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Introduction

Text S1.

We construct the full pCO2 Taylor’s expansion decomposition starting with the carbon-

ate chemistry definitions of DIC and TA as in Egleston, Sabine, and Morel (2010):

DIC = [CO2] +
K1[CO2]

[H+]
+
K1K2[CO2]

[H+]2
(1)

TA =
K1[CO2]

[H+]
+ 2

K1K2[CO2]

[H+]2
+

BtotKb

(Kb + [H+])
− [H+] +

Kw

[H+]
(2)
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Where K1 and K2 are defined as Millero, Graham, Huang, Bustos-Serrano, and Pierrot

(2006), Kw as Millero (1995) and Kb according to Dickson (1990). From Eq. (1) we can

obtain [H+] and from Eq. (2) we get [CO2] respectively as:

[H+] =
K1[CO2] +

√
K2

1 [CO2]2 + 4K1K2[CO2](DIC − [CO2])

2(DIC − [CO2])
(3)

[CO2] =
[H+]2

K1[H+] + 2K1K2

(
TA− BtotKb

(Kb + [H+])
+ [H+] − Kw

[H+]

)
(4)

For [H+] the positive solution was chosen; the negative root gives a result far from real

values. From Eq. (3) and Eq. (4) we can make a Taylor’s expansion of [H+] and [CO2]

respectively as:

δ[H+] =
∂[H+]

∂DIC

∣∣∣∣CO2,DIC

T,S

δDIC +
∂[H+]

∂[CO2]

∣∣∣∣CO2,DIC

T,S

δ[CO2] +
∂[H+]

∂T

∣∣∣∣CO2,DIC

T,S

δT +
∂[H+]

∂S

∣∣∣∣CO2,DIC

T,S

δS(5)

δ[CO2] =
∂[CO2]

∂TA

∣∣∣∣TA,H

T,S

δTA+
∂[CO2]

∂[H+]

∣∣∣∣TA,H

T,S

δ[H+] +
∂[CO2]

∂T

∣∣∣∣TA,H

T,S

δT +
∂[CO2]

∂S

∣∣∣∣TA,H

T,S

δS (6)

The overbars indicate the climatologies of the variables in which the derivatives are eval-

uated. Finally, we insert δ[H+] from Eq. (5) into Eq. (6), to get [CO2] in terms of DIC,

TA, T and S:

δ[CO2] =

[
1 − ∂[CO2]

∂[H+]

∣∣∣∣TA,H

T,S

∂[H+]

∂[CO2]

∣∣∣∣CO2,DIC

T,S

]−1

·
[
∂[CO2]

∂TA

∣∣∣∣TA,H

T,S

δTA

+
∂[CO2]

∂[H+]

∣∣∣∣TA,H

T,S

∂[H+]

∂DIC

∣∣∣∣CO2,DIC

T,S

δDIC

+
(
∂[CO2]

∂T

∣∣∣∣TA,H

T,S

+
∂[CO2]

∂[H+]

∣∣∣∣TA,H

T,S

∂[H+]

∂T

∣∣∣∣CO2,DIC

T,S

)
δT
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+
(
∂[CO2]

∂S

∣∣∣∣TA,H

T,S

+
∂[CO2]

∂[H+]

∣∣∣∣TA,H

T,S

∂[H+]

∂S

∣∣∣∣CO2,DIC

T,S

)
δS

]
(7)

Comparing the terms from Eq.(7) to the desired Taylor’s expansion:

δpCO2 ≈ ∂pCO2

∂DIC

∣∣∣∣TA,DIC

T,S

δDIC +
∂pCO2

∂TA

∣∣∣∣TA,DIC

T,S

δTA+
∂pCO2

∂T

∣∣∣∣TA,DIC

T,S

δT +
∂pCO2

∂S

∣∣∣∣TA,DIC

T,S

δS (8)
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We can identify the derivatives from Eq.(8), as follows:

∂pCO2

∂TA

∣∣∣∣TA,DIC

T,S

= pCO2 ·
−TAc

DIC ·Θ− TA
2
c

(9)

