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Key Points:11

• We present PolarCAP, a deep learning model that can classify the polarity of a wave-12

form with known P-arrival time with a 98% accuracy.13

• The first-motion polarity of seismograms is a useful information, but its manual de-14

termination can be laborious and imprecise.15

• We demonstrate that in several cases the model can assign trace polarity more accu-16

rately than a human analyst.17
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Abstract18

The polarity of first P-wave arrivals plays a significant role in the effective determination19

of focal mechanisms specially for smaller earthquakes. Manual estimation of polarities is20

not only time-consuming but also prone to human errors. This warrants a need for an21

automated algorithm for first motion polarity determination. We present a deep learning22

model - PolarCAP that uses an autoencoder architecture to identify first-motion polarities23

of earthquake waveforms. PolarCAP is trained in a supervised fashion using more than24

130,000 labelled traces from the Italian seismic dataset (INSTANCE) and is cross-validated25

on∼22,000 traces to choose the most optimal set of hyperparameters. We obtain an accuracy26

of 0.98 on a completely unseen test dataset of almost 33,000 traces. Furthermore, We check27

the model generalizability by testing it on the datasets provided by previous works and show28

that our model achieves a higher recall on both positive and negative polarities.29

Plain Language Summary30

The polarity of an earthquake waveform describes the vertical direction of ground mo-31

tion when the seismic waves first arrive at a station. This information is used to determine32

the mechanism of the faulting responsible for the earthquake. Traditionally polarity is de-33

termined manually by looking at the waveforms. However this is not just time consuming34

but often suffers from human errors. Hence there is a need for an algorithm that can perform35

this task automatically and reliably. In this paper we present a deep learning model Po-36

larCAP (Polarity determining Convolutional Auto-encoder for first motion P-waves) which37

leverages the manually assigned polarity information of over 130,000 earthquake traces pro-38

vided by the Italian seismic dataset (INSTANCE) for machine learning to learn the polarity39

estimation of any seismogram with an accuracy above 98%. We also demonstrate that the40

predictions from the model are more reliable than human-assigned labels.41

1 Introduction42

The first motion polarity of earthquake waveforms is an important parameter in de-43

termining focal mechanisms, particularly for smaller earthquakes. Traditionally the first-44

motion polarity is assigned manually by expert analysts. However, based on their observa-45

tion on a dataset from the Northridge region, Hardebeck and Shearer (2002) reported that46

the picked polarities are inconsistent with the true polarities about 10% (for impulsive onset47

where polarities are more easily determined) to 20% (for emergent onset where polarities48

are more ambiguous) of the times. This, coupled with the growing volumes of seismological49

data, warrants the need for a faster, more precise and efficient method for the picking of50

polarities.51

An automated polarity picking algorithm proposed by C. Chen and Holland (2016) is52

based on comparing the signal amplitude with the background noise and checking whether it53

crosses a user-defined threshold. Pugh et al. (2016) presented a Bayesian inference approach54

to polarity determination. Such numerical approaches, however, require (i) intensive human55

involvement, (ii) are heavily dependent on a limited number of parameters, and (iii) fail to56

account for the complex nature of seismograms; and hence cannot compete with manual57

picks (Ross et al., 2018).58

Data-driven computer vision techniques, such as convolutional neural networks have59

been shown to be capable of analysing spatially independent information by mimicking the60

perception of images by the human brain (Voulodimos et al., 2018; Lundervold & Lunder-61

vold, 2019; Brachmann et al., 2017). Like in most research fields, deep learning has been62

successfully applied to seismology for tasks such as event detection & location (Perol et al.,63

2018), seismic phase identification & picking (Y. Chen, 2018; Zhu & Beroza, 2019; Li et64

al., 2021, 2022), magnitude characterization (Mousavi & Beroza, 2020; Chakraborty et al.,65

