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Abstract14

The contribution of ocean fronts to the properties and temporal evolution of Sea Sur-15

face Temperature (SST) structure functions have been investigated using a numerical16

model of the California Current system. First, the intensity of fronts have been quan-17

tified by using singularity exponents. Then, leaning on the multifractal theory of tur-18

bulence, we show that the departure of the scaling of the structure functions from a straight19

line, known as anomalous scaling, depends on the intensity of the strongest fronts. These20

fronts, at their turn, are closely related to the seasonal change of intensity of the coastal21

upwelling characteristics of this area. Our study points to the need to correctly repro-22

duce the intensity of the strongest fronts and, consequently, properly model processes23

such as coastal upwelling in order to reproduce SST statistics in ocean models.24

Plain Language Summary25

Forecasting the evolution of Earth Climate requires to predict the evolution of the26

statistical characteristics of essential climate variables such as the Sea Surface Temper-27

ature. In this study, it has been found that some of such statistical properties depend28

on the intensity of the strongest fronts in the ocean. This implies that those ocean, or29

climate, models that fail to correctly predict their intensity won’t be able to correctly30

reproduce the statistical characteristics of key variables such as temperature. The area31

analyzed in this study is the California Current system, where the strongest fronts are32

modulated by the seasonal evolution of the upwelling. Therefore, our results imply that33

such a system has to be correctly modeled in order to properly reproduce the statistics34

of ocean temperatures.35

1 Introduction36

Sea Surface Temperature (SST) is a fundamental variable of the Earth climate sys-37

tem due to its role in regulating climate and weather (Deser et al., 2010) and its dynam-38

ical connection to ocean currents (Isern-Fontanet et al., 2014). Moreover, the availabil-39

ity of long time series of global high resolution satellite measurements of SST (Merchant40

et al., 2019) makes it well suited for addressing a wide range of problems such as mon-41

itoring the Climate Change (Gulev et al., 2021); retrieving ocean currents (Isern-Fontanet42

et al., 2017); or calibrating and validating ocean and climate models (Skákala et al., 2019).43

It is, therefore, of major importance to understand how ocean processes contribute to44
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SST statistics to exploit such a wealth of data and get insight into the functioning of the45

ocean and climate.46

A prominent feature of SST is the presence of fronts, which are known to be sinks47

of energy (D’Asaro et al., 2011; Isern-Fontanet & Turiel, 2021) and significantly contribute48

to the vertical transport of nutrients and, thus, to primary production (Mahadevan, 2016).49

The variability of the characteristics of fronts, such as the density of fronts or their in-50

tensity, are expected to be mirrored by the variability of some SST statistics. A popu-51

lar approach is based on the spectral slope of SST because it can be connected to the-52

ories of turbulence. Nevertheless, they provide an incomplete framework, if only because53

different theories may predict the same slope (Callies & Ferrari, 2013) and the under-54

lying turbulence regime may not change in spite of the seasonal changes in the proper-55

ties of fronts.56

The structure functions of a turbulent variable, i.e. the moments of the differences57

between two points, are also at the core of theories of turbulence (Pope, 2000) and ex-58

tend the information provided by spectral slopes (Yu et al., 2017; Sukhatme et al., 2020).59

Moreover, the anomalous scaling of the power laws deduced from the structure functions,60

i.e. its deviation from a straight line, can be related to the geometry of gradients mak-61

ing use of the multifractal framework (Isern-Fontanet & Turiel, 2021). The relevance of62

this approach has already been demonstrated in the oceanic context. (Isern-Fontanet et63

al., 2007) and it has been used to develop metrics for model validation (Ivanov et al.,64

2009; Skákala et al., 2016), although it has not been yet exploited to investigate the con-65

tribution of fronts to SST statistics.66

Here, we introduce a metric to measure the intensity of SST fronts in numerical67

simulations of the California Current System (Capet, McWilliams, et al., 2008), which68

is dominated by cross-shore gradients generated by the coastal upwelling (Chenillat et69

al., 2018). This metric is then connected to the scaling of the structure functions using70

the multifractal framework (Frisch, 1995) and used to investigate how the temporal vari-71

ability of front intensity contribute to the variability of anomalous scaling and spectral72

slopes. The paper is organized as follows: section 2 puts the multifractal theory of tur-73

bulence in the context of oceanography; section 3 describes the numerical simulations74

and the algorithms used for this study; sections 4 and 5 describe results and discuss them,75

respectively; and section 6 list the conclusions.76
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2 Theoretical framework77

