
Shuci Liu1, Rémi Dupas2, Danlu Guo3, Anna Lintern4, Camille Minaudo5, Ul-
rike Bende-Michl6, Kefeng Zhang7, Clément Duvert8,9

1 Institute for Disaster Risk Management, School of Geographical Sciences, Nan-
jing University of Information Science & Technology, Nanjing, Jiangsu, 211544,
China
2 INRAE, L’institut Agro, UMR 1069 SAS, Rennes, France
3 Department of Infrastructure Engineering, University of Melbourne, Victoria,
3010, Australia
4 Department of Civil Engineering, Monash University, Victoria, 3800, Australia
5 EPFL, Physics of Aquatic Systems Laboratory, Margaretha Kamprad Chair,
Lausanne, Switzerland
6 Science and Innovation Group – Hydrology Research, Bureau of Meteorology,
Canberra, 2601, Australia
7 Water Research Centre, School of Civil and Environmental Engineering,
UNSW Sydney, NSW 2052, Australia
8 Research Institute for the Environment and Livelihoods, Charles Darwin Uni-
versity, Darwin, NT, 0810, Australia
9 National Centre for Groundwater Research and Training (NCGRT), Adelaide,
SA, 5001, Australia

Corresponding author: Shuci Liu (shuci.liu@nuist.edu.cn)

Key Points:

• Consideration of climate zones in a hierarchical modelling structure im-
proves the predictability of both mean concentrations and C–Q slopes

• Land use, topography and soil are the most influential factors for mean
concentrations; while topographic controls show strong effects on export
patterns

• The influence of catchment controls on mean concentrations/C–Q slopes
varies across climates zones

Abstract

The state and dynamics of river chemistry are influenced by both anthropogenic
and natural catchment characteristics. However, understanding key controls on
catchment mean concentrations and export patterns comprehensively across a
wide range of climate zones is still lacking, as most of this research is focused on
temperate regions. In this study, we investigate the catchment controls on mean
concentrations and export patterns (concentration–discharge relationship, C–Q
slope) of river chemistry, using a long-term data set of up to 507 sites spanning
five climate zones (i.e., arid, Mediterranean, temperate, subtropical, tropical)
across the Australian continent. We use Bayesian model averaging (BMA) and
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hierarchical modelling (BHM) approaches to predict the mean concentrations
and export patterns and compare the relative importance of 26 catchment char-
acteristics (e.g., topography, climate, land use, land cover, soil properties and
hydrology). Our results demonstrate that mean concentrations result from the
interaction of catchment intrinsic and anthropogenic factors (i.e., land use, to-
pography and soil), while export patterns are more influenced by catchment
intrinsic characteristics only (i.e., topography). We also found that incorporat-
ing the effects of climate zones in a BHM framework improved the predictabil-
ity of both mean concentrations and C–Q slopes, suggesting the importance of
climatic controls on hydrological and biogeochemical processes. Our study pro-
vides insights into the contrasting effects of catchment controls across different
climate zones. Investigating those controls can inform sustainable water quality
management strategies that consider the potential changes in river chemistry
state and export behaviour.

1 Introduction

Freshwater ecosystems provide fundamental functions for human life and bio-
diversity (Carpenter et al., 2011; Pohle et al., 2021; Vanni, 2002). However,
local anthropogenic activities such as land use change, land management (Das
Kangabam et al., 2019; Mokaya et al., 2004) and global climate change (Cis-
neros et al., 2014; Yapiyev et al., 2021) have resulted in negative impacts on
inland water quality across the world. Therefore, to mitigate the risks for and
reduce impacts from impaired water quality, or to preserve good ecological river-
ine conditions and to sustainably manage water resources, we need appropriate
assessments of water quality monitoring data and an improved understanding
of river chemistry variability and its major controls.

The effectiveness of water quality mitigation measures is dependent on a thor-
ough understanding of in-stream water quality processes in different physical
settings (e.g., hydrology, climate, topography, land use and land cover) (Naing-
golan et al., 2018; Schoumans et al., 2014). Previous studies have shown high
spatial variability in river chemistry (solutes and particulates concentrations)
at regional scales (Diamantini et al., 2018; Heathwaite et al., 2005; Liu, 2019).
River chemistry varies considerably among different catchments, as a result of
land use and land cover (Aronson et al., 2014; Calijuri et al., 2015; Hunter et
al., 2008; Lintern et al., 2018a; Liu et al., 2018), climate (Huang et al., 2003;
Lintern et al., 2018a; Sardans et al., 2008; Tockner et al., 1999), topography
and geology (Grayson et al., 1997; Holloway et al., 1998; Ice et al., 2003). Fur-
thermore, export dynamics of constituents may change at (sub)daily, seasonal
and inter-annual time-scales (Marinos et al., 2020; Minaudo et al., 2019), due
to a combination of hydrological and biogeochemical processes, and long-term
changes in vegetation cover or land management practices (Basu et al., 2011;
Paerl et al., 2018; Weyer et al., 2018).

Investigations of river chemistry concentration (C) and discharge (Q) relation-
ships (referred to as C–Q hereafter) have been used to characterise and identify
solute and particulate export dynamics, and the drivers of these dynamics at
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the catchment scale (Bieroza et al., 2018; Moatar et al., 2020; Pohle et al., 2021).
In particular, the C–Q slope, defined as the exponent of a power-law function
(C = aQb), which is derived from the slope of linear fit in log(C)–log(Q) space,
is used as an indication of the export pattern of a constituent (Basu et al.,
2011; Godsey et al., 2009; Kim et al., 2017; Musolff et al., 2017). A C–Q slope
that is significantly positive indicates a flushing pattern, a C–Q slope that is
significantly negative indicates a dilution pattern and a C–Q slope that is not
significantly away from zero indicates a constant export pattern (Basu et al.,
2011; Kim et al., 2017; Musolff et al., 2017). These export patterns are affected
by the constituent type (particulates, geogenic solutes or biogenic solutes) (Lin-
tern et al., 2021; Rose et al., 2018; Zhi et al., 2019), source type (point or diffuse)
(Bieroza et al., 2018), dominant transport pathway (surface runoff or baseflow)
(Zhi et al., 2019), and whether the constituent is a source- or transport-limited
(Shogren et al., 2021).

Previous studies have shown that catchment characteristics such as land use,
hydrological variability, topography and geology may control particulate and
solute export (Fazekas et al., 2020; Marinos et al., 2020; Musolff et al., 2015;
Seybold et al., 2019). For instance, Musolff et al. (2015) found that there
was a strong relationship between C–Q slopes for nitrate and the percentage of
artificially drained arable land within a catchment, indicating that catchment
land use has a significant effect (direct or indirect) on the export patterns of
nitrate. Similarly, Godsey et al. (2019) identified a strong impact of soil and
geological catchment characteristics and land cover on the spatial variability in
C–Q slopes between catchments in North America.

