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BACKGROUND
The flow of ice is governed in large part by how ice deforms under certain stress conditions. Glen's Flow Law assumes a
power law to describe the relationship between stress and strain-rate:

where  is effective strain rate,  is effective stress, A is the flow-law prefactor, and n is the flow law exponent.

While laboratory conditions have estimated nominal values for the rheological parameters A and n, there is still
considerable uncertainty in their values in natural ice. Recent work has leveraged continent-scale data sets to estimate n
on Antarctic ice shelves flowing in a purely extensional stress regime.

Figure 1. (Left) Uniaxial laboratory experiments of stress vs. strain-rate for estimating n (Goldsby and Kohlstedt, 2001).
(Right) Estimated n and uncertainties using remote sensing data for Antarctic ice shelves in extensional stress regime
(Millstein et al., in review).
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PHYSICS-INFORMED ML
In this work, we extend the analysis of rheology parameter estimation from remote sensing data to more complex flow
regimes, i.e. 2D flow under the Shallow Shelf Approximation (SSA), by using physics-informed neural networks
(PINNs):

Figure 2. PINN architecture. First neural network (observation network) is tasked with reconstructing ice shelf velocity
and thickness data. Second network (rheology network) is tasked with predicting prefactor B. The loss function for
training combines a data misfit loss and a probabilistic loss for the posterior distribution p(B|h,u).

Thus, we use PINNs to assimilate large-scale remote sensing datasets while predicting a prefactor field (
for a given n) that optimally reconstructs observed data, consistent with the SSA momentum balance. While assimilation
of remote sensing data into 2D ice flow models is nothing new (using control methods), our primary goal is to efficiently
compute uncertainties associated with the estimated parameters for large datasets.

B = A−1/n
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VARIATIONAL INFERENCE AND UQ
In addition to predicting a spatial field for B, we want spatially-varying estimates of uncertainties for B. The canonical
way to quantify uncertainties of model parameters informed by observations is to use Bayes' Theorem, which for our
case takes the form:

where the terms are (from left-to-right) the posterior probability distribution, data likelihood, and prior distribution for B.
In order to avoid the high computational cost of Markov Chain Monte Carlo (MCMC) methods to sample from p(B|u,h),
we use variational inference (VI). In this work, we task the rheology network to predict local, approximating
multivariate normal distributions for B.

Figure 3. Samples from example approximating distributions used for variational inference, applied to Rosenbrock
probability contours. Left-most plot shows independent normal distributions (i.e., only mean and standard deviation).
Middle plot shows multivariate normal (used in this work). Right-most plot shows true random samples. Note that for
many glaciology inverse problems, posterior distributions are approximately Gaussian (Petra et al., 2014).

Application to 1D synthetic ice shelf

We simulate a 1D, laterally confined ice shelf and apply the PINN + VI methodology to approximate the posterior
distribution of B. For simulations, we prescribe a sinusoidal variation for B, assign n = 3, and add 5-10% correlated
noise to the simulation outputs.

Figure 4. True (black) and estimated B using MCMC (blue) and PINN+VI (orange). Shaded regions indicate 1-sigma
uncertainties. Both methods recover the true B profile while indicating larger uncertainties near the ice front.

p(B|u, h) ∼ p(u, h|B)p(B)
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Figure 5. Joint plot of select points within modeling domain showing samples from the posterior distribution of B (blue
= MCMC; orange = VI). Diagonal plots show KDE-smoothed 1D marginals (true values shown in red) while off-
diagonal plots show random samples. Overall, the PINN+VI approach accurately recovers distance-dependent
covariance structure.
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FILCHNER-RONNE ICE SHELF
We now apply our PINN+VI methodology to 2D ice flow over the Filcher-Ronne Ice Shelf (FRIS). We use velocity data
from NASA MEaSUREs ITS_LIVE and ice thickness measurements from BedMachine V2. For estimating p(B|u,h), we
assume n = 4.

Figure 5. Rheology prefactor estimation for FRIS. a) Location of FRIS. b) Observed flow speed. c) Observed effective
strain rates. d) Computed driving stress. e) Estimated mean B. f) Estimated 1-sigma uncertainty for B.

Briefly, areas with higher strain rates (e.g. shear margins) are associated with softer ice. Additionally, certain areas
in the shelf interior associated with higher driving stresses correspond to areas with softer ice. Uncertainties are largest
in non-deforming areas with stiff ice. Let's now examine some random realizations of the prefactor field (all consistent
with SSA momentum balance):
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Figure 6. Random realizations of B relative to the mean. Warmer colors correspond to softer ice while cooler colors
correspond to stiffer ice. For several samples, we can observe a trade-off between the soft and stiff ice (in the mean
field), but other shamples show bulk, shelf-wide variations in the rheology are also probable. These larger-scale
variations may potentially be constrained by independent measurements of ice temperature.
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FORECASTING IMPLICATIONS
By having realistic samples of rheology parameters, informed by data, we can quantify the sensitivity of future ice states
to the rheology. Let's revisit our 1D synthetic ice shelf and perturb the ice shelf with a decrease in buttressing stress at
the ice front: this perturbation will cause the ice to speed up. We repeat the experiment for 300 random samples from the
posterior distribution of B.

