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Abstract  

Changing oxygen availability in lakes and reservoirs is a fundamental limnological challenge of 

our time, with massive consequences for freshwater ecosystem functioning and water quality. 

Cross-lake surveys, paleolimnological studies, and long-term monitoring records indicate that 

many lakes are exhibiting declines in both surface and bottom-water oxygen availability due to 

climate and land use change, though a few lakes are exhibiting increases in oxygen. By 

analyzing time series of oxygen monitoring data from ~400 lakes, I find that some lakes may be 

experiencing a decoupling of surface and bottom oxygen dynamics: variability in surface oxygen 

concentrations is decreasing in some lakes while variability in bottom oxygen concentrations is 

increasing. Changes in both oxygen concentrations and variability have many implications for 

lake functioning because oxygen concentrations control many ecosystem processes. 

Consequently, lake ecosystem provisioning and cultural services (e.g., drinking water, fisheries, 

recreation) will likely be impaired by declining oxygen, whereas the effects of changing oxygen 

on regulatory and supporting ecosystem services (e.g., nitrate removal through denitrification, 



 2 

carbon burial, sediment fluxes of phosphorus) may be more equivocal. These challenges 

motivate a research agenda focused on expanding the geographical range, temporal duration, and 

spatial extent of lake oxygen monitoring, as well as new approaches for studying and managing 

lakes (whole-ecosystem experiments, near-term oxygen forecasts). Looking ahead, advances in 

sensor technology, monitoring networks, data sharing, and forecasting, as well as the 

demonstrated success of environmental legislation in decreasing hypoxia, provide important 

opportunities for guiding restoration and science on lake oxygen. 

 

Keywords: Anoxia, Eutrophication, Freshwater ecosystem services, Hypoxia, Oxygen 

variability, Reservoir 

 

Introduction 

Dissolved oxygen (DO) is the most important metric of lake and reservoir water quality 

(sensu Hutchinson 1957, Wetzel 2001). Oxygen concentrations are an emergent property of a 

suite of interacting physical, chemical, and biological processes in freshwaters that both increase 

and decrease oxygen availability (Odum 1956, Langman et al. 2010, Ladwig et al. 2021). 

Enabled by advances in sensor technology, limnologists are gaining a new perspective on the 

dynamic nature of lake DO profiles and concentrations, which vary substantially over both space 

and time (e.g., Crawford et al. 2014, Obertegger et al. 2017, Fernández Castro et al. 2021). This 

variability has important consequences for the distribution and metabolism of aerobic and 

anaerobic organisms, biogeochemical processes, and overall ecosystem functioning of 

freshwaters. Consequently, understanding the availability of – and changes in – oxygen in lakes 

is critical for understanding lake ecosystems as a whole. 
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This Kilham Lecture article is divided into five parts, representing a hybrid of a review 

article, research analysis, and commentary. I first review the evidence on changing oxygen 

concentrations in lakes and reservoirs (hereafter, lakes) and its causes. Second, I analyze 

monitoring data from ~400 lakes to explore how variability in lake oxygen concentrations (not 

just mean oxygen concentrations) may be changing over time. Third, I summarize existing 

literature to predict how changing oxygen concentrations and variability may affect different lake 

ecosystem services. Fourth, I present recommendations for lake oxygen research priorities based 

on the current state of the field. Finally, I provide an outlook for the future of lake oxygen 

restoration and science, highlighting the promise of near-term oxygen forecasting for lake 

management. 

 

Oxygen availability in lakes is changing 

 Oxygen concentrations are changing in many lakes globally, documented by cross-lake 

surveys, paleolimnological studies, and long-term monitoring time series (e.g., Marcé et al. 2010, 

Jenny et al. 2016a, Jane et al. 2021). In a synthesis of data from 393 temperate lakes, Jane et al. 

(2021) observed decreasing DO in both surface waters (by a median of 0.11 mg/L/decade) and in 

bottom waters (by 0.12 mg/L/decade). Similarly, paleolimnological records from 365 lakes with 

current hypolimnetic (bottom-water) hypoxia show that 71, or 20%, have begun exhibiting 

hypoxia since AD 1720 (Jenny et al. 2016a). Changes in oxygen have also been observed in 

single-lake studies spanning multiple decades, including Blelham Tarn, UK (Foley et al. 2012), 

Lake Erie, USA (reviewed by Tellier et al. 2022), Sau Reservoir, Spain (Marcé et al. 2010), Lake 

Tovel, Italy (Flaim et al. 2020), Lake Victoria, Kenya/Tanzania/Uganda (Hecky et al. 1994), 
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Lake Washington, USA (Edmondson 1966), Lake Zurich, Switzerland (North et al. 2014), and 

many others. 

