References
Aadnoy, B. S., & Bell, J. S. (1998), Classification of drill-induce fractures and their relationship to in-situ stress directions. The Log Analyst, 39 (06), 27–42. Bailleul, J., Chanier, F., Ferrière, J., Robin, C., Nicol, A., Mahieux, G., et al. (2013), Neogene evolution of lower trench-slope basins and wedge development in the central hikurangi subduction margin, new zealand. Tectonophysics, 591, 152–174.https://doi.org/10.1016/j.tecto.2013.01.003Barnes, P. M., Lamarche, G., Bialas, J., Henrys, S., Pecher, I., Netzeband, G. L., et al. (2010), Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi Subduction Margin, New Zealand. Marine Geology, 272(1–4), 26–48.https://doi.org/10.1016/j. margeo.2009.03.012Barnes, P. M., Lpinay, M. De, Collot, J. Y., Delteil, J., & Audru, J.-C. (1998), Strain partitioning in the transition area between oblique subduction and continental collision, Hikurangi margin.Tectonics, 17(4), 534–557. Barnes, P. M., Nicol, A., & Harrison, T. (2002), Late Cenozoic evolution and earthquake potential of an active listric thrust complex above the Hikurangi subduction zone, New Zealand. Bulletin of the Geological Society of America, 114(11), 1379–1405.https://doi.org/10.1130/0016-7606(2002)114<1379:LCEAEP>2.0.CO;2Barton, C. A., Hickman, S., Morin, R., Zoback, M. D., & Benoit, D. (1998), Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field. SPE/ISRM Rock Mechanics in Petroleum Engineering, Trondheim, Norway, July 1998, 47371, 315–322. Barton, C., & Moos, D. (2010), Geomechanical wellbore imaging: Key to managing the asset life cycle, in M. Po¨ppelreiter, C. Garcı´a- Carballido, and M. Kraaijveld, eds., Dipmeter and borehole image log technology: American Association of Petroleum Geologists Memoir,92, 1–32.https://doi.org/10.1306/13181279M922689Beanland, S., & Haines, J. (1998), The kinematics of active deformation in the North Island, New Zealand, determined from geological strain rates. New Zealand Journal of Geology and Geophysics,41(4), 311–323.https://doi.org/10.1080/00288306.1998.9514813Bell, J. S. (2003), Practical methods for estimating in situ stresses for borehole stability applications in sedimentary basins. Journal of Petroleum Science and Engineering, 38(3–4), 111–119.https://doi.org/10.1016/S0920-4105(03)00025-1Bell, J. S., & Gough, D. I. (1979), Northeast-southwest compressive stress in Alberta evidence from oil wells. Earth and Planetary Science Letters, 45(2), 475–482.https://doi.org/10.1016/0012-821X(79)90146-8Berryman, K., Marden, M., Palmer, A., & Litchfield, N. (2009), Holocene rupture of the Repongaere fault, Gisborne : Implications for Raukumara Peninsula deformation and impact on the Waipaoa Sedimentary System Holocene rupture of the Repongaere Fault, Gisborne : and impact on the Waipaoa Sedimentary System. New Zealand Journal of Geology and Geophysics, 52(4), 335–347.https://doi.org/10.1080/00288306.2009.9518462Brodsky, E. E., Saffer, D., Fulton, P., Chester, F., Conin, M., Huffman, K., et al. (2017), The postearthquake stress state on the Tohoku megathrust as constrained by reanalysis of the JFAST breakout data.Geophysical Research Letters, 44, 8294–8302.https://doi.org/10.1002/2017GL074027Brudy, M., & Zoback, M. D. (1999), Drilling‐induced tensile wall‐fractures: Implications for determination of in‐situ stress orientation and magnitude. International Journal of Rock Mechanics and Mining Sciences, 36, 191–215.https://doi.org/10.1016/S0148-9062(98)00182-XByrne, T. B., Lin, W., Tsutsumi, A., Yamamoto, Y., Lewis, J. C., Kanagawa, K., et al. (2009), Anelastic strain recovery reveals extension across SW Japan subduction zone Anelastic strain recovery reveals extension across SW Japan subduction zone. Geophysical Research Letters, 36(L23310).https://doi.org/10.1029/2009GL040749Chang, C., McNeill, L. C., Moore, J. C., Lin, W., Conin, M., & Yamada, Y. (2010), In situ stress state in the Nankai accretionary wedge estimated from borehole wall failures. Geochemistry, Geophysics, Geosystems, 11(12), 1–17.https://doi.org/10.1029/2010GC003261Chanier, F., Ferriere, J., & Angelier, J. (1999), Extensional deformation across an active margin, relations with subsidence, uplift, and rotations: The Hikurangi subduction, New Zealand. Tectonics,18(5), 862–876. Davatzes, N. C., & Hickman, S. H. (2010), Stress, fracture, and