Coarse-grained Sea Surface Temperature (SST) gradients are built by filtering the78

module of the thermal gradient as79

|∇T |`(~x) ≡
∫
Rd

`−dG(`−1~x)|∇T |(~x+ ~x′)d~x′, (1)80

where d = 2 is the geometrical dimension; ` is the scale of the filter; G(~x) is a normal-81

ized positive function that decays fast to zero as |~x| → ∞; T (~x) is the SST and ∇ =82

(∂x, ∂y). These SST gradients are known to possess a range of scaling exponents h(~x)83

that verify84

|∇T |`(~x) ∼
(
`

`0

)h(~x)
(2)85

as `/`0 → 0, where `0 is the integral scale of the flow (Isern-Fontanet et al., 2007). The86

scaling exponents h(~x), known as singularity or Hölder exponents, quantify the degree87

of continuity of SST. Indeed, if h(~x) ∈ (n, n+1) with n being a positive integer, |∇T |`(~x)88

is derivable n times but not n+1 (Arneodo et al., 1995). Consequently, we propose the89

use of singularity exponents as a proxy measure for the intensity of fronts, on the ba-90

sis that the strongest fronts are those with the most marked singularity, hence also those91

with the smallest singularity exponents. .92

The domain of the turbulent flow can be, then, divided into subsets according to93

their singularity exponent. This gives rise to the singularity spectrum, a concave func-94

tion of h defined as95

D(h′) ≡ dF ({~x|h(~x) = h′}) , (3)96

where dF (A) is the fractal dimension of set A. It follows that, the singularity spectrum97

D(h) characterizes the ’volume’ occupied by fronts with intensity h. Moreover, the sin-98

gularity spectrum D(h) provides information about the statistical properties of SST. In-99

deed, the scaling properties of the moments of SST gradients are defined by a contin-100

uous function τ(p) of the moment order p101

〈|∇T |
p

` 〉 ∼
(
`

`0

)τ(p)
, (4)102

which is related to the singularity spectrum by a Legendre transform pair103

τ(p) = ph+ d−D(h), with p =
dD

dh
(5)104

and105

D(h) = ph+ d− τ(p), with h =
dτ

dp
, (6)106
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as shown by Parisi and Frisch (1985). It’s worth mentioning that equation 4 implies that107

the Probability Density Functions (PDF) of thermal gradients are dependent on the anal-108

ysis scale `, which is a signature of intermittency (Frisch, 1995). As a consequence, care109

must be taken when analysing PDF and kurtosis and when comparing PDF from data110

with different resolutions.111

The singularity spectrum can also be related to the scaling of the structure func-112

tions of temperature, which are defined as113

Sp(`) ≡ 〈|Ts(~x+ ~̀)− Ts(~x)|p〉 (7)114

and scale according to the continuous function ζ(p), i.e.115

Sp(`) ∼
(
`

`0

)ζ(p)
. (8)116

Using that, at small scales, |Ts(~x+ ~̀)− Ts(~x)| ∼ `|∇T | it follows that,117

1

`p0
〈|Ts(~x+ ~̀)− Ts(~x)|p〉 ∼

(
`

`0

)p
〈|∇T |

p

` 〉 ∼
(
`

`0

)p(
`

`0

)τ(p)
∼ 1

`p0

(
`

`0

)ζ(p)
, (9)118

with `0 being a constant, and, consequently, both scaling functions are related by119

ζ(p) = p+ τ(p). (10)120

Recall that, the scaling of the structure function of order p = 2 gives the spectral slope121

of SST,122

E(k) ∝ k−ζ(2)−1 = k−τ(2)−3, (11)123

where E(k) is the energy spectrum and k the wavenumber (Frisch, 1995).124

Guided by the recent work of Isern-Fontanet and Turiel (2021), here, we focus on125

two properties of the singularity spectrum: the most singular exponent h∞,126

h∞ ≡ min(h), (12)

which is a measure of the intensity of the strongest fronts; and the width of the singu-127

larity spectrum defined as128

∆h− ≡ hd − h∞, (13)

where hd is the mode. This quantity corresponds to the difference of slopes of ζ(p) be-129

tween the origin (p = 0) and large orders (p → ∞). Indeed, using equation (6) and130

equation (10), it can be seen that131

dζ

dp

∣∣∣∣
p=0

− dζ

dp

∣∣∣∣
p→∞

=
dτ

dp

∣∣∣∣
p=0

− dτ

dp

∣∣∣∣
p→∞

= hd − h∞ = ∆h−. (14)
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Figure 1. A: Example of instantaneous SST corresponding to July 10th of the first year ana-

lyzed (t=20 days) with the area used to compute Fourier spectra (black, dashed) and δTupwelling