 Decreases in lake oxygen concentrations have been attributed to both land use and 

climate change, with the relative importance of drivers varying by depth. Jenny et al. (2016a,b)  

related decreasing hypolimnetic oxygen conditions in primarily European and North American 

lakes to increased nutrient inputs. In contrast, Jane et al. (2021) found that declines in surface 

DO were largely due to decreased oxygen solubility as a result of warmer surface waters, which 

was related to increasing air temperatures and decreasing winds. Jane et al. (2021) related the 

declines in bottom-water DO to stronger thermal stratification resulting from climate change 

(following Woolway et al. 2021), which was intensified by greater light attenuation in surface 

waters due to higher productivity (as also reported by Kumagai et al. 2000, Jones et al. 2005). 

Altogether, hypoxia may be a synergistic response to the dynamic interplay of climate and land 

use change (following Rigosi et al. 2014, Shuvo et al. 2021), though the relative importance of 

these two factors likely varies among lakes. 

 Despite these large-scale patterns of decreasing oxygen, not all lakes are exhibiting 

oxygen declines. Jane et al. (2021) observed that DO concentrations in some lakes were 

increasing in the surface waters, especially those with shallow Secchi depths, high chlorophyll a, 

and warm surface temperatures. These changes were attributed to eutrophication related to land 

use change, as the lakes with surface DO increases had a significantly higher proportion of 

agriculture in their catchments than lakes without surface DO increases (Jane et al. 2021). 

Patterns of increasing oxygen are not restricted to surface waters: some lakes are also exhibiting 

increases in bottom-water oxygen. For example, deep-water DO availability has increased in 

Lake Tovel, Italy, over the last eight decades as the decreasing duration of ice cover in the winter 



 5 

has lengthened mixing periods, thereby resulting in greater oxygen levels at depth (Flaim et al. 

2020). These context-dependent effects underscore the need for continued monitoring and 

comparative studies to better understand the factors governing the effects of global change on 

lake oxygen. 

 

The variability of oxygen in lakes is also changing  

The combination of both decreasing and increasing oxygen availability in lakes suggests 

that the temporal variability of oxygen concentrations may also be changing, which I examined 

in a new analysis of the oxygen time series data collated for the ~400 temperate lakes in the Jane 

et al. (2021) study. For this new analysis, I calculated the inter-annual and intra-annual 

variability in DO concentration separately for the surface (1 m depth) and bottom (the deepest 

depth available) layers in each lake to examine if variability was increasing or decreasing 

differently over time between the layers. To estimate inter-annual variability, I first calculated 

the median annual DO concentration for each year in a lake’s time series and then calculated the 

coefficient of variation (CV) of median annual DO over a rolling window of three years 

(following Cusser et al. 2021). I then plotted the CV of each three-year rolling window vs. the 

most recent year in that window and used the slope of that relationship as an estimate of changes 

in inter-annual variability in DO over time. For intra-annual variability, I calculated the CV of 

DO within each year in a lake’s time series. I then plotted the within-year CV vs. year and used 

the slope of that relationship as an estimate of intra-annual variability over time.  

I restricted this analysis to lakes with at least 10 years of data and 3 sampling days within 

a year; results were robust to changing this criterion to 5 sampling days within a year 

(Supplemental Figure 1). Because the inter-annual variability analysis necessitated consecutive 
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years in a lake’s dataset for the rolling window calculation and lakes were more likely to have 

surface than bottom-water oxygen data available, the number of lakes included in the inter-

annual vs. intra-annual variability calculations for surface and bottom layers differed (see 

Supplemental Material). Following the methods of Jane et al. (2021), and because my objective 

was to examine if variability was increasing vs. decreasing in the two lake layers, I focused on 

lakes that exhibited significant (p<0.05) slopes of CV vs. year below; results for all lakes are 

reported in Supplemental Figure 2. All code for this analysis is archived in the Zenodo repository 

(Carey 2022); all data analyzed are published in the Environmental Data Initiative repository 

(Stetler et al. 2021). 

