loading page

Surface Energy Budget, Albedo and Thermal Inertia at Jezero Crater, Mars, as Observed from the Mars 2020 MEDA Instrument
  • +31
  • German Martinez,
  • Eduardo Sebastian Martínez,
  • Alvaro Vicente-Retortillo,
  • Michael D. Smith,
  • Jeffrey R. Johnson,
  • Erik Fischer,
  • Hannu Savijärvi,
  • Daniel Toledo,
  • Ricardo Hueso,
  • Luis Mora Sotomayor,
  • Hartzel Edmond Gillespie,
  • Asier Munguira,
  • Agustín Sánchez-Lavega,
  • Mark T Lemmon,
  • Felipe Gómez,
  • Jouni Polkko,
  • Lucia Mandon,
  • Víctor Apéstigue,
  • Ignacio Arruego,
  • Miguel Ramos,
  • Pamela G. Conrad,
  • Claire Newman,
  • Manuel de la Torre Juarez,
  • Francisco Jordan,
  • Leslie Tamppari,
  • Timothy McConnochie,
  • Ari-Matti Harri,
  • Maria Genzer,
  • Maria Hieta,
  • Maria-Paz Zorzano,
  • Matthew Adam Siegler,
  • Olga Prieto-Ballesteros,
  • Antonio Molina,
  • Jose A. Rodriguez-Manfredi
German Martinez
Lunar and Planetary Institute

Corresponding Author:[email protected]

Author Profile
Eduardo Sebastian Martínez
Centro de Astrobiología
Author Profile
Alvaro Vicente-Retortillo
Centro de Astrobiología (CSIC-INTA)
Author Profile
Michael D. Smith
NASA Goddard Space Flight Center
Author Profile
Jeffrey R. Johnson
Johns Hopkins University Applied Physics Laboratory
Author Profile
Erik Fischer
University of Michigan-Ann Arbor
Author Profile
Hannu Savijärvi
University of Helsinki
Author Profile
Daniel Toledo
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain.
Author Profile
Ricardo Hueso
UPV/EHU
Author Profile
Luis Mora Sotomayor
Centro de Astrobiología
Author Profile
Hartzel Edmond Gillespie
Lunar and Planetary Institute
Author Profile
Asier Munguira
UPV/EHU
Author Profile
Agustín Sánchez-Lavega
Universidad del Pais Vasco UPV/EHU
Author Profile
Mark T Lemmon
Space Science Institute
Author Profile
Felipe Gómez
Centro de Astrobiologia (CSIC-INTA)
Author Profile
Jouni Polkko
Finnish Meteorological Institute
Author Profile
Lucia Mandon
Laboratoire de Géologie de Lyon
Author Profile
Víctor Apéstigue
National Institute of Aerospace Technology (INTA)
Author Profile
Ignacio Arruego
INTA
Author Profile
Miguel Ramos
Universidad de Alcalá
Author Profile
Pamela G. Conrad
NASA Goddard Space Flight Center
Author Profile
Claire Newman
Aeolis Research
Author Profile
Manuel de la Torre Juarez
Jet Propulsion Laboratory/California Institute of Technology
Author Profile
Francisco Jordan
Centro de Astrobiología
Author Profile
Leslie Tamppari
Jet Propulsion Laboratory
Author Profile
Timothy McConnochie
Space Science Institute
Author Profile
Ari-Matti Harri
Finnish Meteorological Institute
Author Profile
Maria Genzer
Finnish Meteorological Institute
Author Profile
Maria Hieta
Finnish Meteorological Institute
Author Profile
Maria-Paz Zorzano
INTA-CSIC, Madrid, Spain
Author Profile
Matthew Adam Siegler
Planetary Sciences Institute
Author Profile
Olga Prieto-Ballesteros
Centro de Astrobiologia, INTA-CSIC
Author Profile
Antonio Molina
National Institute for Aerospace Technology (INTA)
Author Profile
Jose A. Rodriguez-Manfredi
Centro de Astrobiologia, INTA-CSIC
Author Profile

Abstract

The Mars Environmental Dynamics Analyzer (MEDA) on board Perseverance includes first-of-their-kind sensors measuring the incident and reflected solar flux, the downwelling atmospheric IR flux, and the upwelling IR flux emitted by the surface. We use these measurements for the first 350 sols of the Mars 2020 mission (Ls ~ 6-174 deg; in Martian Year 36) to determine the surface radiative budget on Mars, and to calculate the broadband albedo (0.3-3 μm) as a function of the illumination and viewing geometry. Together with MEDA measurements of ground temperature, we calculate the thermal inertia for homogeneous terrains without the need for numerical models. We found that: (1) the observed downwelling atmospheric IR flux is significantly lower than model predictions. This is likely caused by the strong diurnal variation in aerosol opacity measured by MEDA, which is not accounted for by numerical models. (2) The albedo presents a marked non-Lambertian behavior, with lowest values near noon and highest values corresponding to low phase angles (i.e., Sun behind the observer). (3) Thermal inertia values ranged between 180 (sand dune) and 605 (bedrock-dominated material) SI units. (4) Averages across Perseverance’ traverse of albedo and thermal inertia (spatial resolution of ~3-4 m2) are in very good agreement with collocated retrievals of thermal inertia from THEMIS (spatial resolution of 100 m per pixel) and of bolometric albedo in the 0.25-2.9 μm range from (spatial resolution of ~300 km2). The results presented here are important to validate model predictions and provide ground-truth to orbital measurements.