Figure 7. Results of prognostic simulations of ice shelf with decreased buttressing stress (2-year simulation). (Left)
Black lines correspond to final shelf velocities for different realizations of B while the red line shows the mean velocity.
(Right) Histogram of ice front flux at end of simulation.

From this simple test, we can see a large range in simulated velocity and flux values, even for a constant value of the
exponent, n = 3. Moreover, the distribution of flux values is skewed, showing a longer tail in higher-flux simulations,
which ultimately corresponds to a greater contribution to sea level rise. We expect the sensitivity of these prognostic
runs to the exponent n to be even larger, underscoring the need to properly constrain both the prefactor and exponent
from data.
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FUTURE WORK
Estimating realistic distributions for both the prefactor and exponent are critical for properly assessing the sensitivity of
ice flow to stress perturbations. We plan to leverage time-dependent strain rate fields and ice thicknesses to, under
certain assumptions, simultaneously recover both rheology parameters.

Figure 8. Momentum balance residuals for synthetic ice shelf for different values of n. For each n, we estimate a B
profile. Then, holding B fixed, we re-compute the momentum balance on a post-perturbation velocity field. The true
value of n is where the change in momentum balance residual is minimal.
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ABSTRACT
The flow and deformation of glacier ice in response to stress is often described using Glen's Flow Law, a
power-law relation that compactly represents ice rheology with a prefactor, A, and stress exponent, n. For
natural ice, these parameters (and the parameters subsumed within them) come with large uncertainties that
have not been robustly quantified with observations. Modern remote sensing technologies that collect data
with finer resolutions and broader coverage provide us with an opportunity to robustly calibrate these
rheological parameters for certain environments. Here, we utilize publicly available observations of ice sheet
surface velocity and elevation acquired with remote sensing platforms to calibrate the flow law parameters
over select Antarctic ice shelves. We build upon recent work that used remote sensing observations to
quantify the relationship between ice stress and strain rate in extensional flow to infer an exponent of n = 4.1
+/- 0.4 for Antarctica. Here, we model two-dimensional flow and perform parameter calibration by
constructing and training physics-informed neural networks (PINNs) to learn spatially-varying A and uniform
n for each ice shelf. We cast the parameter estimation problem as a neural network optimization problem
through minimization of a cost function that includes both data reconstruction errors and momentum balance
residuals derived from the 2D shallow-shelf approximation. Additionally, we formulate the networks to
predict spatially-varying uncertainties for A by using variational inference techniques, which approximate
Bayesian inference (traditionally a computationally-intensive procedure) as an additional optimization
objective. Finally, we demonstrate the use of time-dependent surface velocities, which are becoming
increasingly more available over the ice sheets, to independently constrain the stress exponent n, confirming
the appropriateness of n = 4 derived from previous work. Overall, calibration of these parameters with robust
uncertainties are critical for placing observational constraints on prognostic ice flow model parameters and to
improve our understanding of flow and fracture processes on ice shelves in Antarctica.

AGU - iPosterSessions.com (agu-vm-0) https://agu2021fallmeeting-agu.ipostersessions.com/Default.aspx?s=4A-...

11 of 12 12/5/21, 8:40 AM



REFERENCES
Goldsby DL, Kohlstedt DL. Superplastic deformation of ice: Experimental observations. Journal of
Geophysical Research: Solid Earth. 2001 Jun 10;106(B6):11017-30.

Millstein J, Minchew B, Pegler SS. Reassessing the flow law of glacier ice using satellite observations.

Petra N, Martin J, Stadler G, Ghattas O. A computational framework for infinite-dimensional Bayesian
inverse problems, Part II: Stochastic Newton MCMC with application to ice sheet flow inverse problems.
SIAM Journal on Scientific Computing. 2014;36(4):A1525-55.

Riel B, Minchew B, Bischoff T. Data-Driven Inference of the Mechanics of Slip Along Glacier Beds Using
Physics-Informed Neural Networks: Case Study on Rutford Ice Stream, Antarctica. Journal of Advances in
Modeling Earth Systems. 2021 Nov;13(11):e2021MS002621.

Cover image: Amanda Hiemstra

AGU - iPosterSessions.com (agu-vm-0) https://agu2021fallmeeting-agu.ipostersessions.com/Default.aspx?s=4A-...

12 of 12 12/5/21, 8:40 AM