In the surface waters of some lakes, inter-annual and intra-annual variability in surface 

DO concentrations have decreased over time. Of the 76 lakes with significant slopes in the inter-

annual analysis of DO variability in surface waters, the majority (64%) had decreasing inter-

annual variability (Fig. 1a). Similarly, the intra-annual variability of surface DO also decreased: 

although only 51% of 36 lakes exhibited significant declines in intra-annual variability, the 

medians of the intra-annual and inter-annual variability distributions had similar negative values 

(Fig. 1a).  

While it is not possible to determine the exact mechanisms driving lake surface DO 

variability from this dataset, the patterns observed in Fig. 1a may be related to changes in the 

lakes’ DO concentrations over time. Specifically, the declines in inter- and intra-annual 

variability in surface DO may be due to increasing surface water temperatures and subsequent 

decreases in DO solubility (Jane et al. 2021), resulting in overall more homogenized DO 

dynamics in the surface waters. In contrast, the subset of lakes experiencing increases in surface 

DO variability may be due to higher productivity related to land use change. Following 
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Rosenzweig (1971)’s paradox of enrichment, as lakes become more productive, they are likely to 

experience greater instability, which may be manifested in greater variability in DO: e.g., short-

term peaks in surface DO due to algal blooms, then crashes in DO after blooms crash. Overall, 

the dominant pattern of declining DO concentrations in surface waters due to warming air 

temperatures could be resulting in more similar surface DO dynamics over time, with coincident 

declines in surface DO variability, though there are clearly exceptions to this trend. 

In contrast to the surface waters, the inter-annual and intra-annual variability in bottom-

water DO has increased in some lakes, especially for intra-annual variability, though fewer lakes 

were included in the analysis. Of the 19 lakes with a significant change in inter-annual DO 

variability, 53% showed increasing variability, whereas of the 14 lakes that exhibited a 

significant change in intra-annual DO variability, 100% had increasing variability (Fig. 1b). This 

greater variability in DO at depth mirrors patterns in lake temperatures over time (Kraemer et al. 

2015, Pilla et al. 2020), in which lakes generally exhibit greater variability in hypolimnetic than 

epilimnetic dynamics. Changes in physical mixing/thermal stratification, water transparency, 

weather, inflows, and groundwater flux (sensu Pilla et al. 2020) may be driving this increasing 

variability in hypolimnetic DO. Of note is that six of the lakes that exhibited a significant 

increase in inter-annual or intra-annual DO variability in their bottom waters also exhibited a 

significant decrease in inter-annual or intra-annual DO variability in their surface waters, but the 

overall numbers of lakes in this analysis were small so it is challenging to infer broader patterns. 

Altogether, this analysis suggests that the inter-annual and intra-annual variability of 

oxygen – in addition to oxygen concentrations – is changing in some lakes. The divergence 

between decreasing variability in surface DO and increasing variability in bottom DO suggests 

that the longer and stronger thermal lake stratification expected in the future (Woolway et al. 
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2021) will further intensify the decoupling of DO dynamics within lakes. This decoupling is 

possible even if there is a significant change in DO variability in only one lake layer and not the 

other, which was exhibited by 41 lakes in the dataset. I note that this analysis provides only one 

relatively simplistic metric of variability and that additional analyses with more lakes spanning a 

greater geographic region are needed (nearly all study lakes were located in the USA or Europe; 

Jane et al. 2021). Despite these limitations, this initial analysis provides an important first step 

for identifying how lake oxygen variability within lake ecosystems (and conversely, 

predictability) may be changing over time. 

 

Consequences of changing oxygen dynamics on lake ecosystem services 

Changing oxygen concentrations and variability have many implications for lake 

functioning because oxygen concentrations control many ecosystem and biogeochemical 

processes. Consequently, we would expect that ecological variables sensitive to oxygen will 

similarly become more or less variable following the oxygen patterns described above. In this 

section, I synthesize expected major changes in lake functioning and ecosystem services in 

response to decreases vs. increases in DO concentrations and variability, following the 

ecosystem service definitions of Aylward et al. (2005). I conceptualize these changes in the 

context of a see-saw: as oxygen concentrations fluctuate, so will the resulting ecosystem 

functioning (Fig. 2). 

In general, there is a positive relationship between lake oxygen concentrations and many 

attributes of water quality that determine the status of several critical lake ecosystem 

provisioning and cultural services (e.g., drinking water, fisheries, recreation; Fig. 2b). 