2022, 2021, 2004). The applicability of simple Convolutional Neural Networks (CNNs) in66
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the picking of first-motion polarities has been demonstrated by Ross et al. (2018), Hara et67

al. (2019) and Uchide (2020).68

In this study we use an autoencoder model for determining the first-motion polarities.69

Unlike Mousavi et al. (2019) who also use autoencoders for polarity classification in an70

unsupervised fashion, we adopt a supervised approach and leverage the polarity information71

provided in the metadata of the INSTANCE dataset (Michelini et al., 2021). Since there are72

several algorithms that are capable of picking P-arrival times with an accuracy of the order73

of 0.01s (Mousavi et al., 2020; Li et al., 2021; Zhu & Beroza, 2019; Liao et al., 2021) we74

focus solely on classification of polarities and not the picking of P-arrival times. Therefore,75

we assume the P-arrival time to be an a-priori knowledge and use data windows of fixed76

length centred around the known P-arrival sample. We perform extensive analysis on our77

results to investigate its potential at outperforming human analysts and to investigate the78

possible scenarios that can lead to an error in assignment of polarity by the model.79

2 Methodology80

2.1 Data81

Nearly 1.2 million waveforms recorded primarily by the Italian National Seismic Net-82

work between January 2005 and January 2020 and obtained from the INSTANCE dataset83

(Michelini et al., 2021) are used to train and validate our model. For simplicity we leave out84

those traces for which the number of detected P-wave arrivals, as reported in the metadata,85

is not equal to 1. It has been observed by Ross et al. (2018) that the accuracy in the predic-86

tion of polarity falls exponentially with signal-to-noise ratio (SNR), when the SNR is below87

10dB. Thus, we ignore traces with SNR less than 10dB to ensure minimum discrepancy in88

the training data. This leaves us with 443,002 traces out of which 109,748 have polarity in-89

formation identified by expert analysts and made available through catalogs. These 109,74890

traces are divided in the ratio 60:10:30 for training, validation and testing purposes.91

Each trace in the training and validation sets is included twice in the respective set –92

once in its original form and once by flipping it (i.e. multiplying it by -1). This augmentation93

technique, previously used by Hara et al. (2019), not only doubles the volume of training94

data but also helps in balancing out the two classes (‘positive’ and ‘negative’ polarity), which95

is known to benefit the learning of a classifier (Batista et al., 2004). No such augmentation96

is applied to the test dataset to retain the original distribution of classes. We do not apply97

any pre-processing steps, other than normalising each waveform by dividing it with its98

maximum absolute value. As mentioned earlier, we work with the assumption that the first99

P-arrival time is already known to us. We use a fixed data window centred around the100

P-arrival sample. The length of the window was chosen experimentally to be 64 samples101

after exploring several values between 32 to 1024 samples. Note that only powers of 2 were102

used since the auto-encoder reduces the data dimensionality by a factor of 2 at each step.103

2.2 Model architecture and training104

We use an autoencoder model (Rumelhart et al., 1986) whose architecture is shown in105

Figure 1. It uses two sets of 1D Convolution (Kiranyaz et al., 2015) and Maxpooling (Nagi106

et al., 2011) layers to map the data into a 16-dimensional latent space (encoded layer). The107

decoder for reconstructing the data consists of two sets of Convolutional and Upsampling108

layers. Further details on the hyperparameters used can be found on the caption for Figure109

1. A softmax function is applied to the encoded layer to perform the classification. The110

model is implemented using Keras (Charles, 2013) and trained and tested on an NVIDIA111

A100 GPU. An Adam Optimiser (Kingma & Ba, 2014) is used for backpropagation. The112

loss function is a weighted sum of the reconstruction and classification losses with weights113

of 1 and 200 respectively. Since, we are more interested in the classification performance114

than the reconstruction performance, and the reconstruction is only used to facilitate the115
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Figure 1. The autoencoder architecture used for our study. The 1D convolutional layers in the

encoder use ‘relu’ activation and have 32 and 8 filters respectively and kernel sizes of 32 and 16,

respectively. Each Maxpooling layer reduces the data dimension by 2. The drop out rate used is

0.3. The convolutional layers in the decoder use ‘tanh’ and ‘relu’ activations respectively and 8 and

32 filters and kernel sizes of 16 and 32, respectively. The final decoder layer has a ‘tanh’ activation.

