
manuscript submitted to JGR: Atmospheres

Should multivariate bias corrections of climate1

simulations account for changes of rank correlation over2

time?3

M. Vrac, S. Thao, and P. Yiou4

Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), CEA/CNRS/UVSQ, Université5
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Abstract14

Inter-variable dependencies are key properties to characterise many climate phenomena15

— such as compound events — and their future changes. Yet, climate simulations of-16

ten have statistical biases. Hence, univariate (1dBC) and multivariate bias correction17

(MBC) methods are regularly applied. Inter-variable properties (e.g., correlations) can18

be altered by BC corrections. Then, it is necessary to assess how hypotheses of BC meth-19

ods on climate change affect the adjustments. This can lead to better choices of BC meth-20

ods.21

Here, we investigate whether an MBC method should try reproducing, preserving22

or modifying the changes in rank correlations between daily temperature and precipi-23

tation over Europe. An original “perfect model experiment” is set up and applied to two24

different climate simulation ensembles over 2001-2100: 40 runs from the CESM global25

climate model and 11 runs from the CMIP6 exercise. The results highlight that, within26

the multi-run single GCM ensemble (CESM), accounting for correlation changes bring27

valuable information for long-term projections but that a stationary hypothesis provides28

less biased correlations, up to medium-term projections (2060). For the multi-model en-29

semble (CMIP6), the non-stationary hypothesis provides larger biases than the station-30

ary approach, up to the end of the century. Not correcting the model rank correlations31

(1dBC) provides the worst results. Whenever an ensemble is available, the best results32

come from accounting for the “robust” part of the change signal (i.e., average change from33

different runs). This pleads for using ensembles and their robust information, in order34

to perform robust bias corrections.35

1 Introduction36

To investigate the manifold impacts of future climate changes, numerical simula-37

tions from Global and Regional Climate Models (GCM and RCM, respectively) remain38

essential (IPCC WGI, 2021). However, it is now well-known that these simulations can39

have statistical biases with respect to observational references (e.g., from measurements40

at weather stations, or reanalyses). Therefore, using such simulations directly as input41

in an impact model (e.g., in hydrology or agronomy) is not always relevant without “cor-42

recting” those biases (Doblas-Reyes et al., 2021). Various “bias correction” (BC) meth-43

ods have thus been developed and extensively applied over the last few decades. Such44

methods transform the initial simulations to make the corrected data more similar to45
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a reference dataset in terms of specific statistical criteria such as mean, standard devi-46

ation or in terms of probability distribution. The transformation is defined based on cal-47

ibration data — usually corresponding to references and simulations over a historical pe-48

riod — and is supposed valid for a different period (e.g., the future). It can then be ap-49

plied to climate projections for a period of interest. Due to its coding facility, its speed50

of calculation and the fact that it globally preserves the main trends of the simulations51

(e.g., A. J. Cannon et al., 2015; Hempel et al., 2013), the “quantile-mapping” approach52

is certainly the most widely used BC method and has multiple variants (e.g., Haddad53

& Rosenfeld, 1997; Déqué, 2007; Kallache et al., 2011; Vrac et al., 2012, 2016; Volosciuk54

et al., 2017, among many others). However, it only works on (i.e., corrects) one variable55

at a time for one location at a time. This means that quantile-mapping only corrects the56

marginal distributions of the climate variables but not their dependence structures. There-57

fore, the inter-variable dependencies after such a univariate correction are the same as58

in the initial (raw) simulations. Hence, if the dependence structure in the model is bi-59

ased, the corrections will inherit this biased dependence (see e.g., Vrac, 2018). To over-60

come this issue and correct the inter-variable and/or spatial dependencies of the simu-61

lations in addition to their marginal distributions, multivariate bias correction (MBC)62

methods were recently designed. Three MBC categories can be considered, depending63

on how the corrections are made (François et al., 2020): the “successive conditional” meth-64

ods where univariate BC is applied conditionally on previously corrected other variables65

(e.g., Piani & Haerter, 2012; Dekens et al., 2017); the “marginal/dependence” methods66

correcting separately the marginals and the dependence before combining them (e.g., A. Can-67

non, 2017; Vrac & Thao, 2020; François et al., 2021); and the “all-in-one” methods cor-68

recting marginals and dependencies altogether (e.g., Robin et al., 2019; Robin & Vrac,69

2021).70

In most BC methods, it is common to impose or verify that the climate evolution71