Consequently, low oxygen concentrations are associated with several metrics of impaired water 
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quality, thereby decreasing those ecosystem services (Fig. 2a). For example, low bottom-water 

oxygen concentrations result in significantly higher fluxes of dissolved organic carbon (DOC), 

ammonium (NH4+), soluble reactive phosphorus (SRP), dissolved iron (Fe), and dissolved 

manganese (Mn) from the sediments into the water (Fig. 2a; Mortimer 1941, Davison 1993, 

Rysgaard et al. 1994, Brothers et al. 2014, Krueger et al. 2020). Increases in these solutes in the 

water column can in turn decrease light transparency (Sterner et al. 1997, Xiao and Riise 2021), 

stimulate the growth of algae and cyanobacteria (Elser et al. 2007, Trommer et al. 2020, Yuan et 

al. 2021), and result in water column concentrations that exceed drinking water safety thresholds 

(for Fe and Mn; USEPA 2022). Moreover, declining oxygen levels restrict habitat suitability for 

aerobic organisms, especially fish and benthic macroinvertebrates (Dillon et al. 2003, Jiang and 

Pu 2009). Thus, declining oxygen availability due to global change will have detrimental effects 

for many freshwater provisioning and cultural ecosystem services (e.g., Smucker et al. 2021). 

The effects of changing oxygen on other freshwater ecosystem services mediated by lake 

biogeochemical functioning (e.g., nitrate removal, organic carbon storage, greenhouse gas 

release) are more equivocal (Fig. 2a). While sediment fluxes of DOC, NH4+, and SRP are 2-4× 

greater in anoxic than oxic lake conditions, denitrification, an important process removing nitrate 

(NO3-) from freshwaters, can be 4× greater in anoxic than oxic conditions (Carey et al. 2022a). 

Particulate organic carbon (POC) storage in the sediments of lakes and reservoirs, a globally-

important POC sink, is also significantly higher in anoxic than oxic conditions (Carey et al. 

2018, Carey et al. 2022a). Conversely, anoxia promotes the production of methane (CH4; e.g., 

(Bastviken et al. 2004, Encinas Fernández et al. 2014, Grasset et al. 2018), a greenhouse gas 34× 

more potent than carbon dioxide (CO2; Myhre et al. 2013). Subsequently, anoxic waterbodies 

may have a greater global warming potential than oxic waterbodies (Hounshell et al. 2021). In 
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sum, anoxia will likely increase and decrease lake ecosystem regulatory and supporting services 

(Fig. 2a). 

Because oxygen controls many different components of freshwater ecosystem 

functioning, it is likely that changes in oxygen concentrations and variability will result in 

dynamic, complex interactions that play out over different time scales. For example, changes in 

N:P stoichiometry due to differential NH4+ and SRP release from lake sediments into the water 

column during anoxia at day to week time scales may subsequently alter phytoplankton 

community structure and organic carbon mineralization at seasonal scales (Carey et al. 2022a). 

Similarly, increased seasonal anoxia associated with higher DOC sediment release can result in 

decreased water transparency, shallower oxycline depths, and increased water column stability at 

decadal time scales (Knoll et al. 2018). These changes to lake food webs, carbon and nutrient 

cycling, and other ecosystem dynamics stemming from the interacting effects of oxygen 

underscore the important role of oxygen as a “control point” in lake functioning (Bernhardt et al. 

2017). 

While less is known about the consequences of changing oxygen variability in lakes than 

changing oxygen concentrations, it is likely that greater variability in hypolimnetic oxygen (Fig. 

1b) will have substantial effects on lake biogeochemical cycles. For example, Bastviken et al. 

(2004) found that lake organic matter mineralization rates were greater in microcosms that 

experienced fluctuating anoxic and oxic periods vs. continuous high-oxygen conditions. 

Similarly, Lewis et al. (2022) observed that lake Fe-DOC complexation rates varied in 

microcosms experiencing alternating oxic/anoxic conditions in comparison to microcosms with 

continuous anoxic or continuous oxic conditions. At the ecosystem scale, short-term fluctuations 

in oxygen availability can have non-linear effects on terminal electron-accepting processes and 
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the production of CO2 and CH4 (McClure et al. 2021), as well as particulate organic C burial 

(Carey et al. 2018). Bryant et al. (2012) found that short-term changes in the operation of a 

hypolimnetic oxygenation system were associated with altered sediment microbial community 

structure, with implications for Fe and Mn oxidation and reduction. Altogether, these examples 

suggest that increased variability in oxygen availability – as may be occurring in the bottom 

waters of some lakes (Fig. 1b) – may have a substantial effect on lake ecosystem functioning.  

