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Abstract13

We empirically test our earlier theoretical arguments about simplification of continuous-14

time random walk (CTRW) solute transport models, namely that without loss of generality15

the velocity-like term, vψ, may be set to mean groundwater velocity, the dispersion-like16

term, Dψ, defined by a classical, velocity-independent dispersivity, and the so-called time17

constant, τ , to unity. We also argue that for small-scale heterogeneous advection (HA)18

and mobile-immobile mass transfer (MIMT) CTRW transition time distributions, ψ(t),19

are unaffected by mean flow velocity. To experimentally test these claims, we re-analyze20

two bench-scale transport experiments—one for HA, one for MIMT—each performed at21

multiple flow rates in otherwise identical conditions, and show it is possible to simultaneously22

explain all breakthrough curves in each, subject to the above constraints. We compare23

our calibrations with earlier efforts for the same data sets. In the HA calibration we identify24

a ψ(t) of the same functional form as previous authors, and which yielded breakthrough25

predictions essentially identical to theirs, but with greatly differing parameters. This illustrates26

how values of individual CTRW parameters may not map one-to-one onto underlying27

physics. We recommend reporting complete model descriptions, discuss how the simplified28

approach assists in this and other theoretical considerations.29

1 Introduction30

In a recent paper (Hansen, 2020), we proposed an interpretation of some of the terms31

of the continuous-time random walk (CTRW) generalized master equation (GME), which32

allow its 1D form to be written in the following simplified way:33

∂c(x, t)

∂t
=

∫ t

0

M(t− t′)

(
−v̄ ∂c(x, t

′)

∂x
+ αv̄

∂2c(x, t′)

∂x2

)
dt′. (1)

Here, c [ML−3] is concentration, M(t) [T−1] is a temporal memory function, v̄ [LT−1]34

is mean groundwater velocity, and α [L] is a standard Fickian dispersivity, generated by35

multiplication of v̄ by some fixed, medium-specific dispersivity, α [L]; x [L] is spatial coordinate,36

and t [T] is time. On this approach, M(t) is defined in the Laplace domain according37

the formula:38

M̃(s) ≡ sψ̃(s)

1− ψ̃(s)
, (2)

where superscript tilde denotes the Laplace transform, s [T−1] is the Laplace variable,39

and ψ(t) [T−1] is the probability distribution function for a subordination mapping representing40
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the total time taken for solute to complete a transition that would have taken unit time41

under purely advective-dispersive physics as described by v̄ and α.42

This approach simplifies and physically constrains the CTRW GME in a number43

of ways and also provides an interpretation to its parameters. By contrast, in typical usage:44

(a) the v̄ and αv̄ are replaced with arbitrary fitting parameters vψ and Dψ that do not45

generally have any specific relation to groundwater velocity, (b) the definition of M typically46

contains an arbitrary “time constant” fitting parameter with no specific interpretation,47

τ [T], in its numerator, and (c) the transition time distribution, ψ(t) has no particular48

definition; it is an additional fitting “parameter”. For clarity, the standard CTRW GME49

and transformed memory function corresponding to (1-2) are50

∂c(x, t)

∂t
=

∫ t

0

M(t− t′)

(
vψ
∂c(x, t′)

∂x
+Dψ

∂2c(x, t′)

∂x2

)
dt′, (3)

51

M̃(s) ≡ sτψ̃(s)

1− ψ̃(s)
. (4)

Implicitly τ is set to unity in the simplified approach, so the units remain consistent. The52

simplified approach is based on two ideas which are outlined in more detail in Hansen53

(2020):54

1. It is possible to select the time constant τ so that vψ and Dψ are equal to their55

Fickian counterparts.56

2. The memory function (4) is invariant under the simultaneous transformations τ →57

1, ψ̃(s) → [ψ̃(s)]1/τ .58

Two key subsurface transport processes that need to be captured by ψ(t) are (the59

non-Fickian portion of) local-scale heterogeneous advection (HA), and mobile-immobile60

mass transfer (MIMT). Elsewhere (Hansen and Berkowitz, 2020b,0), in describing the61

CTRW-on-a-streamline approach, have argued that both advective heterogeneity and62

MIMT (including behavior described by multi-rate mass transfer, first-order non-equilibrium63

mass transfer, and retardation) can be adequately captured by a subordination approach.64

We do not believe it has been remarked upon, but a joint implication of the subordination65

mapping interpretation of ψ(t) alongside the CTRW-on-a-streamline arguments is that66