— from one period to another — visible in the raw simulations (e.g., changes in mean72

temperature, or in its statistical moments, or in rainfall occurrence probabilities) are mostly73

kept by the corrected data (e.g., A. J. Cannon et al., 2015; Hempel et al., 2013): Even74

if climate simulations might have biases, the changes in the main properties are supposed75

to be driven by physical processes that are relevant and thus provide key information76

on climate changes. Climate change signal regarding univariate variables (such as tem-77

perature or precipitation separately) has been extensively investigated (e.g., Kendon et78
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al., 2008; Matte et al., 2019, among many others). Climate change signal regarding mul-79

tivariate properties (e.g., correlation or dependence between variables) is much less known,80

while it can be key for many studies. Indeed, it is an essential signal from the climate81

models, whose the robustness might have significant implications on conclusions from82

impact studies.83

Actually, multivariate properties and their potential future changes are closely re-84

lated to “compound events”, a booming field of research (e.g., Sadegh et al., 2018; Zscheis-85

chler et al., 2020, 2021; Ridder et al., 2021; Singh et al., 2021, among many others). Such86

events are characterised by the occurrence of multiple meteorological events — either87

simultaneously or successively, spatially or with multiple variables, or both — whose im-88

pacts are stronger than those of the separate events (e.g., Zscheischler et al., 2020). The89

notions of dependencies and correlations between the events and between the variables90

are thus key in this context, and their climate change signal must then be investigated91

to understand the potential future changes in compound events (Vrac et al., 2021). In-92

deed, Hillier et al. (2020) showed that accounting for multivariate dependencies can in-93

crease or decrease the hazards of compound events. Recently, Abatzoglou et al. (2020)94

showed that, based on TerraClimate monthly reanalysis data (Abatzoglou et al., 2018),95

changes in multivariate climate departures have generally outpaced univariate departures96

the in recent decades. Moreover, Ridder et al. (2021) found that some CMIP6 models97

(not all) can be used to examine some compound events. Yet, Vrac et al. (2021) showed98

that climate models are not able to reproduce inter-variable temperature-precipitation99

rank correlations visible over Europe in the ERA5 reanalysis data (Hersbach et al., 2020),100

nor their changes in time. Nevertheless, Vrac et al. (2021) also showed that both multi-101

model (CMIP6) and multi-run (CESM) ensembles project significant changes of inter-102

variable rank correlations up to the end of the 21st century. This is in agreement with103

results from (Singh et al., 2021), who used a large ensemble of climate simulations and104

found that there is a strong non-stationarity in the dependence structure of tempera-105

ture and precipitation under climate change that can play a significant role in future com-106

pound extremes. However, as these changes might show a strong variability among en-107

semble members and models, different from one season to another (Vrac et al., 2021),108

it is legitimate to wonder how this variability needs to be accounted for in practical ap-109

plications and uses of climate simulations such as via multivariate bias correction.110
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More precisely, the robustness of the multivariate properties from climate simula-111

tions can have major implications on the way MBC methods must be designed and ap-112

plied. If the signal of change in multivariate dependence properties (e.g., in terms of rank113

correlations) in the raw simulations is trustworthy, MBCs have to respect it and gener-114

ate multivariate corrected data with equivalent changes. If the change in dependence prop-115

erties provided by the raw simulations is not robust enough, MBC data should better116

take a stationary assumption regarding the dependence structure: the multivariate prop-117

erties, such as the rank correlations, should not evolve and stay similar to the reference118

(and then not reproduce the changes in the raw simulations dependence) to avoid pro-119

viding non-reliable multivariate projections. Either explicitly or implicitly, all MBC meth-120

ods already incorporate one of these two assumptions. For example, the evolution of the121

multivariate dependencies is (mostly) reproduced by methods such as the “MBCn” (A. Can-122

non, 2017) or “dynamical Optimal Transport Correction” (“dOTC”, Robin et al., 2019)123

methods; while the assumption of stationary rank dependence features is made in the124

“Rank Resampling for Distribution and Dependency” (“R2D2”, Vrac, 2018) correction125

method and its extension (“R2D2v2”, Vrac & Thao, 2020). Knowing the robustness of126

the changes in dependencies simulated by climate models is thus also crucial to choose127

the proper hypothesis (stationary or non-stationary) regarding changes in multivariate128

properties, and therefore the proper MBC methods to use in climate change context. A129

follow up question is to know how these stationary or non-stationary hypotheses com-130

pare to the approach consisting in keeping both the raw rank correlation values and changes131

given by the climate simulations. Such an approach is typically what is done when a uni-132

variate bias correction method is applied. Indeed, a 1d-BC method does not adjust the133

copula function (i.e., function containing the dependence linking statistically the differ-134

ent variables of the climate simulations), and thus does not modify the rank correlations135

of the climate model (Vrac, 2018). Moreover, when considering an ensemble of climate136

simulations, it is common to average the changes in univariate properties of the simu-137

lations — via mean-model means or multi-run means — to get the most robust part of138

the climate change signal (see, e.g., Tebaldi & Knutti, 2007; Knutti et al., 2010). Such139

an approach has not been tested so far for changes in rank correlations, while such changes140

in the dependence structure (e.g., between temperature and precipitation) can play a sig-141

nificant role in future compound extremes (Singh et al., 2021).142

–5–



manuscript submitted to JGR: Atmospheres

Therefore, in the present article, we investigate whether or not a multivariate bias143

correction method should try reproducing, preserving or modifying the change in inter-144

variable correlations. To do so, we do not perform any (univariate or multivariate) bias145