However, few studies have investigated the relative importance of multiple catch-
ment characteristics and multiple constituents over large spatial scales (e.g., at
the continental scale) and between different climate zones. Most of the previous
studies are limited to local (e.g., nine sub-catchments in Bode River catchment
in Germany with areas ranging from 16 to 593 km2, Musolff et al. (2015)) or
regional scales (e.g.,34 catchments within the Gulf of Alaska region with areas
ranging from 16 to 63,187 km2, Jenckes et al. (2022)). As such, previous studies
have largely used a limited number of monitored catchments (Kim et al., 2017;
Musolff et al., 2015), or have had a strong focus on temperate catchments in
Europe (Dupas et al., 2018; Dupas et al., 2017; Ebeling et al., 2021; Minaudo
et al., 2019; Moatar et al., 2017; Musolff et al., 2021) or North America (Mari-
nos et al., 2020; Wen et al., 2020; Zhang, 2018). Furthermore, whilst there are
a small number of continental-scale studies that investigated export patterns
between event and interannual scales and identified the controls on mean con-
centrations (e.g., Godsey et al. (2019)), these are limited to catchments in the
Northern Hemisphere, and are limited to few climate zones (e.g., focusing on
the temperate zone). Findings from these Northern Hemisphere, mostly tem-
perate catchments are not necessarily transferable to other parts of the world
with different climates, as river chemistry may respond to ecosystems and cli-
mates differently in the Southern Hemisphere (Dallas, 2008; Hagen et al., 2014).
In addition, there is a lack of comprehensive assessment of multiple types of
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catchment controls. Therefore, our current understanding of key controls on
spatial variability and export patterns across different climates and over large
continental scales is still limited.

The potential interactions between different catchment characteristics and the
impact of these interactions on river chemistry are not well understood, and
even less so across multiple climate zones. Previous studies (e.g., Doody et
al., 2016; Moatar et al., 2017; Ebeling et al., 2021) have suggested complex
interactions between intrinsic characteristics (e.g., soil type and topography)
and extrinsic characteristics (e.g., climate, hydrology, land use and land cover)
drive river chemistry states and export patterns. Our recent study also showed
that mean concentrations of river chemistry were more climate-dependent than
export patterns in Australia (Lintern et al., 2021). Guo et al. (2022) found that
the effect of baseflow contribution (baseflow index, BFI) in shaping the C–Q
slopes varies across climate zones in Australia, but using BFI as a predictor
might not provide sufficient predictive power to simulate and characterise the
C–Q slopes. These findings raise the questions of (1) whether or not the controls
on mean concentrations/export patterns of river chemistry; and (2) whether or
not the effects of controls on export patterns vary across different climate zones.
As such, in this study, we test the hypothesis that climate zones significantly af-
fect the relationship between mean solute and particulate concentrations/export
patterns and landscape characteristics.

Thus, in this study, we explore the following research questions: (1) what are
the key catchment characteristics that control mean concentrations and export
patterns in river chemistry? (2) how do the key controls vary across each of the
climate zones? and (3) considering the key catchment controls and their vary-
ing effects on mean concentrations/export patterns across climate zones, how
well can we predict the spatial variability in these metrics using a statistical
modelling framework? To address the research questions and the hypothesis,
we used river chemistry and discharge data collected across the Australian con-
tinent (previously introduced in Lintern et al. (2021)). A cross-Australia data
analysis is particularly interesting as the country covers a large number of con-
trasting climate zones: arid, Mediterranean, temperate, subtropical and tropical.
This unique climatic gradient in a single database allows us to further our un-
derstanding of (1) the effect of climate types on river chemistry; (2) the relative
importance of a wide range of catchment characteristics (e.g., land use, soil,
topography, hydrology, land cover and climate) on mean concentrations/export
patterns of river chemistry; and (3) the interactions between the wide range of
catchment characteristics and climate zones. We use an integrated Bayesian sta-
tistical modelling framework to explore and understand the controls on spatial
variability in mean constituent concentrations, and export patterns (i.e., C–Q
slope). We analyse six commonly monitored constituents (i.e., total suspended
solid – TSS, total nitrogen – TN, the sum of nitrate and nitrite – NOx, total
phosphorus – TP, soluble reactive phosphorus – SRP and electrical conductivity
– EC) from 507 catchments across the Australian continent.
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2 Materials and Methods

2.1 Water quality and discharge data acquisition

We used a national database of discharge and water quality (particulates and
solutes, including nutrients) monitoring data from seven state/territory authori-
ties (Table S1, Supporting Information and more details such as analytical meth-
ods can be found in Data Set S1 in Supporting Information). This database
was collated based on all available water chemistry and discharge data from 507
monitoring sites from 1964 to late 2019. Both discharge and water quality data
were checked for quality and cleaned through a quality control process (e.g., re-
moval of high uncertainty measurements and water quality data not associated
with discharge), by using quality codes and flags (Table S1) as recommended by
individual state authorities (Guo et al., 2022; Lintern et al., 2021). We focused
on six constituents, namely TSS, TN, NOX, TP, SRP and EC. The majority
of the water quality data was collected manually using grab samples, with a
few exceptions of high-frequency measurements of EC; while discharge data was
recorded at a daily timestep.

To ensure the reliability and robustness of C–Q slope estimates, we selected the
monitoring sites with (1) at least ten-year water quality and discharge monitor-
ing records; and (2) at least 50 C–Q pairs (Lintern et al., 2021). This selection
procedure led to a total number of 507 sites (Figure 1a) retained for further
analysis, with the number of sites for individual constituents ranging from 143
sites for NOX to 479 sites for EC. The average length of the data series ranges
from 17 (TN) to 27 (EC) years, and the average number of C–Q pairs varies
from 246 (TN) to 1349 (EC). A detailed summary of water quality and discharge
data for individual constituents can be found in Table S2.

2.2 Catchment characteristics

The 507 selected monitoring sites are located across the Australian continent.
Catchment boundaries of the 507 monitoring sites were obtained using the Geo-
fabric tool provided by the Australian Bureau of Meteorology (Bureau of Meteo-
rology, 2012). According to the updated Köppen-Geiger Climate Classification
(Peel et al., 2007), these catchments can be classified into five major climate
zones (i.e., arid, Mediterranean, temperate, subtropical and tropical in Figure
1a) as per Lintern et al. (2021). The strong climatic gradient in these catch-
ments results in drastic differences in catchment characteristics, such as catch-
ment average annual rainfall (Figure 1b), catchment slope (Figure 1c) and land
use (agriculture, Figure 1d). The distribution of these catchment characteristics
within each climate zone can be found in the boxplots in Figures S1 to S3.
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Figure 1. Location of monitoring sites and examples of catchment characteris-
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tics included in this study. (a) Location of 507 monitoring sites with different
colours representing five climate zones (Ari – arid, Med – Mediterranean, Temp
– temperate, Sub – subtropical and Tro – tropical). The total number of catch-
ments is indicated next to the abbreviation of climate zones. (b) Catchment
annual average precipitation. (c) Catchment average slope. (d) Catchment av-
erage percentage area as agricultural land use. States and territories shown on
these maps are Northern Territory – NT, New South Wales – NSW, Queens-
land – QLD, South Australia – SA, Victoria – VIC, Western Australia – WA
and Tasmania –TAS.

