J. (1994).
Acoustic detection of ice crystals in Antarctic wa-
ters. Journal of Geophysical Research, 99 (C6),
12573. doi: 10.1029/93jc03507



FRAZER ET AL.: FRAZIL SIZE DISTRIBUTION IN ICE SHELF WATER PLUME X - 3

Robinson, N. J., Leonard, G., Frazer, E., Langhorne,
P., Grant, B., Stewart, C., & De Joux, P. (2020b).
Temperature, salinity and acoustic backscatter
observations and tidal model output in McMurdo
Sound, Antarctica in 2016 and 2017. In Pan-
gaea Data Archiving. Alfred Wegener Institute,
Helmholtz Centre for Polar and Marine Research.

doi: pending

Schneck, C. C., Ghobrial, T. R., & Loewen, M. R.
(2019). Laboratory study of the properties of
frazil ice particles and flocs in water of different
salinities. The Cryosphere, 13 (10), 2751–2769.
doi: 10.5194/tc-13-2751-2019



X - 4 FRAZER ET AL.: FRAZIL SIZE DISTRIBUTION IN ICE SHELF WATER PLUME

EXPERIMENTAL BRANCH

Measurements
Manufacturer’s

software
Experimental back-scattering

cross-section, Σobs
bs

THEORETICAL BRANCH

Geometric model:

oblate spheroids

Solving Helmholtz’s

equation, σbs(ν,D)

Theoretical back-scattering
cross-section

Σth
bs(ν)=N

∫
g(D)σbs(ν,D) dD

Parameter optimisation

R =
∑[

Sth(νi)− Sobs(νi)
]2

i=1

4
Result

{N,µ, σ}

for all depth
and

all moments
in time

Sobs = 10 log10

(
Σobs

bs

)

Sth = 10 log10

(
Σth

bs

)
g ∼ Λ(µ, σ)

Figure S1. The flow diagram shows how the experimen-
tal and data preparation and the theoretical modeling are
combined in a classical optimization process to obtain es-
timates of {N,µ, σ}. Here N denotes the number of frazil
crystals in the insonified volume at a given depth and a
fixed moment in time. Parameters µ and σ character-
ize the log-normal probability distribution g ∼ Λ(µ, σ)
describing the likelihood observing an oblate spheroid of
size D.
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Figure S2. Comparison of present distribution (in blue)
with that of salt water experiments at 35 ppt of Schneck
et al. (2019), with individual frazil ice crystals in red and
frazil flocs in magenta. The arithmetic mean and stan-
dard deviation of each distribution is shown in the legend.
The modes (the most likely values of the distribution) are
shown by vertical dotted lines and color-coded.