correction per se. Indeed, no time series will be adjusted. Instead, the main idea is to146

rely only on estimations of the evolution of the rank correlations, as proxies of results147

given by MBCs: these estimations will depend on the chosen hypothesis for accounting148

of the rank correlation changes. Hence, we do not evaluate specific methods and their149

details, but rather their main underlying philosophies. To perform this evaluation, we150

propose a “perfect model experiment” (PME) setting, using model simulations as pseudo-151

observations (e.g., de Eĺıa et al., 2002; Vrac et al., 2007; Krinner & Flanner, 2018). Al-152

though our PME setting can be applied to other couples of climate variables and other153

statistical properties, in the present article it will allow us to estimate the biases in terms154

of T vs. PR rank correlations brought by the four different hypotheses or approaches:155

• “Non-stationarity” (NSt) hypothesis: MBC should preserve change in correlations,156

• “Stationarity” (St) hypothesis: MBC should have stationary dependence proper-157

ties,158

• “No correction” (Raw) hypothesis: BC should not modify correlation values and159

changes,160

• “Multi-Model Mean Climate Change” (CC) approach: MBC should account for161

multi-model mean correlation changes.162

Hence, we will compare their robustness with respect to the rank correlation change sig-163

nal provided by current state-of-art climate models.164

The rest of this article is structured as follows: section 2 describes the climate sim-165

ulations used in this study. Then, the various possible (stationarity or non-stationary)166

assumptions of the dependence structure are detailed in Section 3, as well as our per-167

fect model experiment to test the consequences of these assumptions of the dependence168

structure. The results are given and described in Section 4. Finally, conclusions and dis-169

cussions are provided in Section 5.170
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2 Data171

Two ensembles of climate model simulations are considered. The first one is a multi-172

model ensemble constituted of 11 Global Climate Models (GCMs) contributing to the173

6th exercise of the “Coupled Models Intercomparison Project” (CMIP6, Eyring et al.,174

2016). The list of the GCMs is provided in Table 1. The second ensemble is constituted

Table 1. List of CMIP6 simulations used in this study, their run, approximate horizontal

resolution and references.

Simulation name Run Atmospheric resolution Data reference

BCC-CSM2-MR r1i1p1f1 100 km Wu et al. (2018)

CanESM5 r10i1p1f1 500 km Swart et al. (2019)

CNRM-CM6-1-HR r1i1p1f2 100 km Voldoire (2019)

CNRM-CM6-1 r1i1p1f2 250 km Voldoire (2018)

CNRM-ESM2-1 r1i1p1f2 250 km Seferian (2018)

INM-CM4-8 r1i1p1f1 100 km Volodin et al. (2019)

INM-CM5-0 r1i1p1f1 100 km Volodin et al. (2019)

IPSL-CM6A-LR r14i1p1f1 250 km Boucher et al. (2018)

MIROC6 r1i1p1f1 250 km Shiogama et al. (2019)

MRI-ESM2-0 r1i1p1f1 100 km Yukimoto et al. (2019)

UKESM1-0-LL r1i1p1f2 250 km Tang et al. (2019)

175

by 40 members (i.e., runs) from a single GCM, the “Community Earth System Model”176

(CESM, Kay et al., 2015) developed at NCAR/UCAR (USA), at approximately 1◦ hor-177

izontal resolution. The use of these multi-two ensembles (model or multi-run) allows us178

to distinguish inter-model variability from internal variability in our investigations about179

changes in correlations.180

From each of these two ensembles, daily surface temperature (hereafter T) and pre-181

cipitation (PR) time series have been extracted over the western Europe domain, defined182

as [10oW, 30oE] × [30oN, 70oN ]. Historical runs were used over the 2001–2014 period183

and the shared socioeconomic pathways 585 (SSP585) scenario (Riahi et al., 2017) over184

the 2015–2100 period. Hence, for each run of each ensemble, we consider continuous sim-185
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ulations from 2001 to 2100, which we separate into five 20-year periods: 2001–2020 as186

historical period and 2021–2040, 2041–2060, 2061–2080, 2081–2100 for future periods.187

To ease comparisons, all temperature and precipitation fields have been regridded to a188

common spatial resolution of 1◦ × 1◦.189

3 “Perfect model experiment” design and evaluation tools190

To investigate how changes in T-PR dependence (i.e., rank correlation) should be191

handled in a multivariate bias correction context, a “perfect model with turning refer-192

ence” (PMTR) experiment is now set up. The PMTR setting assumes that models are193

statistically indistinguishable from the truth (i.e., real climate). This means that the truth194

and the models are supposed to be generated from the same underlying probability dis-195

tribution (Thao et al., 2021). In particular, the distribution of the differences between196

the truth and the models is supposed to be the same as the distribution of the differ-197

ences among models. Within this paradigm, it is sensible to consider one model as a pos-198

sible truth (i.e., reference) to evaluate the Stationarity (St), non-stationarity (NSt), no-199

correction (Raw) or multi-model mean climate change (CC) hypotheses. Hence, our PMTR200