ψ(t) should be invariant to mean groundwater velocity under many scenarios. For MIMT,67

so long as immobilization probability is related to time-in-system rather than distance68

traveled and the immobilization time pdf is determined by conditions in the immobile69
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domain alone, it follows that the distribution of delay times due to the MIMT physics70

is independent of the mean flow velocity in the mobile domain. For HA, it follows from71

linearity of the groundwater flow equation that velocity fluctuations will scale with fluctuations72

in the local mean groundwater velocity. We may arbitrarily define a transition to have73

occurred when solute has traveled d(v̄) [L] units along its streamline, where d(v̄) is selected74

as the distance that advection covers in unit time at mean velocity. Because all the velocities75

scale with v̄, ψ(t), defined as the probability distribution for the actual time taken to complete76

a transition of length d, is unchanged with changes in v̄.77

The argument above generates testable predictions. If tracer experiments are to78

be performed across a tank or column under multiple flow rates but otherwise identical79

conditions, we would expect all the breakthrough curves obtained at the various flow rates80

to be explained by a single ψ(t), α, and the actual v̄ values from the various experiments.81

Consequently, in this paper we re-analyze results from two experiments that were conducted82

repeatedly at multiple flow rates: one featuring HA in sand, and one featuring MIMT83

in the form of matrix diffusion.84

For HA, few existing bench-scale data sets were available. A few experiments considered85

breakthrough at multiple distances in the same apparatus (Silliman and Simpson, 1987;86

Huang et al., 1995). However, to our knowledge, Levy and Berkowitz (2003) present the87

only data on breakthrough curves obtained at multiple flow rates in the same statistically88

stationary, heterogeneous flow cell. We used this experimental data set for our analyses.89

For MIMT, a greater variety of published data was available. Both van Genuchten et al.90

(1977) and Gaber et al. (1995) present data for non-equilibrium mass transfer experiments91

performed at multiple flow rates in the same apparatus. These results were analyzed in92

the CTRW context by Li and Ren (2009), though the calibrations presented featured wide93

variation in CTRW parameters between runs at different flow rates and between, e.g.,94

v̄ and vψ. While it would be worthwhile to re-analyze this data, we obtained data from95

the more recent column experiments of Knorr et al. (2016), which had never been analyzed96

in the context of CTRW, and which featured a complex dual-domain geometry that appeared97

to represent a more difficult fitting challenge. We chose to calibrate against this data set98

for the MIMT demonstration.99

We corroborate the simplified approach and our claims about velocity invariance100

of ψ(t) by successfully calibrating all the breakthrough curves simultaneously with identical101
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parameters for both data sets. We also calibrate very different CTRW parameters than102

presented by Berkowitz and Scher (2009) for the same system, illustrating that it is not103

generally possible to interpret particular parameters in terms of system features, independent104

of a complete model description. Rather, in line with the temporal subordination philosophy105

underlying the simplified approach, the complete CTRW GME parameterization must106

be viewed as a whole.107

2 Heterogeneous advection flow cell experiment108

2.1 Experimental setup109

The data set was obtained from a suite of experiments previously discussed at length110

by Levy and Berkowitz (2003). We will only briefly recapitulate the relevant factors in111

the experimental setup, as full details may be found in the original paper. Tracer experiments112

were performed in a flow cell with length L = 2.13 m, which was manually packed with113

“blocks”, each of which consisted of one of three different sands with different hydraulic114

conductivities. The blocks were arranged in the flow cell in such a way that a heterogeneous115

but spatially stationary conductivity field with an exponential correlation structure was116

created. Levy and Berkowitz reported flow rates for the three experiments in this cell117

as 175 ml min-1, 74 ml min-1, and 11 ml min-1. Bulk cross-sectional area of the flow cell118

was reported as 650 cm2, allowing Darcy flux q to be computed. Actual system porosity,119

n, was not measured or estimated, so actual average fluid velocity, v̄, is not exactly known.120

2.2 Numerical approach121

Our goal was to numerically re-analyze these experimental results and explain all122

the breakthrough curves simultaneously under tight constraints: identical ψ(t) and α,123

and exactly enforcing vψ = v̄ = q/n, for some fixed n, and Dψ ≡ D = αv̄.124

Fitting was performed by numerical Laplace transform inversion. The analytic solution125

of the GME (1) in the Laplace domain for a 1D semi-infinite domain has the form (Burnell126

et al., 2017):127

˜̂c(x, s) =
1

s
exp

{
x

2D

[
v̄ −

√
v̄2 +

4Ds

M̃(s)