We obtained 26 catchment characteristics as explanatory variables (see Sect.
2.3.1) using publicly available datasets. These were categorised into topogra-
phy, land cover, land use, soil, climate and hydrological characteristics (detailed
description and temporal period in Table 1.; summary statistics in Table S3).
These catchment characteristics were retrieved from a national Environmental
Attributes Database (Geoscience Australia, 2011), other than soil characteris-
tics which were extracted from the Soil and Landscape Grid of Australia’s Na-
tional Soil Attribute Maps (Terrestrial Ecosystem Research Network, 2016). We
selected catchment characteristics based on previous literature highlighting the
characteristics that are most likely to influence the spatial variability and export
patterns in riverine water quality (Chang, 2008; Guo et al., 2021; Kleinman et
al., 2004; Lintern et al., 2018a; Lintern et al., 2018b; Liu et al., 2021b; Marinos
et al., 2020; Musolff et al., 2015). There are a few pairs of catchment character-
istics with strong cross-correlations (Figure S4, Supporting Information), e.g.,
a Pearson’s correlation coefficient r = -0.84 for slope and Topographic Wetness
Index (TWI); r = 0.91 for catchment area and soil TN. We further discuss the
influence of strong correlations between catchment characteristics on modelling
performance as well as inference of modelling results in Sect. 4.

Table 1. Summary of 26 catchment characteristics investigated in this paper.

Catchment characteristic Abbreviation Description Temporal period
Topography
Catchment area Area Upstream catchment area (km2) 2008
Stream density StreamDensity The ratio of total length of all upstream stream segments to the contributing area (km/km2)
Catchment average elevation Elevation The average elevation in the catchment (m)
Catchment storage Storage The proportion of upstream areas that are valley bottoms (%)
Distance to source UpstreamDist Maximum flow path length upstream to the catchment outlet (km)
Catchment average slope Slope Average upstream catchment slope (°)
Topographic Wetness Index TWI The topographic wetness index is calculated as log (specific catchment area/slope) and estimates the relative wetness within a catchment. 2016
Climate
Catchment solar radiation Radiation Catchment average annual mean solar radiation (MJ/m2/day) 1976-2005
Catchment temperature Temperature Catchment average annual mean temperature (°C)
Catchment rainfall Rainfall Catchment average annual mean rainfall (mm)
Rainfall erosivity Erosivity Catchment average rainfall erosivity R factor (MJ mm)/(ha hr yr)
Land use
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Catchment characteristic Abbreviation Description Temporal period
Agricultural land use Agriculture Sum of irrigated land, aquaculture, intensive animal production and intensive plant production (%) 2009
Urban land use Urban The proportion of catchment that is urban (%)
Forestry land use Forestry The proportion of catchment that is used for forestry (%)
Soil
Soil TN TN_soil Mass fraction of total nitrogen in the 0-5cm soil by weight (%) 2016
Soil TP TP_soil Mass fraction of total phosphorus in the 0-5cm soil by weight (%)
Soil sand Sand_soil 0-5cm soil sand content (%)
Soil clay Clay_soil 0-5cm soil clay content (%)
Soil carbonated Carbonated Mass fraction of carbon by weight in the 0-5cm soil material (%)
Land cover
Woodland and forest Woodforest Catchment percentage natural woodland cover and natural forests 2008
Grass cover Grass Catchment percentage natural grasses cover
Shrubs cover Shrubs Catchment percentage extant/naturally shrub cover
Bare land Bare Catchment percentage extant/naturally bare
Hydrology
Catchment average runoff Runoff Catchment average annual surface runoff (mm) 1970-2008
Coefficient of variation of annual runoff CV_Runoff Coefficient of variation of annual surface runoff
Perenniality Perenniality Contribution to mean annual discharge by the six driest months of the year (%)

2.3 Statistical analyses

2.3.1 Time-averaged mean concentration and C–Q slope

We first calculated the time-averaged mean concentration, as well as computed
the log(C)–log(Q) slope for individual constituents at individual sites. Figures
S5 to S10 show locations of sites, the spatial distribution of mean concentrations
and C–Q slopes of individual constituents. Summary statistics and boxplots of
mean concentrations and C–Q slopes across different climate zones are provided
in Table S4, and Figures S11 and S12 (Supporting Information). We also tested
the differences in mean concentrations and C–Q slopes between different climate
zones using a Kruskal-Wallis test (� =0.05). These two metrics were used as re-
sponse variables in a Bayesian modelling framework (see Sect. 2.3.2). Prior to
the analyses, we transformed the data using power transformation, to improve
the normality and symmetry of the response variables, i.e., Box-Cox for mean
concentrations and Yeo–Johnson for C–Q slopes (Atkinson et al., 2021; Yeo
et al., 2000). The Yeo–Johnson transformation was selected as it can handle
negative values in the C–Q slopes. Histograms of mean concentration and C–Q
slopes before and after transformation, transformation parameters and normal-
ity test results can be found in Figures S13 and S14, Supporting Information.

2.3.2 Bayesian model averaging in a hierarchical structure

A Bayesian model averaging (BMA) approach was used to compare the relative
importance of potential explanatory variables and identify the catchment char-
acteristics that influence mean concentrations and export patterns (research
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question 1). Unlike the traditional ‘single best’ model approach where pre-
diction and inference are derived from one model, which may suffer from the
over-confident inference issue resulting from ignoring the uncertainty in model
selection, BMA accounts for the model selection uncertainty when determining
the optimal model structure (Kaplan, 2021; Raftery et al., 1997; Yimer et al.,
2021). This approach has been applied to investigate the spatial and temporal
variability in-stream water quality in regional studies in Australia (Guo et al.,
2021; Liu et al., 2021a) and elsewhere around the globe (Krueger, 2017; Wang
et al., 2020). More details about Bayes’ theorem and the related mathematical
background of BMA can be found in Raftery (1996) and Hoeting et al. (1999).
In Bayesian linear regression models, a binary latent variable - inclusion variable
I is introduced:

(1)

where y is the response variable that is assumed to follow a normal distribution
with the mean modelled by predictors and standard deviation �, X = [x1,…, xp]
is a matrix of p potential predictors, � is a p×1 vector of regression coefficients,
and I = (I1,…,Ip)‘ is a binary vector of inclusion variable that is defined as:

(2)

where Ii = 1 indicates that ith predictor xi is included in the model.