consists in taking one model (or run) as reference and evaluate the four hypotheses on201

the other models (resp. runs) with respect to the reference one. The same procedure is202

repeated for another reference model until all models (resp. runs) have each served once203

as reference.204

For the various tested assumptions, the following common notations are used: For205

a given grid cell of the domain, let ρref,i be the T vs. PR Spearman (rank) correlation206

of this grid cell from the reference (ref) model and for the period i, where i = 0 indi-207

cates 2001-2020, up to i = 4 corresponding to 2081-2100; ρmod,i is the Spearman cor-208

relation from another (i.e., non reference) model or run (belonging to the same ensem-209

ble). Our PME setting will allow us to compare the relevance of the different assump-210

tions regarding the modification of the rank correlations ρmod,i of the models.211

3.1 No-correction (Raw) hypothesis212

First, before applying a modification (correction) of the T vs. PR rank correlation213

present in the climate simulations, it is legitimate to wonder whether these model cor-214

relations really have to be corrected. Indeed, when applying a univariate BC method,215
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the copula function linking statistically the different variables of the climate simulations216

is mostly kept untouched, i.e., uncorrected, and thus so is their rank correlations (Vrac,217

2018). Therefore, the “no-correction” (hereafter “Raw”) hypothesis does not modify ei-218

ther the initial correlation value ρmod,0 (i.e., over the calibration time period), neither219

the correlation values ρmod,i at any other (future) time period i (and thus neither the220

change in correlation from period 0 to period i). This Raw approach can then serve as221

a proxy of the results given in terms of Spearman correlation by a traditional univari-222

ate bias correction, such as a quantile-mapping method (Déqué, 2007). Then, the Raw223

hypothesis is tested, for each 20-year period i, by computing BRaw, the absolute bias of224

ρmod,i with respect to ρref,i, the Spearman correlation of the reference model:225

BRaw(mod, i) = |ρref,i − ρmod,i|. (1)

Indeed, the rank correlation of the model to be evaluated is not modified at all and can226

thus be directly compared to the reference correlation.227

3.2 Stationarity (St) hypothesis228

The stationary hypothesis relies on the assumptions that (i) a multivariate bias cor-229

rection method will correctly adjust the model rank correlation ρmod,0 over the calibra-230

tion period (i.e., ρmod,0 is corrected to ρref,0) and (ii) that the correlation ρref,0 does231

not change for other time periods. Hence, through the “St” assumption, an estimation232

of the future rank correlation, ρ̃St
mod,i, over period i, is given by:233

ρ̃St
mod,i = ρref,0. (2)

As previously, a bias BSt is then defined to test the stationary hypothesis, by comput-234

ing the absolute bias of ρ̃St
mod,i with respect to ρref,i:235

BSt(mod, i) = |ρref,i − ρ̃St
mod,i| = |ρref,i − ρref,0|. (3)

3.3 Non-stationarity (NSt) hypothesis236

The NSt hypothesis relies on the assumptions (i) that an MBC method will cor-237

rectly adjust the model rank correlation ρmod,0 to ρref,0 over the calibration period and238

(ii) that the corrected future rank correlation (hereafter ρ̃NSt
mod,i) evolves from ρref,0 in239

a same manner as ρmod,i evolves from ρmod,0. Accounting for the changes in correlation,240

∆ρ,i, from model mod means accounting for the difference between ρmod,i (for i ≥ 1)241
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and ρmod,0, i.e., its change from period i = 0 (2001-2020) to the future period i ≥ 1:242

∆ρ,i = ρmod,i − ρmod,0. (4)

To get rid of the initial bias in ρmod,0, this change must start from the “real” reference243

ρref,0 value. It is then needed to calculate the correlation (ρ̃NSt
mod,i) resulting from the ap-244

propriate evolution (i.e., from ρmod,0 to ρmod,i) but starting from ρref,0 instead of ρmod,0.245

However, simple additive or multiplicative factors applied to ρref,0 — such as ρ̃NSt
mod,i =246

ρref,0 + (ρmod,i − ρmodl,0), or ρ̃
NSt
mod,i = ρref,0 × (ρmod,i/ρmod,0) respectively, or other247

similar transformations — could result in a ρ̃NSt
mod,i value outside the [0, 1] interval and248

are thus not appropriate. To avoid this issue while accounting for the evolution, the ρ̃NSt
mod,i249

correlation is defined as:250

ρ̃NSt
mod,i =

 ρref,0 + (∆ρ,i/(1− ρmod,0))× (1− ρref,0), if ∆ρ,i > 0,

ρref,0 + (∆ρ,i/(ρmod,0 + 1))× (ρref,0 + 1), if ∆ρ,i ≤ 0.
(5)

With this definition, ρ̃NSt
mod,i is constrained to the [0, 1] interval and is the result of the251

evolution of ρref,0 in the same manner as ρmod,i results from the evolution of ρmod,0. In-252

deed, when applying this transformation to ρmod,0 (instead of ρref,0), the result corre-253

sponds exactly to ρmod,i as expected. Then, the non-stationary hypothesis is tested, for254

each 20-year period i, by computing BNSt, the absolute bias of ρ̃NSt
mod,i with respect to255