]}
(5)
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where M̃(s) is as defined in (2). Based on past success, we assumed that ψ(t) had truncated128

power law (TPL) form. The Laplace transform of the TPL is (Dentz et al., 2004):129

ψ̃(s) = (1 + t2s)
β
exp(t1s)

Γ(−β, t1s+ t1t
−1
2 )

Γ(−β, t1t−1
2 )

. (6)

Note that whilst we assume that τ is unity, we do not assume that this is equal to the130

t1 parameter of the TPL, in contrast with some earlier literature. In our approach, ψ(t)131

is understood as a temporal subordination mapping corresponding to unit time, and all132

its parameters may be freely specified.133

For a given vector of parameters, we determined the estimate ĉ(x = L, t;α, β, t1, t2, v̄)134

by numerical inversion of the Laplace transform (5) using the Fixed Talbot algorithm135

(Abate and Valkó, 2004) at the locations where breakthrough concentration measurements136

had been made. To optimize the fitting parameters, α, β, t1, t2, and n, we defined an137

equally-weighted penalty function based on the squared distance of all measured breakthrough138

curve data from ĉ(x = L, ti;α, β, t2, v̄), where ti represents the i-th measurement time139

in the corresponding breakthrough curve. We used the Nelder-Mead unconstrained optimization140

algorithm (Nelder and Mead, 1965), as implemented in Numpy/Scipy (Oliphant, 2007),141

to iteratively update the five fitting parameters to improve the model fit relative to the142

data. The fitting parameters were represented internally as squares of dummy variables143

to enforce non-negativity.144

2.3 Results and discussion145

The optimization algorithm found a best fit with the parameters α = 5.587×10−2
146

m, t1 = 1.154 min, t2 = 4.011 min, and β = 0.556, inferring porosity n = 0.245. In147

Figure 1, the experimental data are shown, along with the best fit ĉ(L, t). It is apparent148

from the figure that the fitted ĉ yields a qualitatively good fit across the all breakthrough149

curves. Note that despite the TPL form, the modest t2 (representing the onset time of150

exponential tempering) means that this distribution is close to exponential. This accounts151

for the relative similarity of the empirical breakthrough curves ADE breakthrough curves,152

as demonstrated by Levy and Berkowitz, and expected for advection through ten or more153

correlation lengths of moderately heterogeneous media (see Hansen et al., 2018, and references154

within). When ψ(t) = e−t, it follows from (2) that M̃(s) = 1, or M(t) = δ(t), and155

the CTRW GME reduces to the ADE.156
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Figure 1. Simultaneous fit of three breakthrough curves collected in the flow cell described

by Levy and Berkowitz (2003), at three different flow rates. Empirical breakthrough data points

are indicated by hollow squares, and corresponding predicted breakthrough curves are shown as

solid lines; both are colour-coded according to the corresponding flow rate. All three fitted curves

shared identical α = 5.587× 10−2 m, fitted porosity n = 0.245, and TPL-distributed ψ(t) (6) with

parameters t1 = 1.154 min, t2 = 4.011 min, β = 0.556.
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Berkowitz and Scher (2009) previously analyzed the same data and were able to157

obtain excellent fits to the breakthrough curves with separate TPL ψ(t) for each flow158

rate that nevertheless shared two of their three parameters (t1 was allowed to vary). We159

recomputed the vψ values reported in the original paper to three significant digits, enforcing160

vψ ∝ Q and Dψ ∝ vψ, each with single constants of proportionality for all three flow161

rates (a stipulation mentioned explicitly by the authors) by adjusting the constants of162

proportionality so as to generate excellent fits that closely match the published fits. We163

use these recomputed vψ values alongside the other exact, published numbers in all analyses.164