Long-term, lakes exhibit several intensifying ecosystem feedbacks that promote the 

continuation of low-oxygen concentrations into the future once hypolimnetic anoxia begins to 

occur. Adapting stable state theory (reviewed by Scheffer and van Nes 2007), once a lake 

exhibits anoxia, it can take a very long time before it transitions from that stable state back to 

oxic conditions, a legacy of “the ghost” of anoxia past. Indeed, paleolimnological data collected 

by Jenny et al. (2016a) show that lakes with hypolimnetic hypoxia do not show recovery even 

after decades of nutrient abatement. Beyond temporal legacies of anoxia, the consequences of 

lake anoxia may extend spatially as well: lakes with anoxic hypolimnia can export up to 6× 

higher loads of DOC, NH4+, and SRP, promoting anoxia in downstream waterbodies (Carey et al. 

2022a). 

 

Priorities for future lake oxygen research 

Given these major challenges – increasing anoxia in many (but not all) lakes, changing 

variability in oxygen concentrations in some lakes, altered ecosystem functioning – there are 

several key knowledge gaps that emerge as priorities for future research addressing the causes 

and consequences of changing oxygen in lakes. First, our knowledge on oxygen on lakes outside 

of Europe and North America, especially in the tropics, is sorely lacking. Most of the recent 
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meta-analyses on oxygen in lakes (e.g., Jenny et al. 2016a, Jane et al. 2021) primarily focused on 

temperate lakes in the northern hemisphere and thus our understanding on lake oxygen dynamics 

outside those regions is limited.  

Second, recent advances in sensors and monitoring networks reveal substantial spatial 

variability in within-lake oxygen dynamics. High-resolution (sub-meter) spatial data show that 

dissolved oxygen saturation can range by 19% within a few meters of a small north temperate 

lake (Crawford et al. 2014). Deployments of multiple oxygen sensors within a lake at the same 

depth over a few days (Van de Bogert et al. 2012) to several months (Ward et al. 2022) further 

suggest that there may be remarkable horizontal variability in oxygen, but the magnitude of these 

differences, their drivers, and implications for ecosystem functioning remain unknown.  

Third, there is much we do not know about the variability and patterns of oxygen under 

ice (e.g., Obertegger et al. 2017, Brentrup et al. 2021). While some northern temperate lakes 

exhibit winter oxygen depletion and even anoxia under ice (Prowse and Stephenson 1986, Ellis 

and Stefan 1989), some of the highest oxygen saturation levels ever observed (>300%) were 

recorded in amictic lakes in Antarctica (Wharton et al. 1986, Craig et al. 1992). As lake ice cover 

in many regions is rapidly changing (Sharma et al. 2021), it is vital to quantify the effects of 

shorter ice duration (Smits et al. 2021), more intermittent ice cover (Sharma et al. 2020), and 

changing ice quality (Weyhenmeyer et al. 2022) on under-ice depth profiles, especially as shorter 

durations of ice cover may result in higher oxygen conditions in lake bottom layers (Flaim et al. 

2020).   

Fourth, there is a pressing need to disentangle the effects of changing DO concentrations 

on lake ecosystems from water temperature, which is also rapidly changing in many lakes 

(O'Reilly et al. 2015). Whole-ecosystem experiments in which oxygen is manipulated while 
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temperature is held constant (and vice versa) hold promise for isolating the effects of changing 

oxygen on lake ecosystem functioning, but are logistically challenging and still rare (Gerling et 

al. 2016, Carey et al. 2022a). Long-term lake monitoring programs are critical for examining 

multi-decadal patterns in oxygen dynamics across changing climatic conditions, and are needed 

to further examine how variability in oxygen concentrations may be changing (Fig. 1). Oxygen 

modeling studies also have important utility (e.g., Fang and Stefan 2009, Couture et al. 2015, 

Bartosiewicz et al. 2019) and will be essential for building upon our accumulated knowledge of 

historical changes in oxygen in lakes to create near-term forecasts and longer projections of 

future oxygen dynamics in lakes in response to weather variability, climate change, land use, and 

management (sensu Carey et al. 2022b), with subsequent effects on lake ecosystem functioning. 