(purple, solid). The inset globe shows the geographical limits of the numerical simulations. B:

singularity exponents for the SST image with the area used to compute singularity spectra (red,

dashed). C: distance from coast of of the h∞ observed for the whole analyzed period with the

color corresponding to δTupwelling.

Therefore, the anomalous scaling, i.e. the departure from a straight line, increases with132

growing ∆h−.133

3 Data and procedures134

SST fields were taken from numerical simulations of the circulation in the Califor-135

nia Current System (see figure 1A) generated with the ROMS oceanic model (Shchepetkin136

& McWilliams, 2005). The model was configured with a horizontal resolution of ∼ 2.5137

km (1025×625 grid points) and 32 vertical levels with higher resolution in the upper lay-138

ers. The boundary and initial conditions, as well as the forcing at the air-sea interface139

(wind stress, heat and freshwater fluxes) were derived from climatologies as in Capet,140

Colas, et al. (2008). Singularity analysis was applied to snapshots of SST taken every141

two days of simulation spanning a period of two years.142
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Figure 2. A: Singularity spectra D(h). B: scaling of the structure functions of temperature

ζ(p) derived from the singularity spectra. The black dot corresponds to 〈ζ(2)〉. C: normalized

Fourier spectra. The black dashed line has a slope given by −〈ζ(2)〉 − 1. Energy spectra are nor-

malized by E0 ≡ E(k0), where k = 10−4 rad/m. Grey lines correspond to the observations for the

full period, while orange and green lines correspond the examples of two particular days: March

4th (green, t = 246 days) and August 23rd (orange, t = 418 days) of the second year.

Although very appealing, equation (2) can not be used directly to compute singu-143

larity exponents due to long-range correlations and discretization effects (Turiel et al.,144

2008). To avoid these difficulties, we used the method proposed by Pont et al. (2013) to145

compute singularity exponents (see figure 1B). Then, the singularity spectrum of each146

snapshot of SST was computed within the domain of analysis (see red rectangle in fig-147

ure 1B) using the histogram method148

D(hi) ≈ d−
logNi − logNmax

log(`/`0)
, (15)

where Ni is the number of grid cells having a singularity exponent in the range [hi −149

δh
2 , hi+

δh
2 ), Nmax the number of valid ocean grid cells in the analysis domain, and `/`0 =150

(
∑
iNi)

1
d (Turiel et al., 2006). The grid points surrounding the land mask were removed151

to avoid spurious values due to the land-sea transition and we used d = 2 and δh =152

0.02 in the range from h = −1 to h = 3 for computing D(h). Translational invariance153

was imposed to each singularity spectrum to correct for any shift that may exist in the154

singularity exponents (Isern-Fontanet & Turiel, 2021). This invariant condition consists155

in imposing that the 〈|∇T |`〉 does not depends on `, i.e. τ(1) ≡ 0. Finally, the mode156

hd was estimated by locally adjusting a parabola around the maximum of D(h) and, then,157

analytically calculating its maximum.158
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The function ζ(p) was derived from the instantaneous D(h) by first applying the159

Legendre transform equations (5) and, then, equation (10). To reduce the spurious os-160

cillations due to noise, we used a similar approach to the computation of hd, i.e. the Leg-161

endre transform was obtained by locally fitting a second order polynomial to the sur-162

roundings of each value of D(hi) and, then, analytically inverting it. On the contrary,163

the SST spectrum was computed independently from D(h) using SST anomalies in the164

black box shown in figure 1A, i.e.165

δT (~x, t) = T (~x, t)− T̃ (~x, t), (16)

where T̃ (~x, t) ≡ ax(t)x+ ay(t)y + axy(t)xy + a0(t) was estimated by least-squares fit-166

ting to SST in the whole domain. With the aim of having a simple measure of the in-167

tensity of the coastal upwelling, the temperature anomaly associated to it was defined168

as the mean temperature anomaly close to the coast, i.e.169

δTupwelling(t) ≡ 〈δT (~x, t)〉upwelling. (17)