The Berkowitz and Scher approach differs from ours in two major ways:165

1. The earlier paper considered a “transition” to correspond to a fixed, pore-sized166

motion, with τ representing a characteristic time for such a motion (which naturally167

varies inversely with velocity). The t1 parameter in defining the TPL ψ(t) was also168

understood to be identified with this quantity, so t1 = τ , and varied with velocity169

also. By contrast, on what we dub the simplified approach, τ is understood as unit170

time, the “transition” representing notional motion occurring in unit time under171

macroscopic advective-dispersive conditions, and ψ(t) as a mapping to the actual172

time taken to complete that motion with all physics operative. this temporal mapping173

perspective supports the velocity-invariance of ψ(t), as well as the independence174

of all its parameters from τ (which could be set arbitrarily, but is always set to175

unity for convenience).176

2. We take vψ as identified with an actual groundwater flow velocity, and α as a fixed,177

velocity independent scattering rate that is a medium property. This was explicitly178

not the conception of Berkowitz and Scher, who estimated a systematically different179

mean flow velocity based on an alternative measure of porosity. That said, actual180

mean flow velocity cannot be directly measured, only estimated from a given flow181

rate and porosity. and the vψ used by Berkowitz and Scher could also be interpreted182

as a true flow velocity by use of a plausible value of porosity.183

It is enlightening to compare our fits with the strikingly different ones presented184

by Berkowitz and Scher; see Table 1 for a comparison of fitted parameters. Notably, the185

distinct TPL ψ(t) functions obtained for each value of Q obtained by Berkowitz and Scher186

for pore-scale transitions feature a lengthy power law regime and a power law exponent187
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Figure 2. Comparison of ensembles of fitted breakthrough curves for all three flow rates,

shown using different parameterization approaches. Curves are shown as complementary

CDFs on log-log axes to highlight the tail regions. The three column groups in Table 1 are

each represented, as well as a fourth approach that rescales the Berkowitz and Scher results to

correspond with the velocity in the simplified calibration and τ = 1.

β = 1.6, whereas our unified TPL fit features a much smaller value β = 0.556 and a188

negligible power law regime.189

The breakthrough curves obtained with the velocity-dependent parameterizations190

of Berkowitz and Scher are visually indistinguishable from curves obtained with the simplified191

approach shown in Figure 1. The theoretical non-uniqueness of CTRW parameterization192

has previously been remarked upon (Hansen and Berkowitz, 2014). However, to our knowledge193

this is the first instance of near-identical calibrations being produced with completely194

distinct ψ(t) functions. It may be initially surprising that the earlier calibrations featured195
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lengthy power law regions in their ψ(t), whereas the new calibration does not. However,196

we note that because we make the identification τ = 1, the implied distance covered197

during a transition is much larger (on the order of 10 cm at the fastest flow rate), compared198

with that of Berkowitz and Scher, who anticipated transitions on the order of a single199

pore. Consequently, much self-averaging of pore-scale transitions occur over a single notional200

transition on the simplified approach with τ = 1. Prior to the self-averaging, CTRW201

parameters such as β remain meaningful as to the distribution of transition times across202

their implicit support scale.203

In Figure 2 we compare the tail behavior of (i) our simplified approach parameterization,204

(ii) the parameterizations presented by Berkowitz and Scher, (iii) those same parameterizations205

modified to use the same vψ’s as we did, (iv) further modified to correspond to unit τ .206

The latter three are identical, as the theory in Hansen (2020) predicts, and all four are207

essentially the same even within the tail region of the measurements. We also compare208

the ψ(t) distributions for (i), (iii) and (iv) in Figure 3. Strikingly, we see all the distributions209

in (ii) map onto one-another under the transformations (iv), which follows from their being210

physically meaningful for their various flow rates and now sharing the same vψ, α, and211

τ . However, the ψ(t) distribution predicted by (i) remains totally distinct, despite only212

varying in its underlying α from the transformed distributions (iv).213

An important take-away from this analysis is that efforts to directly connect single214

parameters such as β to fundamental transport characteristics are too simple: it is crucial215

to consider the complete mapping τ → ψ(t) and also the underlying ADE model. As216

we have seen, even small changes in the chosen α with otherwise identical vψ and τ cause217

drastic quantitative and qualitative changes to the ψ(t) distribution needed to accurately218

describe observed physics.219

3 Mobile-immobile column experiment220

3.1 Experimental setup221

Source data was obtained for a set of MIMT column experiments detailed in Knorr222

et al.; we refer readers to the original paper for more details regarding experimental setup.223

In brief, tracer experiments were performed in a cylindrical column whose core (mobile224

domain) was filled with large class beads, surrounded by an annular immobile region packed225

with clayey silt. The core had a radius of 1.6 cm, and the outer annulus filled the region226

whose radial distance from the axis was between 1.6 and 4.4 cm from the axis of the column,227
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Figure 3. Comparison of transition functions, ψ(t). Solid lines represent curves defined in

the Simplified calibration (all share the same ψ(t)) and B+S (2009) column groups in Table