ρref,i, the Spearman correlation of the reference model:256

BNSt(mod, i) =
∣∣ρref,i − ρ̃NSt

mod,i

∣∣ . (6)

3.4 Multi-model mean mean climate change (CC) hypothesis257

The CC hypothesis is specifically designed to handle and bias correct correlations258

from an ensemble of climate simulations. As in the NSt hypothesis, the MBC procedure259

is supposed to correctly transform the correlation of any simulation over the calibration260

period. Hence, for any model or run m, its correlation ρmod,0 is corrected to ρref,0. This261

CC hypothesis basically works the same way as the Non-stationarity hypothesis but ac-262

counting for the multi-model mean changes of correlations provided by the ensemble, in-263

stead of the single simulation correlation change. Hence, the change ∆ρ,i in correlation264

provided by a model m is not used alone (as in Eq. (5) for the “Non-stationarity” hy-265

pothesis) to generate a future rank correlation ρ̃NSt
mod,i. Instead, Eq. (5) is employed with266

a multi-model mean changes of correlations, ∆ρ,i, defined as the mean of the correlation267
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changes (from period 0 to period i, i.e. mean of the ∆ρ,i for a given i) from all the sim-268

ulations in the ensemble, except that used for reference. As for any model mod the re-269

sulting corrected correlation over the calibration period 0 is the same (ρref,0) and the270

same common evolution ∆ρ,i is used to generate ρ̃ccmod,i, for a given time period i, the271

consequence is that, for a given reference, all simulations end up with the same rank cor-272

relations with the CC hypothesis.273

The bias BCC associated to this multi-model mean CC correlation hypothesis over274

period i can then be defined as:275

BCC(mod, i) = |ρref,i − ρ̃ccmod,i|. (7)

3.5 Spatial or temporal aggregation of the biases276

If N is the total number of models (or runs) in the considered ensemble (CMIP6277

or CESM), each bias (BNSt, BSt, BCC and BRaw) is then calculated N − 1 times for278

each grid cell for a given reference model and a given period i; and N(N−1) times for279

each grid cell and for a given period i, when all models (or runs) have served once as ref-280

erence.281

These bias criteria BNSt, BSt, BCC and BRaw are calculated for each grid cell over282

the four climatological seasons (DFJ, MAM, JJA, SON) and then spatially averaged (in283

order to get N(N−1) bias values for the whole domain and for each season). The ob-284

tained spatially averaged values are hereafter referred to as SBNSt, SBSt, SBCC and285

SBRaw.286

Moreover, in order to have a spatial visualisation of the results, the seasonal bias287

criteria can also be averaged, for each grid cell separately, over the N runs or models of288

a given ensemble. These locally averaged bias values are hereafter referred to as LBNSt,289

LBSt, LBCC and LBRaw.290

4 Results291

4.1 Spatially averaged biases292

First, the spatially averaged SBNSt, SBSt, SBM and SBRaw biases are presented293

as boxplots in Fig. 1 for CESM and in Fig. 2 for CMIP6, for the four seasons.294
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For CESM (Fig. 1), except for the winter season (1.a) where the BSt values are gen-295

erally lower than the BNSt values whatever the future time period, the biases BSt in-296

duced by the stationary hypothesis on the three other seasons (1.b-d) are lower or equiv-297

alent to those induced by the non-stationary hypothesis up to about 2060 (i.e., the first298

two 20-year periods) but are larger afterwards, for the last two periods, 2061 and on. This299

means that, for CESM runs, after 2060, the change in Spearman correlations becomes300

larger than the variability of the correlations among the different runs over the reference301

2001-2020 period. This can be explained by the fact that all runs are made from a sin-302

gle climate model. Therefore, the change in correlations is consistent between the dif-303

ferent runs and the variability of their time evolution is rather weak. In such a case and304

for long-term projections, the non-stationary hypothesis has to be favoured over the sta-305

tionary one. However, when looking at the CMIP6 PMTR results (Fig. 2), the conclu-306

sions are quite different. Here, for all seasons and all periods in the future, the biases in-307

duced by the stationary experiment are constantly equivalent to or lower than those in-308

duced by the non-stationary test. This is due to the high variability of changes in cor-309

relations from one CMIP6 model to another. Contrary to the CESM ensemble, here the310

simulations are not generated by a single model. This implies a large inter-model un-311

certainty in the correlations. In such a case, the use of the non-stationary hypothesis,312

i.e., accounting for the change in correlations simulated by the different models, is not313

recommended and the stationary hypothesis (i.e., considering ρref,0 as an approxima-314

tion for the Spearman correlation in future periods) has to be favoured as it reduces de-315

pendence biases.316

When looking at the other hypotheses (i.e., “CC” and “Raw”) for CESM (Fig. 1),317

they appear quite equivalent from each other, for all the seasons. Unsurprisingly, these318

two approaches provide low SBCC and SBRaw values, indicating good estimates of the319

future correlations, for all time periods i. This is once more explained by the weak vari-320

ability, among the CESM runs, of the correlation values and correlation changes over time.321