This area was taken as the area between the coast and 10 grid points seawards (∼ 25170

km) and between y =810 km and y =1720 km, which corresponds the purple area marked171

in figure 1A.172

4 Results173

Figure 1B unveils the complex structure of thermal fronts observable in a snapshot174

of SST, with the most intense fronts, bright lines in the figure, being those with smaller175

singularity exponents. The intensity of fronts has some spatial variability. On one side,176

the areas with blurred fronts found in the North, West and South limits of the domain177

are due to the low-resolution information imposed at the model open boundary condi-178

tions. On the other, the intensity of fronts tend to be higher within the area strongly179

influenced by coastal upwelling (the area within [600 km, 1150 km]×[700 km, 1700 km]180

approximately). Moreover, results shown in figure 1C reveal that the smallest values of181

h∞ are concentrated close to the coast and correspond to large values of |δTupwelling|,182

while larger values of h∞ can be found away from the coast for and correspond to small183

values of |δTupwelling|.184

Singularity spectra D(h) are asymmetric functions of h, whose properties change185

over time as revealed by figure 2A. Indeed, the value of h∞ ranges between -0.6 and -186

0.35 for the two years of simulation and the width ∆h− between 0.4 and 0.7. The changes187
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in the width of D(h) are related to changes in the anomalous scaling of the structure func-188

tions (figure 2B) as expected from equation 14. Such changes are more pronounced for189

moments larger than p = 2 (which provides the spectral slope of SST; equation 11).190

Moreover, the slope of the instantaneous spectra of SST for k < 10−4 rad/m , which191

has been computed independently, is close to the value given by the average 〈ζ(2)〉 com-192

puted from the singularity spectra D(h) (figure 2C). The observed spectral slope is some-193

what steeper than k−2, in contrast to Capet, McWilliams, et al. (2008). A shallower spec-194

tral slope can be recovered by reducing the spectral analysis to the area dominated by195

the upwelling, where fronts are stronger and more energy is present at the smaller re-196

solved scales (not shown).197

The two properties analyzed in this study, h∞ and ∆h− are not independent but198

are strongly correlated with a linear correlation of -0.98 and a slope between them of -199

1.13 (figure 3A). A closer look, however, shows that the snapshots with h∞ < −0.5 have200

weaker slopes between h∞ and ∆h− (-1.11) and a tendency to have larger values of |δTupwelling|201

(3.56 deg C on average) than snapshots with h∞ > −0.5 (-1.14 and 1.66 deg C on av-202

erage, respectively). Besides, the temporal evolution of h∞ follows a seasonal cycle (fig-203

ure 3B), which has associated a seasonal variation of the width of the singularity spec-204

trum of SST gradients and, thus, a seasonal variation of the anomalous scaling of the205

structure functions of temperature. Moreover, the close relation between the spatial lo-206

cation of h∞ and δTupwelling shown in figure 1C suggests a strong relationship between207

them, which is confirmed statistically: the Pearson correlation coefficient between the208

temporal evolution of h∞ and δTupwelling (figure 3B) is 0.87.209

5 Discussion210

In this study we have proposed, for the first time, to measure the intensity of fronts211

in SST using the singularity exponents of thermal gradients. Singularity exponents char-212

acterise the scaling at small scales, are independent of the gradient magnitude and mea-213

sure the degree of continuity of the field. Moreover, singularity exponents have the ad-214

vantage over other popular approaches for detecting fronts (Chang & Cornillon, 2015;215

Kirches et al., 2016) that they can be easily connected to statistical quantities that are216

central to turbulence theories. Indeed, the singularity spectrum, which gives the frac-217

tal dimension of those points with the same exponents, emerges as a fundamental prop-218

erty of the ocean providing the link between anomalous scaling and the intensity of fronts.219
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Figure 3. A: Scatter plot between h∞ and ∆h−. The black line corresponds to a slope of

-1.13. B: temporal evolution of h∞ and δTupwelling. Grey points correspond to the observations

for the full period, while orange and green points correspond to the examples of two particular

days: March 4th (green, t=246 days) and August 23rd (orange, t=418 days) of the second year.