 

Looking ahead 

 First, the negatives: changing oxygen levels in lakes will likely have decadal to century-

long implications. The increasing geographic range, magnitude, and duration of anoxia and 

hypoxia in many lakes will have long-lasting consequences for ecosystem functioning and 

services, costing global economies billions to trillions of USD annually. For example, for Lake 

Erie (USA) alone, impaired water quality due to hypoxia threatens a >50 billion USD annual 

economy derived from lake ecosystem services of drinking water, fishing, and recreation (Scavia 

et al. 2014). Moreover, recovering from anoxia, even after decades of reduced external nutrient 

loads, is extremely challenging and in some cases may be impossible (Jenny et al. 2016a, Watson 

et al. 2016, van Oosterhout et al. 2022). 

 However, despite these substantial challenges, there are several positive developments in 

lake oxygen research and management that provide beneficial opportunities for future restoration 
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and science and should not be overlooked. First, the 1972 Clean Water Act resulted in the 

decline of pollution across the USA (Keiser and Shapiro 2019). In tandem with aquatic 

rehabilitation legislation in Europe (Battarbee et al. 2011), eutrophication and subsequent 

hypoxia has decreased in these regions in the late 20th century (Jenny et al. 2016a). Second, 

improved sensor technology, data availability, and monitoring networks have synergistically 

enabled researchers to observe changing lake oxygen patterns in near-real time, advancing both 

management and our understanding of ecosystem functioning (Meinson et al. 2015, Marcé et al. 

2016). As described above, high-frequency oxygen sensors have revealed that lake oxygen 

patterns are far more temporally and spatially dynamic than previously thought (e.g., Van de 

Bogert et al. 2012, Crawford et al. 2014). Third, collaborative monitoring and research networks 

such as GLEON (Global Lake Ecological Observatory Network; Weathers et al. 2013), 

NETLAKE (Networking Lake Observatories in Europe; Jennings et al. 2017), and the USA 

NEON (National Ecological Observatory Network; NRC 2004) have encouraged data sharing, 

standardization of data and metadata, knowledge transfer, and cross-site syntheses. Continuing to 

build collaborative communities of limnologists, engineers, computer scientists, modelers, and 

information managers will be critical for facilitating future lake oxygen research.  

Finally, analyzing historical oxygen data and high-frequency monitoring of current 

oxygen are the first steps towards forecasting future oxygen dynamics, which is necessary for 

preemptive lake management. As many lakes experience recurring hypoxia on short-term time 

scales (e.g., seasonally; Bouffard et al. 2013, Biddanda et al. 2018, Ladwig et al. 2021), day to 

month-ahead forecasts would be most useful for their management. For example, if managers 

were able to receive notice of impending lake hypoxia in a week’s time, with quantified 

uncertainty, they could potentially implement interventions today to prevent hypoxia from 
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occurring (e.g., activate oxygenation systems, increase inflows of oxic water) or mitigate its 

effects on targeted ecosystem services (e.g., alter drinking water treatment processes to better 

handle higher nutrient and metal concentrations). While the development of aquatic oxygen 

forecasting systems is still in its infancy (e.g., Peng et al. 2020, Carey et al. 2022b, GLERL 

2022), they show great promise for guiding near-term planning. For example, forecasts of 

dissolved oxygen for a large shallow lake in China had reasonable accuracy up to five days in 

advance (bias of 0.017 mg/L; Peng et al. 2020). Sixteen day-ahead oxygen forecasts had a root 

mean square error (RMSE) of 1.74-2.79 mg/L across multiple depths for a small drinking water 

reservoir in Virginia, USA (Carey et al. 2022b). These shorter-term forecasts set the stage for 

longer-term seasonal to annual oxygen forecasts that can guide scenario-based planning for water 

management. 

