Joanna Speer

and 6 more

Weathering is a natural geological process whereby atmospheric CO2 dissolved in rainwater attacks rocks, partly dissolving them. The CO2 is converted into alkalinity or carbonate minerals that securely store carbon on timescales of >10,000 years. Modelling studies show that if weathering rates can be increased (by selecting the most reactive rocks, increasing reactive surface area), up to an additional 2 Gt CO2 yr-1 could be removed from the atmosphere, ~40% of the amount required by 2100 to meet the Paris Agreement target.The mining industry extracts gigatonnes of rock each year, generating large amounts of freshly exposed, reactive surface area that could be used as a feedstock for enhanced weathering. Ore deposits with the highest CO2 removal capacity are those mined in high quantities that have an abundance of calcium- and magnesium-bearing silicate minerals [1]. Here, we report the results of an investigation into the reactivity of serpentinised peridotite samples  from the Sakatti Cu-Ni-PGE deposit (Finland). The deposit consists of both disseminated and massive sulphides hosted within a large olivine-cumulate  body [2]. The material consists primarily of serpentine [Mg3Si2O5(OH)4] and olivine [Mg2SiO4] minerals that have a high potential for CO2 removal via enhanced weathering. We have conducted a series of laboratory experiments whereby crushed peridotite samples were reacted with CO2-enriched solutions at 25 °C and 50 °C, and 1 bar CO2 (100% CO2).  Surface area normalised dissolution rates were determined for various grain sizes,  temperatures, mineral compositions (degree of serpentinization) and solution chemistry (with/without a chelating agent).

Peter B Kelemen

and 22 more

This paper provides an overview of research on core from Oman Drilling Project Hole BT1B and the surrounding area, plus new data and calculations, constraining processes in the Tethyan subduction zone beneath the Samail ophiolite. The area is underlain by gently dipping, broadly folded layers of allochthonous Hawasina pelagic sediments, the metamorphic sole of the Samail ophiolite, and Banded Unit peridotites at the base of the Samail mantle section. Despite reactivation of some faults during uplift of the Jebel Akdar and Saih Hatat domes, the area preserves the tectonic “stratigraphy” of the Cretaceous subduction zone. Gently dipping listvenite bands, parallel to peridotite banding and to contacts between the peridotite and the metamorphic sole, replace peridotite at and near the basal thrust. Listvenites formed at less than 200°C and (poorly constrained) depths of 25 to 40 km by reaction with CO2-rich, aqueous fluids migrating from greater depths, derived from devolatilization of subducting sediments analogous to clastic sediments in the Hawasina Formation, at 400-500°. Such processes could form important reservoirs for subducted CO2. Listvenite formation was accompanied by ductile deformation of serpentinites and listvenites – perhaps facilitated by fluid-rock reaction – in a process that could lead to aseismic subduction in some regions. Addition of H2O and CO2 to the mantle wedge, forming serpentinites and listvenites, caused large increases in the solid mass and volume of the rocks. This may have been accommodated by fractures formed as a result of volume changes, perhaps mainly at a serpentinization front.

Alexis S Templeton

and 17 more

The Oman Drilling Project established an “Active Alteration” multi-borehole observatory in dunite and harzburgite undergoing low-temperature serpentinization in the Samail ophiolite. The highly serpentinized rocks are in contact with strongly reducing fluids. Distinct hydrological regimes, governed by differences in rock porosity and fracture density, give rise to steep redox (Eh +200 to -750 mV) and pH (pH range 8.5 to 11.2) gradients within the 300 to 400 meter deep boreholes. The serpentinites and fluids host an active subsurface ecosystem. Microbial cell abundances vary at least 6 orders of magnitude, from ≤3.5*101 cells/g to 2.9*107 cells/gram. Low levels of biological sulfate reduction (2-1000 fmol/cm3/day) can be detected in rock cores, particularly in rocks in contact with reduced groundwaters with pH <10.5. Thermodesulfovibrio is the predominant sulfate reducer identified via metagenomic sequencing of adjacent groundwater communities. We infer that transport and reaction of microbially generated sulfide with the serpentine and brucite assemblages gives rise to optical darkening and sulfide overprinting, including the formation of tochilinite-vallerite group minerals, potentially serving as an indicator that this system is inhabited by microbial life. Olivine mesh-cores replaced with ferroan brucite and minor awaruite, abundant veins containing hydroandradite garnet and polyhedral serpentine, and late-stage carbonate veins are suggested as targets for future spatially-resolved life-detection investigations. The high-quality whole-round core samples that have been preserved can be further probed to define how life distributes itself and functions within a system where chemical disequilibria are sustained by low-temperature water/rock interaction, and how biosignatures of in-situ microbial activity are generated.