1. Dotted curves represent the ψ(t) of B+S, interpreted according to the simplified approach;

modified to share the same velocities as the simplified calibration, and also transformed in

Laplace space to share the same unit value of τ .
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Table 1. Comparison of fitted parameters explaining the breakthrough curves in the flow cell,

as presented in this work (Simplified calibration meta-column), in Berkowitz and Scher, except

with corrected vψ (B+S (2009) meta-column), and Berkowitz and Scher, rescaled to match the

vψ employed in the simplified calibration (B+S (2009), S.C. vψ meta-column).

Simplified calibration B+S (2009), vψ = S.C. v̄ B+S (2009)1

Q [ml min−1] 11 74 175 11 74 175 11 74 175

v̄2 [m min−1] 6.91e−4 4.65e−3 1.10e−2 6.91e−4 4.65e−3 1.10e−2 7.91e−4 5.31e−3 1.26e−2

n [−] 0.245 0.245 0.214

α [m] 5.59e−2 5.05e−2 5.05e−23

τ [min] 1 1.81e−2 2.87e−2 1.44e−2 1.58e−1 2.51e−2 1.26e−2

t1 [min] 1.155 1.58e−1 2.51e−2 1.26e−2 1.58e−1 2.51e−2 1.26e−2

t2 [min] 4.011 1000 1000

β [−] 0.556 1.6 1.6

1 Corrected velocities shown. 2 Equivalently, vψ .
3 From interpreting vψ as actual mean flow velocity, v̄.

where it abutted a layer of silicon glue that attached it to the inner wall of the impermeable228

column. The column itself had internal length, L of 50 cm, with tracer-enriched fluid pumped229

at constant rates into the mobile domain at one end of the column and collected at the230

other. By measuring tracer concentrations at the column exit, breakthrough curves were231

obtained for a number of chemical species, each tested at volumetric flow rates of 104.4,232

21, and 7.2 ml h−1. The authors estimated the porosity, n, of the mobile domain as approximately233

n = 0.44±1 based on geometrical considerations and water displacement measurements.234

We noted that the raw breakthrough data published by Knorr et al., exhibited an235

implied arrival-time PDF whose integral over the real line was less then one for some flow236

rates, which affected the cumulative recovery time series we employed for calibration.237

We discuss how we rescaled the data in Appendix A. All analysis was performed using238

the rescaled data.239

The models assumed a well-mixed mobile zone that can be treated as a 1D feature.240

Based on the calibrated dispersivities presented by the authors of the experimental study,241

we calculated that molecular diffusion was necessary to augment transverse dispersion242

in mixing the mobile zone of the column. Consequently, we selected the experimental243
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time series employing a deuterium tracer, as this species featured the largest Fickian diffusivity244

of those studied.245

3.2 Numerical approach246

Analysis was again performed by making use of the 1D analytic solution (5) for the247

breakthrough curve at the outlet of the column. We employed the assumption that the248

distribution of time between immobilization events (or until first immobilization) was249

exponentially distributed with parameter λ. In Appendix B we derive the Laplace transform250

of the sojourn time pdf for a single immobilization event as:251

ϕ̃(s) ≡ 1−
√
2µs

s+ µ
, (7)

with µ [T−1] is a free parameter proportional to the Fickian diffusion constant in the immobile252

zone. The CTRW transition time distribution was defined according to the relation (Margolin253

et al., 2003; Boano et al., 2007)254

ψ̃(s) = ψ̃0(s+ λ− λϕ̃(s)), (8)

where ψ0(t) is the transition time distribution in the absence of MIMT. In our case, MIMT255

is assumed to be the only non-Fickian process, so256

ψ̃0(s) =
1

1 + s
. (9)

as this choice causes (2) to become unity, and (1) to thus degenerate into the ADE.257

We used a similar numerical approach and algorithm to that detailed above for the258

flow cell experiment, with a duly modified ψ̃(s). In accordance with Knorr et al., we manually259

set n = 0.43 and performed Nelder-Mead automated fitting of all empirical breakthrough260

curves simultaneously, using the published flow rates for each experiment, to identify α,261

λ, and d shared by all experiments.262

For comparison, we evaluated the analytical solution of Maloszewski and Zuber (1990),263

which was used by Knorr et al. to explain their experimental data. Their solution for264

the CDF corresponding to the CTRW model (5) may be expressed as265

ĉMZ(x, t) =
a

2π

√
x2

αv̄

∫ t

0

∫ s

0

exp

[
− (x− uv̄)