A softmax function is applied on the encoded layer to get the probability of the waveform having

a ’negative’ and a ’positive’ polarity respectively.

learning, higher weight is assigned to classification loss. To calculate the reconstruction and116

classification losses we use the Keras (Charles, 2013) inbuilt loss functions for mean squared117

error and huber loss with delta = 0.5, respectively. We use early stopping (Prechelt, 2012)118

to prevent overfitting, whereby the training stops automatically if the validation loss does119

not decrease for 15 consecutive epochs, and the best set of learned model weights (one with120

lowest validation loss) is saved iteratively. We also use ReduceLROnPlateau function to121

reduce the learning rate by a factor of 10 if the validation loss does not decrease for 10122

epochs, starting with a learning rate of 10−3 and letting it have a minimum value of 10−6.123

Using these conditions, the model trains for 75 epochs with an average training time of 1s124

per epoch.125

3 Results and Discussion126

As stated previously, PolarCAP was trained only on data with signal-to-noise ratio127

(SNR) above 10dB to ensure a good quality of training data, so we test it separately on data128

with SNR above and below 10dB. This testing was performed on two independent datasets:129

(i) the portion of the INSTANCE dataset (Michelini et al., 2021) not used for training or130

validation and (ii) test dataset from Southern California Seismic Network (SCSN) used in131

Ross et al. (2018). For the latter dataset, however, we ignored the waveforms for which the132

polarity was ‘undetermined’. The results have been summarised in the first half of Table 1133

and the corresponding confusion matrices (Ting, 2017) can be found in Figure 2. As one134

can see, the accuracy for traces with SNR above 10dB is around 98% for both the datasets135

which means for about 98% of the traces the polarity labels determined by our model agrees136

with the polarity labels assigned through manual analysis. A few examples of such traces137

are shown in Figure 3a. As expected, the accuracy is lower for smaller SNR since a higher138

noise level makes the polarity information ambiguous and hence difficult to determine either139

manually or using a deep learning model.140
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Table 1. Summary of Model Performance when trained with and without data augmentation on

the two datasets for traces with SNR above and below 10dB

Accuracy (%)
Precision (%) Recall (%)

Test Dataset Positive Negative Positive Negative

Without Data
Augmentation

INSTANCE 1 SNR ≥ 10dB 98.19 99.06 96.49 98.22 98.12
SNR < 10dB 96.22 98.18 93.63 95.30 97.50

SCSN 2 SNR ≥ 10dB 97.53 98.89 94.98 97.35 97.87
SNR < 10dB 89.65 96.11 77.67 88.87 91.48

With Data
Augmentation

INSTANCE 1 SNR ≥ 10dB 97.65 98.61 95.77 97.86 97.23
SNR < 10dB 94.24 97.68 89.98 92.36 96.90

SCSN 2 SNR ≥ 10dB 97.78 98.99 95.50 97.64 98.05
SNR < 10dB 92.46 96.86 83.55 92.26 92.93

1Michelini et al. (2021); 2Ross et al. (2018)

Figure 2. Confusion matrices for testing model on INSTANCE data (Michelini et al., 2021)

with (a) SNR ≥ 10dB (b) SNR < 10dB and SCSN data used by Ross et al. (2018) with (c) SNR