 

Conclusions 

Oxygen concentrations are changing in many lakes globally due to land use and climate 

change (Jenny et al. 2016a, Jane et al. 2021), necessitating new approaches for studying and 

managing lake water quality. Importantly, my analysis above suggests that variability in oxygen, 

not just mean concentrations, may also be changing. The focus on variability, even in the 

absence of any changes in mean concentrations (following Ruel and Ayres 1999), is critical for 

identifying the consequences of changing oxygen dynamics because of non-linear relationships 

between oxygen availability and ecosystem processes (e.g., Michaelis-Menten kinetics, which 

are commonly used to model lake biogeochemical responses to oxygen availability; Hipsey 

2022). For example, increasing fluctuations in bottom-water oxygen concentrations will result in 

altered rates of sediment fluxes even if the mean oxygen concentration does not change. From a 
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management perspective, changing oxygen variability also indicates that natural resource 

decision-makers can no longer rely on historical baselines for predicting next week or next 

month’s oxygen levels, which will have substantial consequences on ecosystem services and lake 

functioning (Fig. 2). Consequently, in the face of changing ecosystem variability due to global 

change – for which lake oxygen conditions are no exception (e.g., Fig. 1) – I am excited by 

advances in collaborative oxygen monitoring and forecasting research to help manage and 

protect lake and reservoir ecosystems. 
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Figure Legends 

Figure 1. Inter-annual (red) and intra-annual (blue) variability in dissolved oxygen in the surface 

waters (a) and bottom waters (b). Inter-annual variability was calculated for each lake as the 

slope of the relationship between the coefficient of variation (CV) of median annual dissolved 

oxygen over a three-year rolling window vs. year (n=76 surface lakes; n=19 bottom lakes). Intra-

annual variability was calculated as the slope of the relationship between the CV of dissolved 

oxygen measured within a year vs. year (n=37 surface lakes; n=14 bottom lakes). As CV is 

unitless, the resulting inter- and intra-annual variability metrics are presented in units of year-1.  

 

Figure 2. The effects of oxygen on lake ecosystem functioning and services can be 

conceptualized as a balance or see-saw between contrasting (a) anoxic (low-oxygen) vs. (b) oxic 

conditions. Icons represent different lake ecosystem provisioning, regulatory, supporting, and 

cultural services. In anoxic conditions (a), the rate of particulate organic carbon (POC) burial is 

higher, as is the removal of nitrate (NO3-) to N2 via denitrification. However, anoxia also 

promotes the production of methane (CH4), a potent greenhouse gas, and higher fluxes of 

dissolved organic carbon (DOC), nitrogen (N), phosphorus (P), iron (Fe), and manganese (Mn) 

from the sediments to the water column, thereby decreasing water quality. Consequently, there 

are both positive and negative effects of anoxia on lake ecosystem regulatory and supporting 

services. In contrast, oxic conditions (b) are associated with higher-quality water for drinking, 

recreation, habitat for fish and macroinvertebrates, and lake aesthetics, resulting in positive 

effects of high oxygen on lake ecosystem provisioning and cultural services. When oxygen is 

high, the rates of POC burial, denitrification, CH4 production, and sediment fluxes of DOC, N, P, 

Fe, and Mn are lower (indicated by the smaller size of the icons). All icons used in this figure 
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Figure 1. Inter-annual (red) and intra-annual (blue) variability in dissolved oxygen in the surface 
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Figure 2. The effects of oxygen on lake ecosystem functioning and services can be 
conceptualized as a balance or see-saw between contrasting (a) anoxic (low-oxygen) vs. (b) oxic 
conditions. Icons represent different lake ecosystem provisioning, regulatory, supporting, and 
cultural services. In anoxic conditions (a), the rate of particulate organic carbon (POC) burial is 
higher, as is the removal of nitrate (NO3-) to N2 via denitrification. However, anoxia also 
promotes the production of methane (CH4), a potent greenhouse gas, and higher fluxes of 
dissolved organic carbon (DOC), nitrogen (N), phosphorus (P), iron (Fe), and manganese (Mn) 
from the sediments to the water column, thereby decreasing water quality. Consequently, there 
are both positive and negative effects of anoxia on lake ecosystem regulatory and supporting 
services. In contrast, oxic conditions (b) are associated with higher-quality water for drinking, 
recreation, habitat for fish and macroinvertebrates, and lake aesthetics, resulting in positive 
effects of high oxygen on lake ecosystem provisioning and cultural services. When oxygen is 
high, the rates of POC burial, denitrification, CH4 production, and sediment fluxes of DOC, N, P, 
Fe, and Mn are lower (indicated by the smaller size of the icons). All icons used in this figure 
were either created by the author or in the public domain from Creative Commons. 