4αuv̄
− a2u2

s− u

]
1

u(s− u)3
du ds, (10)

–13–



manuscript submitted to Water Resources Research

Table 2. Comparison of fitted parameters for the ensemble of curves from the MIMT column

experiment. The parameters identified in this work are listed in the Simplified calibration

meta-column, and those identified by Knorr et al. (2016) are lised in the corresponding meta-

column. Fitted parameters from that paper have been refactored in terms of n and α for easier

comparison. Note that the reported n values are explicitly identified as effective mobile porosities

in Knorr et al..

Simplified calibration Knorr et al. (2016)

Q [cm3 h−1] 7.2 21 104.4 7.2 21 104.4

vψ [cm h−1] 2.08 6.08 30.2 2.38 6.24 29.17

n [−] 0.43 0.376 0.418 0.445

α [cm] 1.30 7.6e−2 0.106 0.303

λ [h−1] 4.11 -

µ [h−1] 1.03e3 -

a [h−1/2] - 0.105 0.100 9.48e−2

where a [T−1/2] is a free parameter that scales with the square root of the dispersivity266

in the matrix. As this solution is defined in terms of a double-integral with an integrand267

that varies over many orders of magnitude, we employed the mpmath arbitrary-precision268

Python library (Johansson et al., 2021) to perform the numerical quadrature.269

3.3 Results and discussion270

The optimized parameters are listed in Table 2, alongside the parameters determined271

by Knorr et al.. Predicted breakthrough curves for the ensemble of flow rates as compared272

with the (corrected) data is seen in Figure 4. The comparable fidelity of the two sets of273

curves is apparent, despite the fact that the earlier authors allowed substantial variation274

in what should be flow-rate-independent parameters to optimize their fits, and we did275

not. We observe that our model contains one more degree of freedom than the Maloszewski276

and Zuber model, in that it contains a distinct capture rate parameter. This is opposed277

to assuming the mobile domain is well-mixed, with net fluxes into the immobile zone controlled278

by concentration gradients in the immobile zone alone.279
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Figure 4. Simultaneous fit of three breakthrough curves collected in the column described by

Knorr et al. (2016), at three different flow rates. Empirical breakthrough data (as adjusted per

Appendix Appendix A) is indicated by empty squares, the original fits using (10) are indicated

by dashed lines, and the joint calibration performed here is indicated by solid lines.
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4 Summary discussion280

4.1 The simplified approach is empirically supported281

We re-analyzed two sets of bench-scale transport experiment data, one exhibiting282

HA and the other exhibiting MIMT, using the simplified approach to CTRW calibration283

that we previously derived. On this approach, the velocity-like and dispersion-like parameters284

in the CTRW GME are set equal to their Fickian counterparts, and the time constant285

is set to unity.286

These results provide empirical support for the claims that mean groundwater velocity287

and a velocity-independent classical dispersivity suitable to domain scale can be employed288

directly in the CTRW GME, rather than the velocity-like and dispersion-like parameters289

vψ and Dψ. It also supports the notion that ψ(t) can be considered as a temporal mapping290

(subordination mapping) encoding the transition time alteration by physical processes291

not captured by mean advection (v̄) and Fickian dispersion (D), namely MIMT and small-292

scale advective heterogeneity. The results simultaneously support the qualitative arguments293

underpinning the CTRW-on-a-streamline numerical approach which support the usage294

of a velocity-invariant ψ(t) for HA and MIMT.295

4.2 CTRW parameters cannot generally be interpreted in isolation296

When interpreting the heterogeneous tank experiment, we parameterized a CTRW297

model with a TPL ψ(t) featuring parameters much different from the previous calibration298

of Berkowitz and Scher. Most notably, both calibrations featured shared values of β and299

t2 for all flow rates, but the calibrated values differ greatly between the two works. Li300

and Ren (2009) write ”[t]he function ψ(t) is the “heart” of the CTRW formation, dominating301

the principal characteristics of solute plume migration patterns....[t]he key factor is the302

interplay between β and the cutoff time t2, which has a dramatic effect on the entire shape303

of a migrating solute plume.” The key point is the interplay of parameters in the model.304

Stronger statements implying that individual parameters may be interpreted in isolation305

are also found in the literature. For example, Shahmohammadi-Kalalagh and Beyrami306