≥ 10dB (d) SNR < 10dB.
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3.1 Manual inspection of traces with mismatched assigned and predicted141

polarity142

We further investigate the 595 traces from INSTANCE dataset with SNR above 10dB143

for which the polarity predicted by PolarCAP and the manually assigned polarities were144

in disagreement (refer to Figure 2). We could classify these cases into one of the following145

three categories:146

• The polarity assigned by the analyst was correct.147

• The polarity predicted by the model was correct.148

• The polarity information was ambiguous due to high noise levels, or incorrect P-149

picking.150

Based on our analysis we observed that for 40.8% of the cases the polarity predicted151

by the model was correct whereas in 27.6% of the cases the model predicted incorrect152

polarities. In the remaining 31.6% cases the polarity information was hard to determine153

through manual inspection, mostly due to high noise levels. Some examples of the former154

case can be found in Figure 3b. We further found that incorrect classification of traces by155

the model, was either due to incorrect picking of the first P-arrival (although one can see156

from Figure 3b that some degree of time shift is accounted for by the model based on what157

is encountered in the training data) or the P-arrivals being emergent in nature. We went158

on to inspect the traces where we identified the P-arrival sample to be incorrectly picked,159

and picked the P-arrivals ourselves using the EPick model (Li et al., 2021). Figure 4a shows160

five traces where the P-arrival samples determined by EPick seemed more accurate than161

those provided in the metadata. We then fed 64 sample windows centred around the picked162

P-phases and in each of these cases the polarities predicted by the model now matched with163

the assigned polarities. Figure 4b shows some examples of emergent arrivals. It is also164

observed that the probability of prediction for emergent onsets are usually lower than that165

for impulsive onsets.166

3.2 Factors affecting model accuracy167

We looked at the distribution of the incorrectly classified traces in terms of signal-to-168

noise ratio, magnitude, focal depth, and epicentral distances. Signal-to-noise ratio (SNR)169

can influence the ease with which the first P-arrival is picked and hence the first motion170

polarity can be determined, and magnitude can be correlated with the SNR. However,171

we did not find any observable correlation between signal-to-noise ratio, magnitude and172

model accuracy, as shown in Figure 5a, which means the model is capable of performing173

polarity determination across a wide range of SNR and magnitudes. One can also see from174

Figure 5b that the incorrect classifications are restricted to shallower events (<80 km) even175

though these are most represented in the training data. This is likely to be because deeper176

earthquakes tend to have a more impulsive nature as compared to shallow earthquakes of177

similar magnitude (Bormann et al., 2014).178

We also looked at the fraction of incorrect classification for different site conditions179

as characterised by the average shear wave velocity of the top 30 meters of subsurface180

(VS30). We find that the tendency for incorrect polarity classification is slightly higher for181

VS30 < 420ms−1, although for the 11 events recorded at stations with VS30 < 240ms−1
182

there is no observed misclassification (Figure 5c).183

3.3 Further improvement through augmentation184

As outlined above, the incorrect determination of polarity was caused by incorrect185

picking of P-wave arrival time or emergent nature of P-onsets. In order to tackle the first186

issue, we used data augmentation to add a time shift to some of the traces in the training187

data. This augmentation technique was also explored in Uchide (2020). Since we did not188
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Figure 3. Examples of traces where (a) the polarity predicted by the model matches with

the polarity assigned by human analysts, (b) the model predicts the correct polarity as opposed

to manually assigned polarity. The red dashed line shows the P-arrival sample provided in the

metadata. In the figure titles, M stands for event magnitude, SNR for signal-to-noise ratio, e for

epicentral distance and d for focal depth. Passgn and Ppred represent the assigned and predicted

polarities respectively and the percentages in square brackets represent probabilities corresponding

to the predicted polarity.
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Figure 4. (a) Examples of traces where the polarity prediction was incorrect due to an error in

the P-arrival time provided in the metadata (showed with red-dashed line). The P-arrival sample

picked by the model from Li et al. (2021) is shown with a dotted blue line. The dotted gray line

shows the new time window. The predicted polarities in red and blue correspond to the arrival

times provided in the metadata and those picked using Li et al. (2021) respectively (b) Examples of

traces where the polarity was predicted incorrectly by the model due to the emergent nature of the