The inclusion variable I for individual predictors is utilised to quantify the rel-
ative importance of model predictors, as well as identify the plausible model
structures (i.e., different combinations of In) through assessment of posterior
inclusion probabilities (PIP) and posterior model probabilities (PMP) (Höge
et al., 2019; Kaplan, 2021). Additionally, the BMA can provide multi-model
ensemble predictions using posterior model probabilities as weights, averaging
over all visited models through Markov chain updating (i.e., the relative fre-
quency at which each model is sampled) (Ley et al., 2007; Yimer et al., 2021).
We considered variables with a PIP above 0.75 (Pr(I = 1y) > 0.75) as the cut-
off to consider a predictor as important (Mutshinda et al., 2013; Thomson et
al., 2010; Viallefont et al., 2001). A PIP of 0.75 indicates substantial evidence
to support the importance of such a predictor given the prior distribution, as
suggested by Jeffreys (1998).

To address the second and third research questions (i.e., how the key controls
vary across climates and how well we can predict mean concentrations and ex-
port patterns, respectively), we further extended the classical BMA to account
for differences in the effect of catchment characteristics across climate zones, in
a Bayesian Hierarchical modelling (BHM) structure. We used this modelling
framework to test our hypothesis that there is a significant difference in the
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effect of key catchment characteristics across different climate zones. This mod-
elling framework allows us to consider alternative model structures to reflect the
complex interactions between water quality data and their key drivers across
multiple catchments (Gladish et al., 2016; Wikle et al., 2001). BHM is a power-
ful tool to provide robust inference through ‘borrowing strength’ across different
groups of observations as the model parameters are assumed to be sampled from
a common distribution (Gelman et al., 2006; Gelman et al., 2013). This advan-
tage enables the application of BHM to predict water quality that confounds
issues such as a limited number of data or low sampling frequency (Guo et al.,
2022; Liu et al., 2021a; Perera et al., 2021; Wan et al., 2014). The proposed
modelling framework is as follows:

(3)
(4)

where, yi,j – mean concentration or C–Q slope of the ith catchment in the jth
climate zone, following a normal distribution with mean �i,j and standard devia-
tion �; I – inclusion variable (0 or 1); �0,j– regression intercept of the jth climate
zone; �n,j– regression coefficient of the nth catchment characteristics in the jth
climate zone; X n,i– the nth catchment characteristics in the ith catchment; and
N – total number of catchment characteristics (i.e., 26).

Prior to the analyses, both response variables (i.e., mean concentration or C–Q
slope) and explanatory variables (i.e., 26 catchment characteristics) were stan-
dardised (mean = 0 and standard deviation = 1), which ensured the regression
coefficients were on the same scale and allowed us to compare the effect of
catchment characteristics in a more direct way (Cade, 2015).

It is worth noting that in this modelling framework, we did not differentiate the
relative importance of individual catchment characteristics (I in Eqn. (4)) across
different climate zones, but the effect (i.e., magnitude of influence) of catchment
characteristics (�n,j in Eqn. (4)) were made climate-specific. This is because 1)
a universal I term allows us to identify the same set of important catchment
characteristics, which can be characterised as ‘overarching’ effect of individual
catchment characteristics at the continental scale; 2) we aim to compare the
climate-specific effect of key controls, which is captured by the coefficient �n,j;
this cannot be achieved with a different I for each climate zone, which might
otherwise lead to multiple sets of key controls for different climate zones.

2.3.3 Time-averaged mean concentration and C–Q slope

We used the R package rjags to implement our BHM framework, calibrate the
model parameters and generate model predictions (Plummer, 2013; R Core
Team, 2013). The prior distributions of individual model parameters were as-
signed and then updated through Markov chain Monte Carlo (MCMC) with the
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Gibbs sampling method to derive the posterior distribution of model parame-
ters (Gelman et al., 2013). The model parameters and predictions were obtained
from three independent chains, each of which had 30,000 iterations. The prior
distribution of � (Eqn. (3)) is minimally-informative as an inverse gamma distri-
bution with the same shape and scale parameters (� ~ IG (10-4, 10-4)) (O’Hara
et al., 2009). The prior distribution of In followed an independent Bernoulli
distribution with a probability of 0.5 (In ~ Bern (0.5)) (Raftery et al., 1997),
which assumed each model structure had equally prior likelihood as the ‘true’
model. The prior distribution of regression coefficient �n,j was conditioned on
In:

(5)

where �� followed an uninformative uniform distribution between 0 and 10 (��
~ U (0, 10)) (Gelman, 2006; Gelman et al., 2013). We checked the conver-
gence of Markov chains using the Gelman-Rubin statistic Rhat, with Rhat < 1.1
indicating convergence (Gelman et al., 1992; Gelman et al., 2013).

The posterior distribution of In – posterior inclusion probability (PIP), quanti-
fied the relative importance of the individual catchment characteristics. In addi-
tion, the posterior distribution of In informed the likelihood of optimal models –
posterior model probability (PMP), as different combinations of In formulate dif-
ferent model structures. The predictions of mean concentrations or C–Q slopes
were derived from averaging of the multiple plausible models identified, based on
the PMP of individual candidate models (Forte et al., 2018). The performances
of multi-model predictions were evaluated using Nash-Sutcliffe efficiency (NSE)
(Nash et al., 1970).

We first investigated the relative importance of individual categories of catch-
ment characteristics (e.g., climate) on mean concentrations and C–Q slopes
through a ‘leave-one-category-out’ analysis, in which we excluded one category
of catchment characteristics and calibrated the model. This process is conducted
on individual categories of catchment characteristics. We then compared the dif-
ference in the model performance (i.e., NSE) between the full model (using all
the categories) and the ‘leave-one-category-out’ analyses across all categories.

We further assessed the consistency and reliability of the calibrated In, as well
as the robustness of the modelling framework based on uncertainty analysis.
We first randomly selected 80% of the catchments, and subsamples of observa-
tions were used to calibrate the proposed Bayesian modelling framework. The
remaining 20% of the catchments were used to validate the calibrated model.
This process was repeated 1,000 times to obtain subsampling-based ensembles of
In estimations (Iskandarani et al., 2016; Ramsey, 1997). Compared to the result
derived from the full model (utilising the full set of catchment characteristics for
calibration), the resulting posterior distribution of In from 1,000 subsampling
ensembles for individual catchment characteristics were used to quantify the
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uncertainty in PIP. We also compared the model performance between the cali-
bration and validation catchments, which allowed us to evaluate the robustness
of the modelling framework.

The magnitude and direction of effects of key controls were determined and eval-
uated for catchment characteristics with 1) a PIP > 0.75 from the full model
calibration (i.e., over 75% likely models that contain such variables) which iden-
tifies an important predictor, see Sect. 2.3.2; and 2) the 95% credible interval
(CI) of posterior distributions of �n,j not crossing zero (i.e., significant effect).

Finally, we compared the predictive performance of the proposed BHM (i.e.,
hierarchical BMA, H-BMA hereafter) framework to a classical BMA (C-BMA
hereafter) without hierarchical structure, which was calibrated to the same data
but with the effect of individual catchment characteristics kept identical across
different climate zones (i.e., �n,j becomes �n in Eqn. (4)). We compared the
performances (i.e., NSE) of the proposed H-BMA to the C-BMA structure to
assess if improvement in modelling performances could be achieved using the
BHM framework.