(2015) write ”the single parameter β quantifies all of the mechanisms that control the307

transport behavior”. In this spirit, some authors only report the value of β when performing308

CTRW fits using TPL-distributed ψ(t), but not t1 or t2. (e.g., Xiong et al., 2006; Shahmohammadi-309

Kalalagh and Beyrami, 2015; Frank et al., 2020; Hu et al., 2020), or report all TPL parameters310
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alongside vψ and Dψ but do not report τ (e.g. Mettier et al., 2006; Heidari and Li, 2014;311

Jiménez-Hornero et al., 2005).312

Our HA calibration above showed that the same set of experimentally-derived breakthrough313

curves can be parameterized with very different shared β and t2−t1, both generating314

excellent, essentially indistinguishable breakthrough curve fits. This provides a cautionary315

counterexample to relating single CTRW parameters to underlying physics in isolation:316

one should report the complete transport description. This observation naturally extends317

to any mathematical formulation of ψ(t), and to other superficially different approaches318

(e.g., multi-rate mass-transfer and fractional derivative models, see Berkowitz et al. (2006))319

that are special cases of the CTRW.320

The need for this particular parameter set is tied to the use of (4): where one is321

working with explicit advective transitions, sometimes termed a time-domain random322

walk (Cvetkovic et al., 2014; Hansen and Berkowitz, 2014; Cvetkovic et al., 2016; Hansen323

and Berkowitz, 2020b), implicit advective transitions across voxels (Bijeljic et al., 2011;324

Edery et al., 2014), or where calibration uses a first-passage distribution based on a pure325

power law ψ(t) (Margolin and Berkowitz, 2000; Kosakowski et al., 2001; Bromly and Hinz,326

2004), fewer parameters may be needed for a complete model description. In all cases,327

however, a complete model description must be reported to ensure meaningful, repeatable328

results, regardless of the model formulation.329

As CTRW has demonstrated predictive validity (Fiori et al., 2015), it is natural330

to relate its parameters to underlying physics by regression and other approaches. Recent331

examples include Edery (2021), which explored the relationship between the difference332

t2−t1 and conductivity field heterogeneity, and Frank et al. (2020) developed a regression333

relationship between β for a fracture transport and the Hurst exponent representing fracture334

roughness. In such efforts, we stress the need for a complete transport heterogeneity description335

when seeking physical interpretations; individual parameter values are not always uniquely336

constrained by physics. Fortunately, this additional complexity may be reduced without337

loss of generality on the simplified approach, as (α,ψ(t)) represents a complete transport338

heterogeneity description, it is not necessary to include (vψ, Dψ, τ) in an explanatory model.339
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Jiménez-Hornero, F. J.; J. V. Giráldez; A. Laguna; Y. Pachepsky, 2005. Continuous421

time random walks for analyzing the transport of a passive tracer in a single422

fissure. Water Resources Research, 41(4), 1. 10.1029/2004WR003852.423

Johansson, F.; et al., 2021. mpmath: a Python library for arbitrary-precision424

floating-point arithmetic (version 1.2.0). http://mpmath.org/.425
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Appendix A Correction of data in Knorr et al. (2016)468

In Knorr et al. (2016), the authors present exit-time CDFs intended to correspond469

to (10), which have been numerically integrated from impulse response breakthrough curves470

that were measured. As reported, the impulse response curves should correspond to the471

function472

ζ(x, t) =
a

2πQ

√
x2

αv̄

∫ s

0

exp

[
− (x− uv̄)

4αuv̄
− a2u2

t− u

]
1

u(t− u)3
du, (A1)

and Qζ(L, t) should be the arrival time PDF at the exit of the column. As the integral473

of any probability distribution is 1, multiplying the reported impulse response data by474

Q and numerically integrating should yield 1, also. However, for the two lowest flow rates,475

this was not the case. Multiplying Qζ(L, t) (as populated with the exact parameters reported476

by Knorr et al.) by the respective scaling factors 1, .82, and .625 for the flow rates 104.4,477

21, and 7.2 ml h−1, near-exactly reproduces the fitted impulse response curves shown478

in the paper. (See Figure A1 for illustration.) We verified that the CDFs reported were479

also generated by integration of the data shown (as pre-multiplied by Q), so the reported480

CDF data are off by the same factor and some total recovery rates were larger than previously481

shown.482

Thus, the raw deuterium CDFs presented need to be multiplied respectively by 1,483