P-arrival. The panel on the right shows a magnified plot of just 10 samples around the P-arrival

sample (provided in the metadata). In the figure titles, M stands for event magnitude, SNR for

signal-to-noise ratio, e for epicentral distance and d for focal depth. Passgn and Ppred represent

the assigned and predicted polarities respectively and the percentages in square brackets represent

probabilities corresponding to the predicted polarity.
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Figure 5. Distribution of incorrectly classified traces as a fraction of total number of traces,

with respect to (a) Signal-to-noise ratio and magnitude (b) Focal depth and epicentral distance (c)

Average shear wave velocity of the top 30 meters of subsurface (VS30).
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have any information on the quality of P-wave onsets in the metadata, it was not possible189

to apply augmentation to increase the amount of emergent traces in the training data. The190

time shift was applied to 1/5th of the traces (which were then added back to the dataset);191

the amount of time shift was chosen from a normal distribution with mean 0 and standard192

deviation of 10 samples. A maximum shift of 30 samples was allowed to ensure that the193

first P-arrival is included in the window.194

After re-training the model on the augmented data, we tested it again on the same test195

sets. The corresponding evaluation of the model performance is shown in the second half196

of Table 1. As one can see, the use of data augmentation resulted in lower accuracy on the197

INSTANCE dataset (for both low and high SNR) This could be because in the dataset, more198

often than not the traces had correctly picked P-arrival times and hence the augmentation199

was not needed. In case of the test data from Ross et al. (2018), on the other hand, the200

accuracy increased to 0.25% for high SNR data and 2.81% for low SNR data upon using201

data augmentation.202

4 Conclusion203

In this study, we explored the potential of a deep learning model - PolarCAP to de-204

termine first-motion polarity of earthquake waveforms when the P-arrival information is205

available, faster and more accurately as compared to human analysts. We show that when206

tested on unseen traces, the polarity predicted by the model, matches the ones assigned by207

human analysts over 98% of the times. We observed that the major reasons behind incorrect208

assignment of polarity by the model were incorrect P-arrival picks and emergent arrivals;209

to that end we also found the event depth to indirectly affect the fraction of incorrect pre-210

dictions by affecting the quality of P-wave arrival. However in spite of these hurdles we211

find that when the polarities predicted by the model differed from those presented in the212

metadata, it was usually the model that was correct (almost 41% of the times, while the213

model was wrong only about 28% of the times), thus demonstrating its ability to overcome214

human errors.215

5 Open Research216

The seismic waveforms used in our research are a part of two datasets – INSTANCE217

(Michelini et al., 2021) which was downloaded from https://doi.org/10.13127/instance218

(last accessed January 2022) and the dataset described in Ross et al. (2018) which can be219

downloaded from https://scedc.caltech.edu/data/deeplearning.html#picking polarity220

(last accessed April 2022).221
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Instance the italian seismic dataset for machine learning, seismic waveforms and as-287

sociated metadata. Istituto Nazionale di Geofisica e Vulcanologia (INGV). Retrieved288

from https://doi.org/10.13127/instance289

–11–



manuscript submitted to Geophysical Research Letters

Mousavi, S. M., & Beroza, G. C. (2020). A machine-learning approach for earthquake290

magnitude estimation. Geophys. Res. Lett., 47, e2019GL085976.. Retrieved from291

https://doi.org/10.1029/2019GL085976292

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L., & Beroza, G. (2020). Earthquake293

transformer—an attentive deep-learning model for simultaneous earthquake detection294

and phase picking. Nat. Commun., 11 (3952). doi: https://doi.org/10.1038/s41467295

-020-17591-w296

Mousavi, S. M., Zhu, W., Ellsworth, W., & Beroza, G. (2019). Unsupervised clustering of297

seismic signals using deep convolutional autoencoders. IEEE Geoscience and Remote298

Sensing Letters, 16 (11), 1693-1697. doi: 10.1109/LGRS.2019.2909218299
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