3 Results

3.1 Model performance

The proposed hierarchical Bayesian models perform well for explaining the vari-
ability in mean concentrations (Figure 2, average NSE of 0.70 across six con-
stituents), with NSE ranging from 0.58 (SRP) to 0.86 (EC). In contrast, the
modelling performances drop to an average NSE of 0.32 for predicting C–Q
slopes (NSE ranging from 0.25 for NOX to 0.39 for both TP and TN, Figure 3).
We also provide the modelling performance on the original (untransformed data)
scale by back-transforming the predictions using corresponding transformation
parameters (Figures S15 and S16). It is noted that the modelling performances
for C–Q slope on the original scale are comparable with those of transformed
C–Q slope, while there are large biases for predicting mean concentrations on
the original scale for sites with large values, e.g., TN, TP and SRP (Figure S13b,
d and e). This is because the Box-Cox transformation on mean concentrations
normalises the data by minimising the influence of large values (e.g., outliers),
focusing more on the lower values to ensure the validity of the assumption of
normality. Thus, the model’s performance at sites showing high values is com-
promised. We provide a more detailed discussion on the implications of biases
on back-transformed high-value sites in Sect. 4.3.
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Figure 2. Scatter plots of observed and modelled mean concentrations for:
(a) TSS; (b) TN; (c) NOX; (d) TP; (e) SRP; and (f) EC. Different colours
indicate different climate zones. Grey bars represent 95% CI from multi-model
predictions. Note: variables are standardised with a mean of 0 and a standard
deviation of 1.
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Figure 3.Scatter plots of observed and modelled C–Q slopes for: (a) TSS; (b)
TN; (c) NOX; (d) TP; (e) SRP; and (f) EC. Different colours indicate different
climate zones. Grey bars represent 95% CI from multi-model predictions. Note:
variables are standardised with a mean of 0 and a standard deviation of 1.

The comparison of the modelling performances between the C-BMA and H-BMA
(Table 2) shows that there is an average NSE increase of 27% and 62% for the
modelling of mean concentrations and C-Q slopes, respectively, suggesting that
a significant improvement is achieved in predicting mean concentrations and
export patterns when the effects of climate zones are incorporated explicitly
using H-BMA. In addition, the median NSE between calibration and validation
results from 1,000 replicates are comparable (difference in NSE < 0.2, Table S3,
Supporting Information), indicating the robustness of the modelling framework.

Table 2. Comparison of model performances between classical and hierarchical
Bayesian Model Averaging (C-BMA and H-BMA, respectively) for modelling
mean concentrations and C–Q slopes for individual constituents
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Constituent NSE - mean concentration NSE - C–Q slope
C-BMA H-BMA C-BMA H-BMA

TSS 0.55 0.70 0.18 0.30
TN 0.58 0.73 0.21 0.39
NOX 0.41 0.69 0.18 0.25
TP 0.58 0.64 0.28 0.39
SRP 0.52 0.58 0.18 0.30
EC 0.72 0.86 0.16 0.28
Average 0.56 0.70 0.20 0.32

3.2 Key catchment controls on mean concentrations and export patterns

The ‘leave-one-category-out’ analysis indicates that for mean concentrations
(Figure 4a), land use has a large influence on NOX and SRP, while soil char-
acteristics are important for TSS and TP. Catchment topography and climate
have a high impact on TN and NOX, respectively. In addition, for C–Q slopes
(Figure 4b), catchment topography is a strong driver for all constituents. In the
following sections we provide more detailed results on the influence of individual
characteristics within each category.

15



Figure 4. Changes in NSE between the full model and ‘leave-one-category-
out’ analysis across individual constituents for (a) mean concentrations; and (b)
C–Q slopes. Different colours indicate different categories of catchment charac-
teristics. Each bar indicates the precent changes in NSE between performances
of the full model and the model without the specific category of catchment
characteristics.

3.2.1 Model concentration

Figure 5 presents the results of posterior inclusion probability (PIP) derived
from the full model and subsample-based uncertainty analysis for the mean con-
centrations of individual constituents. These parameters represent the impor-
tance of each of the catchment characteristics in influencing spatial variability in
mean concentrations of individual constituents. For example, for TSS, the vari-
ables with a PIP > 0.75 (above which we considered that effects are significant,
as discussed in Sect 2.3.2) include catchment slope, catchment average radia-
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tion, catchment average rainfall, soil TN, soil clay and coefficient of variation
(CV) of runoff. When considering specific catchment characteristics, land use
has a high impact on nutrient species, such as agriculture for NOX and TN, and
urban for SRP. Catchment topographic characteristics also have consistently
high relative importance, such as catchment slope for all constituents, except
for EC; and catchment elevation for TN and EC. In addition, catchment soil
characteristics contribute significantly to the spatial variability in TSS, TN and
TP - % of clay in soil; NOX - % of TN in soil. In contrast, catchment hydrology
and land cover only have a limited influence on mean concentrations, except for
the coefficient of variation (CV) of runoff for TSS; woodland and forest for TN;
and rainfall for EC. It is also worth noting that most of the PIP obtained from
the full model are within the 95% confidence interval of distribution of 1,000
replicates (i.e., coloured error bar in Figure 5), indicating the reliability and
robustness of the inference of our modelling framework.
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Figure 5. Posterior inclusion probability (PIP) for each catchment characteris-
tic and for the mean concentrations of: (a) TSS; (b) TN; (c) NOX; (c) NOX; (d)
TP; (e) SRP; and (f) EC. Red triangles represent PIP from the full model. Error
bars and dots indicate 95% confidence intervals and median, respectively, from
1,000 replicates of the subsampling uncertainty analysis. The abbreviations of
individual catchment characteristics can be found in Table 1.

3.2.2 Export pattern

Similar to the PIP results for mean concentrations, we found that the key con-
trols (i.e., PIP >0.75) of catchment characteristics on C–Q slopes vary among
constituents (Figure 6). Catchment topography (e.g., upstream distance and el-
evation) is an important factor for sediment (TSS), sediment-bound constituents
(TN and TP) and solutes (EC). In addition, land use and land cover character-
istics have a relatively high impact on TSS and EC (forestry), and TP (shrubs),
respectively. We also note that catchment hydrology and climate have a mod-
erate effect on TN and TP (e.g., runoff CV for TN, and erosivity for TP).
However, for NOX, we do not see any catchment characteristics standing out,
as the PIPs for all variables are comparable, suggesting none of the predictors
has high predictive power.
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Figure 6. Posterior inclusion probability (PIP) for each catchment characteris-
tic and for the C–Q slopes of: (a) TSS; (b) TN; (c) NOX; (d) TP; (e) SRP; and
(f) EC. Red triangles represent PIP from the full model. Error bars and dots
indicate 95% confidence intervals and median, respectively, from 1,000 repli-
cates of the subsampling uncertainty analysis. The abbreviations of individual
catchment characteristics can be found in Table 1.