The picture is not the same for CC and Raw with the CMIP6 ensemble (Fig. 2).322

Here, the Raw hypothesis induces major biases that stronger than with any other ap-323

proach. Indeed, the variability of the correlation values and of the correlation changes324

over time is much higher within CMIP6 than within CESM. Therefore, not performing325

any initial adjustment of the modelled correlation values preserves this high variability,326

associated with high SBRaw bias values. Yet, the CC approach appears as the most ro-327
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bust one for CMIP6: even with the high CMIP6 variability of correlations, accounting328

for the multi-model mean change of correlations allows to estimate the inter-variable de-329

pendence evolution in an efficient way, more appropriate than considering evolutions from330

single models separately as in the NSt approach.331

4.2 Locally averaged biases332

In order to see how the BNSt, BSt, BCC and BRaw values are distributed over the333

geographical domain, the locally averaged LBNSt, LBSt, LBCC and LBRaw values are334

used. To ease the visual assessment, for each grid cell, season and 20-year period, the335

difference DLB(H) = LBH−LBNSt is computed, where H corresponds to one of the336

three hypotheses (St, CC or Raw). In other words, the NSt approach is used here as an337

arbitrary benchmark for the spatial evaluation. The resulting DLB maps for 2021–2040338

(i = 1) and 2081–2100 (i = 5) and for winter and summer are presented in Figure 3339

for CESM and Figure 4 for CMIP6. The maps for Spring and Fall are given as supple-340

mentary information for CESM and CMIP6 in Figures SI.1 and SI.2, respectively. A pos-341

itive (yellow or red) difference indicates that the “non-stationary” hypothesis implies smaller342

biases than the “H” one, while negative (light or dark blue) differences show locations343

where the “H” hypothesis implies smaller biases than the “non-stationary” one.344

The DLB(CC) results show very uniform maps of negative values for both CESM345

(panels 3.b,e,h,k) and CMIP6 (panels 4.b,e,h,k), all future periods and for all seasons.346

This indicates that the CC hypothesis performs uniformly better than the NSt approach.347

This is also true for CESM DLB(Raw) maps (panels 3.c,f,i,l), showing only very348

weak spatial structures. However, the maps are not uniform for the CMIP6 DLB(Raw)349

maps, where strongly positive spatial structures also change in time, for example in sum-350

mer from 2021-2040 to 2081-2100.351

Regarding the St hypothesis over the near-future (2021-2040) period, as already352

shown in Figures 1 and 2, the results are rather equivalent for CESM (3.a) and CMIP6353

(4.a) maps, with mostly close to 0 or negative DLB(St) differences all over the western354

Europe domain. However, spatial structures appears more and more when going through355

the different periods of the 21st century, as illustrated for CESM in panels 3.b and 3.j,356

and for CMIP6 in panels 4.b and 4.j, showing DLB(St) results over 2081-2100. For CESM,357

except for winter that shows weakly positive DLB(St) values over the south-western part358
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of the domain, the other seasons present more pronounced positive DLB structures (i.e.,359

yellow and red), especially in summer (Fig. 3.j) over central eastern Europe. For CMIP6,360

the spatial structures are much less pronounced and the major part of the domain shows361

only mild DLB(St) values, indicating that, even over the 2081-2100 period, the “St” and362

“NSt” hypotheses do not distinguish much from each other and that, thus, the “station-363

ary” hypothesis remains reasonable up to the end of the 21st century. In general, it is364

interesting noting that, for CESM, the positive DLB(St) values — indicating smaller365

biases of rank correlation from the “NSt” hypothesis — mostly appear over lands, while366

negative DLB(St) values — i.e., smaller biases of rank correlation from the “St” hypoth-367

esis — are over seas. However, although with much lower intensities than for CESM, the368

positive CMIP6 DLB(St) values also mostly appear lands, except for summer (Fig. 4.j)369

for which most inland Europe presents negative DLB(St) values.370

4.3 Inter-run biases vs. Inter-model biases371

To compare the contribution of the biases from the multi-run PM experiment to372

the biases from the multi-model PM experiment, for each period and season, a ratio of373

bias, RH is calculated for each hypothesis H, as the median bias from CESM (given in374

Figure 1) divided by the median bias from CMIP6 (Figure 2):375

RH = Q50(SB
CESM
H )/Q50(SB

CMIP6
H ) (8)

where Q50 is the function giving the median of a dataset, H is one of the four hypothe-376

ses and SBCESM
H (respectively SBCMIP6

H ) is the dataset of the SB biases calculated for377

CESM (respectively CMIP6) from hypothesis H. By assuming that the CESM SBH bi-378

ases are representative of the SBH biases from any single model multi-run ensemble in379

the CMIP6 ensemble, RH allows to quantify the relative weights of the biases from inter-380

run or inter-model biases, based on hypothesis H. However, it is not possible to assume381

such a representativity of the CESM ensemble. Hence, more rigorously, RH quantifies382

the relative weights of the biases from the CESM inter-run biases over the CMIP6 inter-383

model biases from hypothesis H. The RH values are plotted in function of the time pe-384

riod in Figure 5 for the four hypotheses and the four seasons. The 90% confidence in-385

terval of each ratio is also computed via a bootstrap of 75% of the SBCESM
H and SBCMIP6