Peter B Kelemen

and 17 more

The Oman Drilling Project “Multi-Borehole Observatory” (MBO) samples an area of active weathering of tectonically exposed peridotite. This paper reviews the geology of the MBO region, summarizes recent research, and provides new data constraining ongoing alteration. Host rocks are partially to completely serpentinized, residual mantle harzburgites and replacive. Dunites show evidence for “reactive fractionation”, in which cooling, crystallizing magmas reacted with older residues of melting. Harzburgites and dunites are 65-100% hydrated. Ferric to total iron ratios vary from 50 to 90%. In Hole BA1B, alteration extent decreases with depth. Gradients in water and core composition are correlated. Serpentine veins are intergrown with, and cut, carbonate veins with measurable 14C. Ongoing hydration is accompanied by SiO2 addition. Sulfur enrichment in Hole BA1B may result from oxidative leaching of sulfur from the upper 30 m, coupled with sulfate reduction and sulfide precipitation at 30-150 m. Oxygen fugacity deep in Holes BA3A, NSHQ14 and BA2A is fixed by the reaction 2H2O = 2H2 + O2 combined with oxidation of ferrous iron in serpentine, brucite and olivine. fO2 deep in Holes BA1A, BA1D and BA4A is 3-4 log units above the H2O-H2 limit, controlled by equilibria involving serpentine and brucite. Variations in alteration are correlated with texture, with reduced, low SiO2 assemblages in mesh cores recording very low water/rock ratios, juxtaposed with adjacent veins recording much higher ratios. The proportion of reduced mesh cores vs oxidized veins increases with depth, and the difference in fO2 recorded in cores and veins decreases with depth.

Daniel Nothaft

and 12 more

In high-pH ($\text{pH}>10$) fluids that have participated in low-temperature ($<150\,^{\circ}\text{C}$) serpentinization, the dominant form of C is often methane (CH$_{4}$), but the origin of this CH$_{4}$ is uncertain. To assess CH$_{4}$ origin during low-temperature serpentinization, we pumped fluids from aquifers within the Samail Ophiolite, Oman. We determined fluid chemical compositions, analyzed taxonomic profiles of fluid-hosted microbial communities, and measured isotopic compositions of hydrocarbon gases. We found that 16S rRNA gene sequences affiliated with methanogens were widespread in the aquifer. We measured clumped isotopologue ($^{13}$CH$_{3}$D and $^{12}$CH$_{2}$D$_{2}$) relative abundances less than equilibrium, consistent with substantial microbial CH$_{4}$ production. Further, we observed an inverse relationship between dissolved inorganic C concentrations and $\delta^{13}\text{C}_{\text{CH}_{4}}$ across fluids bearing microbiological evidence of methanogenic activity, suggesting that the apparent C isotope effect of microbial methanogenesis is modulated by C availability. A second source of CH$_{4}$ is evidenced by the presence of CH$_{4}$-bearing fluid inclusions in the Samail Ophiolite and our measurement of high $\delta^{13}\text{C}$ values of ethane and propane, which are similar to those reported in studies of CH$_{4}$-rich inclusions in rocks from the oceanic lithosphere. In addition, we observed 16S rRNA gene sequences affiliated with aerobic methanotrophs and, in lower abundance, anaerobic methanotrophs, indicating that microbial consumption of CH$_{4}$ in the ophiolite may further enrich CH$_{4}$ in $^{13}$C. We conclude that substantial microbial CH$_{4}$ is produced under varying degrees of C limitation and mixes with abiotic CH$_{4}$ released from fluid inclusions. This study lends insight into the functioning of microbial ecosystems supported by water/rock reactions.