3.3 Differences in key catchment controls across climate zones

Figures 7 and 8 show the magnitude and direction of significant effects of key
controls on mean concentrations and export patterns across different climate
zones. Overall, there are on average six variables identified as significant for each
constituent’s mean concentration, compared to four variables for C–Q slopes.
Most of the significant effects have the same direction across different climate
zones, but it is noted that certain key catchment characteristics either have
different magnitudes of effects (e.g., rainfall has a strongly negative effect on
the mean concentrations of EC in arid, temperate and subtropical zones but a
much less negative effect in the tropical region), or different directions of effects
(e.g., the CV of runoff has a positive effect on TSS in the arid zone but a negative
effect in the temperate and tropical zones). We further discuss the underlying
mechanisms responsible for these contrasting effects across climate zones in Sect.
4.
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Figure 7. Effect of key catchment controls on mean concentrations across
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different climate zones: (a) TSS; (b) TN; (c) NOX; (d) TP; (e) SRP; and (f) EC.
Colours indicate the magnitude of the median coefficient, ranging from negative
(blue) to positive (red). Significance is determined by both PIP and climate-
specific effect (�n,j). The abbreviations of individual catchment characteristics
can be found in Table 1.
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Figure 8. Effect of key catchment controls on C–Q slopes across different
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climate zones: (a) TSS; (b) TN; (c) NOX; (d) TP; (e) SRP; and (f) EC. Colours
indicate the magnitude of the median coefficient, ranging from negative (blue)
to positive (red). Significance is determined by both PIP and climate-specific
effect (�n,j). The abbreviations of individual catchment characteristics can be
found in Table 1.

4 Discussion

We first discuss the key catchment controls on mean concentrations and export
patterns by jointly assessing the results of the ‘leave-one-category-out’ analysis
(Figure 4) and PIP derived from the H-BMA (Figures 5 and 6). We then
consider the differences (i.e., magnitude and direction of the effects) in the key
catchment controls across climate zones (Figures 7 and 8). Lastly, we discuss
how our results lead to an improved understanding of river chemistry processes
and outline the limitations of the study.

4.1 Contrasting catchment controls of mean concentrations and export patterns

Our results indicate that key controls on mean concentrations vary across dif-
ferent constituents, while key controls are more consistent across different con-
stituents for export patterns (Figure 4). This suggests the different constituents
originate from different sources and are subject to different retention and reac-
tive transport processes (Granger et al., 2010; Lintern et al., 2018a; Musolff
et al., 2015), while the same topographic and flow path controls influence the
export patterns of the constituents investigated in this study. The strong effect
of topographic characteristics on both mean concentrations and export patterns
highlights that the spatial and temporal variations in hydrological connectivity
that links sources, flow pathways and streams control the solutes and particu-
lates export (Ebeling et al., 2021; Musolff et al., 2017; Tunaley et al., 2017).
Compared to mean concentrations, C–Q slopes are better explained by natural
characteristics rather than anthropogenic factors (e.g., agricultural land use).
This contrasts with earlier findings where spatial variability in export patterns
of solutes (e.g., dissolved N) was associated with anthropogenic factors, both in
Europe (e.g., Moatar et al., 2017; Minaudo et al., 2019; Musolff et al., 2021 )
and North America (e.g., Marinos et al., 2020; Seybold et al., 2019).

4.1.1 Land use controls on constituent sources

Land use controls were identified as the most important factors for mean concen-
trations of reactive nutrients (i.e., NOX and SRP), and moderately important
factors for TN and TP. This indicates that certain activities (e.g., urbanisation,
agriculture) act as sources of constituents in catchments, which is in line with
previous studies across catchments in Europe and the United States (Hrachowitz
et al., 2015; Li et al., 2008; Lintern et al., 2018a; Moatar et al., 2017). We found
that agricultural activities were positively related to the mean concentrations
of TN and NOX, suggesting that elevated levels of N species in rivers can be at-
tributed to the increases in N inputs through the application of fertiliser (Azizian
et al., 2015), as well as N-rich waste from livestock farming in Australia (Gour-
ley et al., 2012; Scarsbrook et al., 2015). Inland arid catchments in Australia
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are typically associated with long dry periods followed by intense rainfall events
(Guo et al., 2020; Rouillard et al., 2015), resulting in ‘flash floods’ that tend to
carry large amounts of eroded sediments (Dunkerley et al., 1999; Vanmaercke
et al., 2010). This is also reflected by the highest TSS mean concentrations in
the arid zone (Figure S11a). For TP and SRP, we found that urban land has
a strong positive impact, indicating that cities and townships may be a large P
source. Point sources of P discharged from wastewater treatment plants lead to
an increase in P concentrations in rivers (Bunce et al., 2018; Whitehead et al.,
2014). In addition to these point sources, Hobbie et al. (2017) who investigated
seven urban catchments of the Mississippi River, found that large impermeable
areas (e.g., streets and buildings) in urban areas increased the overland flow
and enhanced the transport of P-rich materials from terrestrial ecosystems to
stormwater.

In contrast to the studies in North America and Europe where land use patterns
have been found to have a strong influence on the export of particulates and
solutes (Basu et al., 2011; Bieroza et al., 2018; Dupas et al., 2019; Marinos et
al., 2020; Musolff et al., 2015; Zhang, 2018), our Australia-wide study indicates
that there is limited effect of land use on export patterns of the majority of
constituents we examined. Our results also indicate that export patterns for
most particulates and solutes in Australian catchments are flushing patterns
(C–Q slopes > 0, Figure S12), leading to river chemistry that is largely transport-
limited rather than source-limited (Lintern et al., 2021). This suggests that the
interactions between source areas and catchment natural characteristics, e.g.,
topography and soil, rather than land use, might shape the export patterns of
solutes and particulates (Ebeling et al., 2021).

4.1.2 Topography controls on connectivity between source to stream

For mean concentrations, catchment topographic characteristics have a high
influence on TN and NOX. Among the topographic characteristics we included
in the models, catchment average slope is one of the most significant controls,
with large negative effects on TN and NOX. This can be explained by the
fact that catchment retention and removal of dissolved N species tends to be
greater in lowland catchments with subdued topography (r = 0.51 between
slope and elevation, Figure S1), due to the longer transit time within these
catchments (Dupas et al., 2020; Ehrhardt et al., 2021). For sediment-bound N
in flat catchments, sediments tend to be trapped and settled out via buffers such
as riparian vegetation (Pert et al., 2010; Poeppl et al., 2020). These processes
can be further enhanced by a longer transit time in catchments with lower slopes
and less developed stream networks (r = 0.55 between slope and stream network,
Figure S1) (Boyer et al., 2006; Mulholland et al., 2008; Wakelin et al., 2011).