Here, we have exploited this relationship to understand the seasonal variability of the220

scaling of the structure functions in the California Current System.221

Two main results have been reported in this study. First, there is a seasonal vari-222

ability in the value of the most singular (the smallest) singularity exponent h∞, which223

is well correlated with the evolution of the temperature anomaly associated with the up-224

welling δTupwelling. Moreover, it has been observed that, for strong upwelling events, the225

strongest fronts are located close to the coast, while for weak upwelling events they can226

also be located offshore, confirming then, that the strongest fronts are generated by the227

upwelling process. The second main result is the existence of a linear correlation between228

the anomalous scaling of the structure functions measured by ∆h− and the most sin-229

gular exponents h∞. With the interpretation of singularity exponents as normalized mea-230

sures of front intensity in mind, our results imply that anomalous scaling are linearly anti-231

correlated to the intensity of the strongest fronts. Putting these two results together, it232

implies that some statistical properties of the flow in the area under study, including the233

spectral slopes of SST, are correlated to the intensity of the upwelling.234

An important question that emerges is whether the correlation and slope between235

h∞ and ∆h− is universal. A preliminary answer would be positive for two main reasons:236

the same correlation between h∞ and ∆h− has been found for different variables, SST237

and velocities; and it has been found in regions with different dynamical regimes, the Cal-238

ifornia Current System and the Gulf stream (see Isern-Fontanet & Turiel, 2021). To con-239
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firm this answer it would be necessary to analyse global numerical simulations (Su et al.,240

2020) or observations (Merchant et al., 2019). However, before using SST measurements,241

it is necessary to address the problems generated by data gaps due to cloud coverage (Isern-242

Fontanet et al., 2021); the masking out of strong fronts by the failure of cloud mask al-243

gorithms (Kilpatrick et al., 2019); and the changes in ∆h− induced by noise (Isern-Fontanet244

& Hascoët, 2014). Among them, the most critical problem is the masking of strong fronts245

because it has a direct impact on the estimation of h∞ and, thus, ∆h− = hd − h∞.246

Besides, h∞, ∆h− and the slope between them could be used to validate ocean models247

and compare models with data. These variables are, in principle, independent of the res-248

olution and the algorithms for computing singularity exponents are robust (Pont et al.,249

2013).250

6 Conclusions251

Singularity exponents provide a measure of the intensity of SST fronts that can be252

connected to the scaling of the structure function and the spectral slope of SST through253

the singularity spectrum. When analysing the numerical simulations of the California254

Current System, results show that the intensity of the most singular fronts is correlated255

to the anomalous scaling of the structure functions. These fronts, at their turn, are closely256

related to the seasonal change of intensity of the coastal upwelling characteristic of this257

area. Our study points to the need to correctly reproduce the intensity of the strongest258

fronts and, consequently, properly model processes such as coastal upwelling in order to259

reproduce correctly SST statistics in ocean models.260

7 Open Research261

The details of the model configuration, as well as, the simulated Sea Surface Tem-262

peratures generated for this study and the singularity analysis described in Section 3 are263

available in https://doi.org/10.20350/digitalCSIC/14487 (Isern-Fontanet et al., 2022).264
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mote sensing of ocean surface currents: a review of what is being observed and321

what is being assimilated. Nonlinear Processes in Geophysics, 24 , 613 – 643.322

doi: 10.5194/npg-24-613-2017323

Isern-Fontanet, J., Capet, X., Turiel, A., Olmedo, E., & González-Haro, C. (2022).324
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Turiel, A., Yahia, H., & Pérez-Vicente, C. J. (2008). Microcanonical multifractal409

formalism—a geometrical approach to multifractal systems: Part I. Singularity410

analysis. Journal of Physics A: Mathematical and Theoretical , 41 (1), 015501.411

Retrieved from http://dx.doi.org/10.1088/1751-8113/41/1/015501 doi:412

10.1088/1751-8113/41/1/015501413

Yu, K., Dong, C., & King, G. P. (2017, 2021/10/04). Turbulent kinetic energy of414

the ocean winds over the kuroshio extension from quikscat winds (1999–2009)415

[https://doi.org/10.1002/2016JC012404]. Journal of Geophysical Research:416

Oceans, 122 (6), 4482–4499. Retrieved from https://doi.org/10.1002/417

2016JC012404 doi: https://doi.org/10.1002/2016JC012404418

–16–