H386

values, repeated 100 times. These intervals are given as dashed coloured lines in Fig. 5.387

Note that the intervals are generally small and relatively similar for one period to an-388

other and from one hypothesis to another. Yet, larger intervals are visible for the Sta-389
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tionary hypothesis (light blue) during the transition seasons (i.e., Spring 5.b and Fall 5.d)390

as well as for the Non-Stationary hypothesis (dark blue) during Fall (5.d).391

For the Raw hypothesis, RRaw values are constant for all periods, whatever the sea-392

son, around 0.4, indicating that the CESM inter-run biases are always smaller than the393

CMIP6 inter-model biases. For the Stationary hypothesis, the ratio of bias stays mostly394

constant for spring, summer and fall (RSt between 1 and 1.2) but decreases with time395

in winter (from 1.2 in 2021-2040 to 0.8 in 2081-2100. However, tendencies to decrease396

with time are visible for RNSt and RCC for all seasons and overall for winter and sum-397

mer.398

For hypotheses showing decreasing trends of RH (NSt and CC in all seasons, as399

well as St in winter), the inter-model biases increase with time with respect to the inter-400

run biases. In this case, the RH values quickly go down below 1. This indicates that inter-401

model correlation biases are rapidly getting predominant with respect to the inter-run402

biases. For longer term projections, this tends to favour the selection of approaches that403

minimise the biases of the inter-model ensemble based on our PMTR experiment.404

5 Conclusions and discussion405

Bias correction (BC) methods are now routinely applied to adjust climate simu-406

lations and then drive impact models. If univariate BC methods are generally well-understood407

and have been extensively studied, multivariate ones (MBC) are still in an expansion phase408

that required to understand their main assumptions, differing from univariate BCs. Whereas409

1d-BC methods mostly keep the copula dependence function (i.e., its Spearman corre-410

lation) of the climate model untouched (see Vrac, 2018, among others), MBCs can rely411

on various assumptions regarding the possible evolutions (i.e., changes over time) of the412

multivariate dependencies between climate variables, such as the inter-variable (rank)413

correlation. Some MBCs try reproducing — generally implicitly — the future correla-414

tion changes planned by the climate model (e.g., A. Cannon, 2017; Robin et al., 2019),415

while other MBCs assume a stationary dependence between variables, sticking to the ob-416

servational copula function (e.g., Vrac, 2018; Vrac & Thao, 2020). In this study, with-417

out correcting any multivariate simulation, we have thus investigated what these “sta-418

tionary” and “non-stationary” hypotheses imply in terms of biases of the inter-variable419

Spearman (rank) correlation between temperature and precipitation. To do so, an orig-420
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inal perfect model experiment with turning reference has been set up and applied based421

on two different climate simulation ensembles: 40 runs from the CESM global climate422

model and 11 runs from the CMIP6 exercise. A run is taken as reference and the St and423

NSt hypotheses are tested on the other runs against this reference. In addition to the424

St and NSt experiments, two other hypotheses were evaluated : one (“CC”) that makes425

the correlations evolve according to the multi-model change in correlations, hence try-426

ing to capture the most robust part of the signal; and one (“Raw”) that does not trans-427

form at all the correlations and that can be seen as a proxy for a univariate bias correc-428

tion method. For each of the four hypotheses, biases of rank correlations were defined429

with respect to the reference and averaged either spatially or locally. All runs served once430

as reference, allowing to get a estimation of the variability of the biases. The main re-431

sults highlight that:432

(1) Within a multi-run single GCM ensemble (such as CESM), accounting for changes433

in correlation (with “NSt” or “CC” hypotheses) can bring valuable information, espe-434

cially for long-term projections. However, a stationary (“St”) correlation hypothesis ap-435

pears to provide less biased correlation results than the “NSt” one, up to medium-term436

projections (about 2060). This is due to the low variability of correlations and correla-437

tion changes among such a multi-run single GCM ensemble.438

(2) For multi-model ensembles (such as from CMIPs), as the inter-model uncer-439

tainty in the evolution of the correlations is quite large, the use of the non-stationary (“NSt”)440

hypothesis is not recommended and the stationary hypothesis (i.e., considering the Spear-441

man correlations of the reference as an approximation for the correlations in future pe-442

riods) has to be favoured. This has important consequences for studies relying on changes443

of inter-variable dependence, as well as for MBC methods designed either to keep the444

dependence structures stationary with respect to a reference (e.g., as in Vrac, 2018; Vrac445