Our work identifies several topographic characteristics as the most important
factors that control the export patterns for all constituents. These findings agree
with previous studies (e.g., Zarnetske et al., 2018; Ebeling et al., 2021; Minaudo
et al., 2019; Moatar et al., 2017) and can be explained by the key role of catch-
ment topography on flow paths, transit times and the temporal variability in
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hydrological connectivity (Detty et al., 2010). For instance, upstream distance
(longest flow path) was one of the most important factors for TSS, TP and
EC. TSS and TP exhibited a flushing export pattern (C–Q slopes > 0, Figure
S12a, d) across all climate zones, indicating that for most catchments, they were
transport-limited. Catchments with longer flow paths are typically those with
larger areas (r = 0.86 between upstream distance and catchment area, Figure
S1), thus enhancing the flushing export pattern of sediments by increasing the
potential supply of sediments. The lower turbulent energy in these large rivers
would limit the sediment transport capacity which leads to a transport-limited
behaviour. The flushing pattern is also a result of the increased mobilisation
of sediment during high flow events (Croke et al., 1999; Prosser et al., 2001).
Sediment erosion processes may also be enhanced with longer flow paths during
high flow events (Voepel et al., 2013).

In contrast, EC showed a strong dilution export pattern (C–Q slopes < 0, Figure
S12f), suggesting that it was mostly source-limited within the study catchments,
as found in previous studies (Basu et al., 2011; Cartwright, 2020; Meybeck et al.,
2012). Maher (2011) and McGuire et al. (2010) highlighted that topographic
controls (e.g., flow path length) determined the hydrological connection between
hillslopes and streams, as well as the interaction between surface and subsurface
flow paths. Many rivers in Australia have high solute concentrations at low flow,
which can be attributed to large inflows of often highly mineralised (sometimes
even brackish) groundwater (e.g., Cartwright et al., 2013). The strong dilu-
tion export pattern we observed for EC reflects the mixing of these solute-rich
groundwater contributions with much fresher event water at high flow.

4.1.3 Soil controls on the mobilisation of solutes and particulates

We found that soil properties, in particular clay content, have large influences on
mean concentrations of TSS, TN and TP, as well as the export patterns of TSS
and TP. For instance, soil clay content has a positive effect on these constituents.
This is potentially related to the mobilisation of solutes and particulates within
catchments (Palansooriya et al., 2020; Rheinheimer et al., 2017). In Australia,
catchments with high clay content are likely to have high soil erodibility (Teng et
al., 2016), resulting in higher particulate concentrations from eroding sediments
(Couper, 2003). Clay soils are also easily compacted under wet conditions, which
often leads to saturation-excess runoff (Stewart et al., 2019). In these conditions,
sediments tend to be mobilised and transported to the streams. High clay
content is also likely to be associated with a high N mineralisation rate, leading
to an increase in dissolved N in streams (Parfitt et al., 2001). In addition, we
found that TSS and TP showed flushing export patterns (C–Q slopes > 0, Figure
S12a, d). The positive effect of clayey soils on export patterns of TSS and TP
suggests that higher clay content would enhance the detachment, remobilisation,
movement of sediment and sediment-associated P within catchments, due to the
high susceptibility of clayey soils to erosion processes (Sun et al., 2021; Villa et
al., 2012).

4.2 The influence of catchment characteristics on mean concentrations and ex-
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port patterns differs across climate zones

In this study, we tested the hypothesis that climate zones significantly affect
the relationship between mean solute and particulate concentrations/export pat-
terns and catchment landscape characteristics, by explicitly considering the ef-
fect of climate zones in the proposed BHM modelling framework. We found
that, when incorporating climate zones, the predictability of both mean concen-
trations and C–Q slopes improved significantly (Table 2). T This suggests that
the magnitude of influence of catchment characteristics on mean concentrations
and C–Q slopes was dependent on climate zones, rather than universal across
different climate zones.

Compared to previous studies (e.g., Godsey et al., 2019; Pohle et al., 2021;
Ebeling et al., 2021 ) that encompassed a narrower range of climate zones and
assumed the key catchment controls have similar effects on mean concentra-
tions/export patterns, our results provide an improved understanding of how
the interaction of climate and catchment landscapes affects the average levels
of constituent concentrations and export patterns. In particular, we found that
for most situations, the direction of effects of key controls on both mean con-
centrations and C–Q slopes is consistent across climate zones (Figures 7 and 8).
For example, soil clay shows a significantly positive effect on mean TP concen-
trations across arid, temperate and subtropical climates; catchment upstream
distance exhibits a consistently positive influence on the export pattern of EC in
the Mediterranean, temperate and subtropical climates. However, we also found
that the magnitudes of the effects may vary across climate zones. For instance,
the effect of upstream distance on the export pattern of EC is stronger in the
Mediterranean and temperate zones compared to the subtropical zone (Figure
8f). The reasons for this are complex and may be related to the generally high
EC levels in the groundwater of large Mediterranean and temperate catchments,
which have been largely attributed to land clearing that causes the rise of re-
gional water tables, resulting in the discharge of brackish to saline groundwater
into streams and rivers (Metcalfe et al., 2016; Peck et al., 2003; Tweed et al.,
2007).

In addition, it is worth noting that some key controls have opposite directions of
influences across different climate zones. We found that for the export pattern
of TSS, upstream distance showed a negative effect in arid and subtropical
regions, but a positive influence in the temperate zone. This can be explained
by the heterogeneities of landscape characteristics across climate zones. In arid
and subtropical catchments, catchment flow pathways are longest compared to
other catchments (Figure S1e). Catchments in arid and subtropical zones are
also often located in large lowland areas (Figure S1a, c, and r = 0.86 upstream
distance and catchment area and r = -0.26 upstream distance and slope, Figure
S4) across the Australian continent, limiting the sediment transport capacity
(Hesse et al., 2018; Jaeger et al., 2017), thus resulting in flatter C–Q slopes
of TSS in these climate zones. In contrast, catchments in the temperate zone
have higher runoff and steeper slopes (Figure S1e, f), which enhances the erosive
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capacity and flushing export pattern of TSS as discussed in Sect. 4.1.2.

Overall, there are a smaller number of key controls identified for C–Q slopes,
compared to mean concentrations. This is in line with the findings from Musolff
et al. (2015) and can be attributed to the fact that the differences in C–Q slopes
across different climate zones are not as evident as those for mean concentrations
(Kruskal-Wallis p < 0.001 for mean concentrations, compared to p > 0.001
for C–Q slopes, except TSS, Figures S11 and S12). For example, Lintern et
al. (2021) identified that export patterns of river chemistries in Australia have
comparable ranges across climates (i.e., the same direction of C–Q slope). In
addition, compared to the influences on the mean concentrations, the influence
of the majority of the catchment characteristics on the C–Q slope was weaker
(closer to 0, or non-significant, Figure 8) and more variable (positive or negative)
across climates zones.

Our previous study found that whilst mean concentrations vary significantly
between climate zones, export patterns of river chemistry in Australia are rel-
atively consistent between climate zones, in that C–Q slopes have the same
direction regardless of climate zones (Lintern et al. 2021). In this current mod-
elling study, we demonstrate that: (1) climate zone is a strong driver of mean
concentration, confirming the findings of Lintern et al. (2021) and (2) even if
the direction of the C–Q slopes is not driven by climate zones (Figure S12), cli-
mate zones can influence the magnitude of the C–Q slopes. As such, our study
highlights the value in comprehensively assessing the underlying climate-specific
mechanisms that drive both mean concentrations and export patterns over large
spatial scales.