1/.82, and 1/.625 to yield actual fraction recovered. We used these altered CDFs for the484

fitting work. We note that that the parameters in Knorr et al. actually also match the485

correctly re-scaled data when inserted into (10).486

Appendix B Derivation of sojourn time PDF487

We are interested in the time taken for a particle entering the immobile zone to complete488

its sojourn and exit. We map radial diffusion in the matrix onto a simple 1D lattice continuous-489

time random walk, and ask how long it takes for a particle introduced at node 0 at time490

0 to return to node zero. We imagine that the lattice nodes are non-uniformly spaced491

(growing denser with greater radial distance), so that the transition statistics are the same492

for every node. Employing the observation of Knorr et al. that solute never reached the493

outside of the column, making the immobile domain an essentially infinite 1D diffusive494

sink, we work on a simple, infinite 1D lattice.495

We define R(x, t) as the ensemble average arrival rate of random walkers at node496

x time t, and ψ(t) as the (location-independent) waiting time PDF for the time between497
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Figure A1. Data points presented in Knorr et al. (2016), along with raw evaluation of (A1)

with parameters presented by Knorr et al., and rescaled (A1) to best match the data points (and

the curves shown by Knorr et al.).
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two subsequent arrivals. Then, the ensemble average number of walkers, P (x, t), at any498

given node, x, at time t may be expressed499

P (x, t) =

∫ t

0

R(x, τ)Ψ(t− τ)dτ, (B1)

where500

Ψ(t) ≡ 1−
∫ t

0

ψ(τ)dτ. (B2)

We consider a 1D system in which particles are introduced at x = 0 at t = 0 (this501

is the counterpart to immobilization under MIMT), and are interested in the next time502

the walker arrives at x = 0 (which we take to represent re-mobilization). We use the503

notation Ri to represent the arrival rate of only those particles that are arriving for the504

i-th time. Then we may write505

R1(0, t) = δ(t), (B3)

and define the sojourn time PDF506

ϕ(t) ≡ R2(0, t). (B4)

From recursive arguments, we may also conclude that:507

R(x, t) = R1(x, t) +

∫ t

0

R2(x, τ)R(0, t− τ)dτ, (B5)

and thus specifically that508

R(0, t) = δ(t) +

∫ t

0

ϕ(t)R(0, t− τ)dτ. (B6)

Taking the Laplace transform and rearranging, yields509

R̃(0, s) =
1

1− ϕ̃(s)
. (B7)

Transforming (B1) and applying it to the above equation yields510

ϕ̃(s) = 1− Ψ̃(s)

P̃ (0, s)
. (B8)

In order to determine the transform for ϕ, we must determine the transforms on the RHS511

of (B8), which we may do from the well-known property that the variance σ2
x of a plume512

undergoing Fickian diffusion increases according to513

dσ2
x

dt
= 2D, (B9)
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where D here is not to be confused with Dψ. Fickian diffusion from a point source at514

x = 0 is known to be described by a Gaussian distribution. At x = 0 the exponential515

portion of the distribution becomes unity and, mapping to a discrete-site approach with516

spacing ∆x, it follows that517

P (0, t) =
∆x√
4πDt

=
1

2πµt
, (B10)

where we define µ ≡ 2D/∆2
x. Taking the Laplace transform (Roberts and Kaufman,518

1966), it follows that519

P̃ (0, s) =
1√
2µs

. (B11)

We can similarly argue from (B9) that µ dt is the constant probability of completing a520

diffusive transition to a neighboring site in a short increment of time dt, implying that521

ψ(t) = µe−µt, and522

Ψ̃(s) =
1

s+ µ
. (B12)

Inserting (B11) and (B12) into (B8) yields our final result (7), repeated here for clarity523

of presentation:524

ϕ̃(s) = 1−
√
2µs

s+ µ
.525

By numerical inversion, we can see that the distribution defined by ϕ(t) is closely526

approximated by Pareto(µ−1, 12 ), where the first argument is the scale parameter, and527

1
2 is the shape parameter (power law exponent). This agrees with the with Haggerty et al.528

(2000) who reported the return time for diffusion in an infinite slab as power-law distributed529

(with exponent β = 0.5). Examples are shown in Figure B1.530
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Figure B1. Graphs of ϕ(t) obtained from numerical inversion of (7) and corresponding Pareto

approximations for two values of µ.
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