& Thao, 2020) or to make the dependencies evolve in agreement with the changes pro-446

vided by the biased climate model simulations to correct (e.g., as in A. Cannon, 2017;447

Robin et al., 2019). Based on the results of this study, both approaches can make sense,448

but their appropriate use clearly depend on the confidence the MBC user puts on the449

model simulations and on their changes in inter-variable correlations and dependencies.450

(3) When an MBC method has to be applied based on a single run, the Station-451

ary approach is preferable, rather than a non-stationary hypothesis. This is particularly452
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true if the projection period is before 2060. For longer term projections, the choice (St453

or NSt) mostly depends on the confidence put in the climate model used. If a high vari-454

ability in correlation changes is possible (as in the CMIP6 ensemble), the Stationary ap-455

proach appears safer. If the correlation changes are thought to be weakly variable around456

that provided by the single model run, then a non-stationary approach can be more ro-457

bust. Yet, in practice, if only one single run is used, it is difficult to quantify the con-458

fidence we can have in this run, as it is not possible to quantify the agreement between459

models and runs. This clearly also underlines the need to investigate the different sta-460

tistical and physical features of the climate model of interest and the degree of trust that461

can be placed in them. Therefore, constraining models by observations to reduce uncer-462

tainties in projections, as done in Robin and Ribes (2020) or Ribes et al. (2021) for non-463

stationary univariate extremes, but for correlation/dependence features is a relevant and464

useful perspective.465

(4) Globally, when an ensemble is available, the best and more stable results were466

obtained from the “CC” approach, that allows accounting for the mean change in cor-467

relations, computed as the average change from the different models or runs. Thus, when468

it is possible to use an ensemble, the CC approach has to be favoured over any of the469

three other discussed hypotheses. More generally, this result also pleads for the use of470

ensemble — instead of a single model run — and the robust information about climate471

change that they can provide.472

This study can, of course, be further extended in many ways. First, it is worth re-473

minding that, here, we have not performed any (univariate or multivariate) bias correc-474

tion per se. Indeed, no time series have been adjusted, as we only relied on ways to es-475

timate the evolution of the correlations, as proxies of results given by MBCs. Hence, we476

did not evaluate specific methods and their details, but rather their main underlying philoso-477

phies. The consequence is that, to get a precise understanding of the suited MBC meth-478

ods to use, the same PME protocol could be applied directly to the MBC methods of479

interest.480

Second, GCM simulations have been used to constitute the ensembles of this study.481

Yet, ensembles for RCM simulations, with higher spatial resolution, could provide dif-482

ferent complementary insights and results. This also raises the question on the differ-483

ent sources of variability in the correlation values and changes: from large-scale or from484

local-scale simulations? From inter-GCM or from inter-RCM simulations? Our proposed485
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PME would then have to be adapted to tackle such questions and to be able to sepa-486

rate the various sources.487

Moreover, if this study only looked at the T vs. PR correlations, other couples of488

climate variables (e.g., wind and precipitation, or humidity and temperature) or other489

dependence metrics (e.g., Kendall’s tau) can be investigated in the same way, depend-490

ing on the specific interest. In the same type of idea, different types of dependencies, other491

than inter-variable, could also benefit from such a framework: spatial dependencies, or492

temporal dependencies, including cross-dependencies. With such systematic evaluations,493

it would then be possible to get clear pictures of the most robust ways to account for494

changes in various dependence properties with multivariate bias correction methods.495
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Figure 1. CESM Results of the perfect model with turning reference (PMTR) experiment

presented as boxplots for the four seasons: (a) winter, (b) spring, (c) summer and (d) fall. For

each season, the biases in rank correlation (no units) from the non-stationary hypothesis (in dark

blue), the stationary hypothesis (light blue), the “CC” hypothesis (pink) and the “Raw” hypoth-

esis (yellow) are given for 4 future periods (2021-2040, 2041-2060, 2061-2080, 2081-2100).
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Figure 2. Same as Fig. 1 but for CMIP6 models.
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Figure 3. CESM Maps of the differences of LB values (DLB(H) = LBH − LBNSt, see

text for details) computed for each grid cell, where hypothesis H is either “St” (first column), or

“CC” (second column), or “Raw” (third column), in Winter (first and second lines) or summer

(third and fourth lines), over the 2021-2040 period (first and third lines) or the 2081-2100 period

(second and fourth lines). The equivalent maps for the other seasons (i.e., spring and fall) are

provided as supplementary information in Figure SI.1.
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Figure 4. Same as Figure 3 but for CMIP6. The equivalent maps for the other seasons (i.e.,

spring and fall) are provided as supplementary information in Figure SI.2.
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Figure 5. Ratio of the median bias from CESM internal variability over the median bias

from CMIP6 inter-model variability for the 4 correlation change hypotheses (“NSt”, “St”, “CC”,

“Raw”) in winter (a), spring (b), summer (c) and fall (d). The dashed lines give the 90% confi-

dence intervals of the ratio values for each hypothesis and period.
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