Thus, our results of the differences in the key controls across climate zones,
either magnitude or direction, highlight that the responses of mean concentra-
tions/export patterns of river chemistry to landscape characteristics vary across
climate zones, indicating that water quality mitigation and control strategies
should be implemented on the basis of these differences in climate-specific wa-
ter quality responses. The contrasting impacts of landscape controls on the
source, export and mobilisation of constituents across climates would be useful
to identify risks to water quality in a multi-pollutant framework, particularly
with respect to non-point source pollution. Disintegrating processes, landscape
characteristics and key controls allow to ascertain those associated risks for wa-
ter quality deterioration and finding appropriate mitigation measures that can
inform the design of varying levels of specific interventions and therefore effec-
tively targeted. Where spatial risks from similar source, mobilisation and deliv-
ery and key controls are shared, it also presents its opportunities in managing
multiple pollutants at the same time and therefore creating multiple benefits.

4.3 Model performance and limitations

The H-BMA modelling framework was capable of predicting, as well as identify-
ing the key controls on both mean concentrations and export patterns of river
chemistry. Overall, the modelling framework can explain a large proportion of
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variation in mean concentrations and a moderate level of variation in export pat-
terns, indicating its effectiveness in providing understanding of how catchments
function differently across climates. Compared to other statistical water quality
models, our modelling framework was informed by a better conceptualisation
that accounts for the spatial heterogeneity of catchment characteristics between
climate zones. This enabled us to identify drivers of river chemistry that we were
not able to identify using more conventional statistical methods in our previous
work (Lintern et al., 2021). In the future, this modelling framework can allow
identification of hotspots catchments that have relatively high concentrations
or high potential in river chemistry export, thus informing future management
activities. In addition, even though the models were developed on a transformed
scale to ensure that key assumptions of the statistical modelling were met, and
the model performance drops on the back-transformed scale (Figures S15 and
S16), the inference of the modelling results still holds. This is because the data
transformation did not change the relative importance of key controls of mean
concentrations/export patterns.

Compared to our preceding investigation on the relationship between export pat-
terns and catchment median base flow index (BFI) using the same continental-
scale data set (Guo et al., 2022), we were able to improve the prediction of
the export patterns for SRP and EC significantly (both constituents have a R2

<0.01 in Guo et al. (2022), compared to a NSE of 0.3 in this study). This in-
dicates that using the extent of baseflow contribution (the only predictor used
in Guo et al. (2022)) cannot accurately explain the spatial variability in export
patterns of SRP and EC across the Australian continent. While other variables
yielded similar performance with both models (e.g., for NOx, NSE = 0.25 in
this study compared to R2 of 0.22 in Guo et al., 2022), the generally better
performances of the H-BMA lends support to our choice of considering further
spatial drivers of export patterns based on a comprehensive set of catchment
characteristics.

In addition, the proposed modelling framework can provide a better prediction
of mean concentrations (NSE up to 0.86), compared to export patterns (NSE
up to 0.39). The lower predictive ability for export patterns is not a surprising
finding, and can be related to the following limitations: (1) most of the water
quality monitoring data used in our study is low-frequency, which did not allow
proper representation of event or seasonal changes in export patterns, or of
the variability in export patterns under different flow regimes (e.g., baseflow
vs. quick flow) (Guo et al., 2022; Minaudo et al., 2019; Moatar et al., 2017;
Tunqui Neira et al., 2020); and (2) as discussed in Sect. 4.2, export patterns are
more consistent than mean concentrations across different climates, such that
relatively low spatial variability in export patterns is difficult to be predicted
by using the catchment characteristics. This highlights the need for future
research that investigates the temporal changes in export patterns, e.g., trend
or seasonality, and their associated key catchment controls, focusing for instance
on a subset of catchments that have long-term high-frequency water quality
monitoring data.
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5 Conclusions

We used a Bayesian approach to predict and simultaneously infer the key catch-
ment controls on mean concentrations and export patterns of six constituents
(solutes and particulates) over 507 catchments with a large climatic gradient
across the Australian continent. We compared the relative importance of 26
catchment characteristics, identified the key controls that explain the spatial
variability in mean concentrations and export patterns, as well as quantified
the differences in the effect of key controls across five major climate zones. We
can explain a larger part of the variability in mean concentrations than that
of export patterns, due to a higher variation in mean concentrations between
different climate zones, and its closer link with spatial variability in catchment
characteristics.

We found that catchment land use, soil properties and topographic settings were
the most influential factors that affect the mean concentrations across all climate
zones. This indicates that the spatial heterogeneity in source, mobilisation and
delivery jointly determine the average level of constituent concentrations. While,
the strong impact of topographic controls on export patterns suggests that, the
spatial and temporal variation in hydrological connectivity within catchments
significantly influences constituent export and its expression in either dominant
surface or subsurface flow. Also, the lower number of identified key controls on
export patterns compared to mean concentrations indicates that the key con-
trols on export patterns might change not only between climate zones, but also
between upland and lowland catchments, leading to catchment characteristics
indirectly determining the export patterns.

The hypothesis that the key controls vary across climate zones was supported
by the fact that consideration for climate zones in a hierarchical modelling struc-
ture improves predictability of both mean concentrations and export patterns,
as well as the differences in magnitude and/or direction of effects of key controls
inferred from modelling results. This highlights a need for the catchment water
resources managers to consider the climate-specific effects of key catchment con-
trols. Such knowledge could aid the development of targeted and region-specific
intervention measures using a ‘catchment function’ approach and thus could
potentially create multiple benefits when managing multiple pollutants at the
same time. The contrasting impacts of landscape controls on the source, ex-
port and mobilisation of constituents across climates would be useful to identify
risks to water quality in a multi-pollutant framework, particularly with respect
to non-point source pollution. Disintegrating processes, landscape characteris-
tics and key controls allows to ascertain those associated risks for water quality
deterioration and finding appropriate mitigation measures that can inform the
design of varying levels of specific interventions and therefore effectively tar-
geted. Where spatial risks from similar sources, mobilisation and delivery and
key controls are shared, it also presents its opportunities in managing multiple
pollutants at the same time and therefore creating multiple benefits.

Overall, the present approach and results enhance our understanding of dom-
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inant controls on spatial variability in mean constituent concentrations and
export patterns over a large spatial scale, considering the effect of climatic gra-
dients. The methods used and insights in the understanding of climate-induced
differences in pollutant export is likely to be transferable to other catchments,
and can be tested against findings from other studies. With the investigation
of high-frequency water quality monitoring data in the future, we could fur-
ther improve our understanding of solutes and particulates export behaviours
at different temporal scales (e.g., event or seasonal).
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