∂pCO2

∂DIC

∣∣∣∣TA,DIC

T,S

= pCO2 ·
Θ

DIC ·Θ− TA
2
c

∂pCO2

∂T

∣∣∣∣TA,DIC

T,S

= pCO2 ·
1

DIC ·Θ− TA
2
c

[
TAc ·

(
∂Alkc

∂T
+

∂[B(OH)−4 ]

∂T
+

∂[OH−]

∂T

)
−Θ ·

∂(DIC − [CO2])

∂T

]
−

pCO2·
K0(T, S)

∂K0(T, S)

∂T

∂pCO2

∂S

∣∣∣∣TA,DIC

T,S

= pCO2 ·
1

DIC ·Θ− TA
2
c

[
TAc ·

(
∂TAc

∂S
+

∂[B(OH)−4 ]

∂S
+

∂[OH−]

∂S

)
−Θ ·

∂(DIC − [CO2])

∂S

]
−

pCO2·
K0(T, S)

∂K0(T, S)

∂S

where Θ = [HCO−3 ] + 4[CO2−
3 ] +

[B(OH)−4 ][H+]

(kb+[H+])
+ [H+] + [OH−] and Alkc = [HCO−3 ] + 2[CO2−

3 ].

Below are some details of the specific concentrations derivatives.

∂Alkc
∂T, S

=
[CO2]

[H+]2

(
∂k1
∂T, S

[H+] + 2k1
∂k2
∂T, S

+ 2k2
∂k1
∂T, S

)
(10)

∂(DIC − [CO2])

∂T, S
=

[CO2]

[H+]2

(
∂k1
∂T, S

[H+] + k1
∂k2
∂T, S

+ k2
∂k1
∂T, S

)
∂[B(OH)−4 ]

∂T
=

Btot[H
+]

(kb + [H+])2
∂kb
∂T

∂[B(OH)−4 ]

∂S
=

Btot[H
+]

(kb + [H+])2
∂kb
∂S

+
kb

(kb+ [H+])

∂Btot

∂S

∂[OH−]

∂T, S
=

1

[H+]

∂kw
∂T, S
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Figure S1. Time series (1866-2095 ) of pCO2 as a) 11 years running climatology and b)

monthly anomaly (calculated as the deviation from the climatology), for 13 different CIMP5

models, under RCP8.5 scenario. Overlaid in black is the anomalies from the observation-based

estimations of Landschützer et al. (2017)
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Figure S2. pCO2’s interannual anomalies, shown as a) 1866-1916 and b) 2045-2095 standard

deviations. c) shows the 2045-2095 STD divided by 1866-1916 STD. Each row shows a different

CMIP5 model.
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Figure S3. Same as Figure S2 but for different models.
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Figure S4. 1987-2010 values of root mean square (RMS) for a) pCO2 anomalies and the b)

thermal and c) non-thermal contributions to pCO2’s RMS. The contributions are defined as the

regression coefficients between the components (either thermal or non-thermal) and the pCO2

anomaly, following the method of Doney et al. (2009). The thermal and non-thermal components

are calculated as Takahashi et al. (2002). The first row shows the observation-based results of

Landschützer et al. (2017). The anomalies where calculated with the method of Landschützer et

al. (2018), to compare with their results. The data was first filtered with a 12 month mean, and

then detrended with a quadratic polynomial.
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Figure S5. Causes of increasing pCO2
′ variability: Total change (measured as 2045-2095

minus 1870-1920 values) of a) the RMS of pCO2
′ and b) RMS of pCO2

′ when only the value

of pCO2, γDICs and γT vary, but we keep constant the 1870-1920 value of the DICs
′ and T′

interannual anomalies. Each row represents a different model.
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Figure S6. Increase on DICs and T contributions to pCO2 interannual variability.

a) and b) show the distributions of the DICs and T terms that control the pCO2 anomalies,

as calculated in Eq. (1) of the main text. The distributions show 600 monthly values for the

1870-1920 (blue) and 2045-2095 (red) periods for every point of the ocean between 180oE to

180oW and 60oS to 60oN.
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