fluid-flow analysis using acoustic and electrical image logs in hot fractured granites of the Coso geothermal field, California, U.S.A. In M. Po¨ppelreiter, C. Garcı´a-Carballido, and M. Kraaijveld, eds., Dipmeter and borehole image log technology (259–293).https://doi.org/10.1306/13181288M923134Davy, B. W. (1992), The influence of subducting plate buoyancy on subduction of the Hikurangi-Chatham Plateau beneath the North Island, New Zealand. Geology and Geophysics of Continental Margins. Davy, B., Hoernle, K., & Werner, R. (2008), Hikurangi Plateau: crustal structure, rifted formation, and Gondwana subduction history.Geochemistry, Geophysics, Geosystems, 9(7). https://doi.org/10.1029/2007GC001855 DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. (1994), Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters, 21, 2191–2194. Dimitrova, L. L., Wallace, L. M., Haines, A. J., & Williams, C. A. (2016), High-resolution view of active tectonic deformation along the Hikurangi subduction margin and the Taupo Volcanic Zone, New Zealand.New Zealand Journal of Geology and Geophysics, 59(1), 43–57.https://doi.org/10.1080/00288306.2015.1127823Enever, J. R., Gale, W. & Fabjanczvk, M. (1999), A study of the variability of the horizontal stress field in a sedimentary basin.9th International Society for Rock Mechanics Congress, Paris, France, 1257-1260. Fellgett, M. W., Kingdon, A., Waters, C. N., Field, L., Shreeve, J., Dobbs, M., & Ougier-simonin, A. (2019), Lithological constraints on borehole wall failure ; a study on the Pennine coal measures of the United Kingdom. Frontiers in Earth Science, 7(163).https://doi.org/10.3389/feart.2019.00163FROGTECH. (2014), New Zealand Basement Composition and Heat Flow GIS Project. Report prepared for the Government of New Zealand, Department of Petroleum and Minerals. Gale, W. J., Enever, J. R., Blackwood, R. L. & McKay, J. (1984), An investigation of the effect of a fault /monocline structure on the in-situ stress field and mining conditions at Nattai Bulli Colliery NSW, Australia. CSIRO Australia, Division of Geomechanics. Geomechanics of Coal Mining Report No. 48. Ghisetti, F. C., Barnes, P. M., Ellis, S., Plaza-Faverola, A. A., & Barker, D. H. N. (2016), The last 2 Myr of accretionary wedge construction in the central Hikurangi margin (North Island, New Zealand): Insights from structural modeling. Geochemistry, Geophysics, Geosystems, 17(11), 4517–4533.  https://doi.org/10.1002/2016GC006341Griffin, A. G. (2019), Subsurface SHMAX determined from a borehole image log, onshore southern East Coast Basin, New Zealand.New Zealand Journal of Geology and Geophysics, 62(2), 273–290. https://doi.org/10.1080/00288306.2019.1570946 Griffin, A. G., Bland, K. J., Morgans, H. E. G., Strogen, D. P. (2021), A multifaceted study of the offshore Titihaoa-1 drillhole and a Neogene accretionary slope basin , Hikurangi subduction margin. New Zealand Journal of Geology and Geophysics. https://doi.org/10.1080/00288306.2021.1932527 Haines, A. J., & Wallace, L. M. (2020), New Zealand-wide geodetic strain rates using a physics-based approach. Geophysical Research Letters, 47(1).https://doi.org/10.1029/2019GL084606Hardebeck, J. L. (2004), Stress triggering and earthquake probability estimates. Journal of Geophysical Research, 109(B04310).http://dx.doi.org/10.1029/2003JB002437Hardebeck, J. L., & Okada, T. (2018), Temporal stress changes caused by earthquakes: a review. Journal of Geophysical Research : Solid Earth, 123, 1350–1365.https://doi.org/10.1002/2017JB014617Heidbach, O., Barth, A., Müller, B., Reinecker, J., Stephansson, O., Tingay, M., & Zang, A. (2016), WSM quality ranking scheme, database description and analysis guidelines for stress indicator. World Stress Map Technical Report 16-01. GFZ German Research Centre for Geosciences. http://doi.org/10.2312/wsm.2016.001 Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., et al. (2018), The world stress map database release 2016: crustal stress pattern across scales. Tectonophysics, 744, 484–98. https ://doi.org/10.1016/j.tecto .2018.07.007Huffman, K. A., & Saffer, D. M. (2016), In situ stress magnitudes at the toe of the Nankai Trough accretionary prism, offshore Shikoku Island, Japan. Journal of Geophysical Research : Solid Earth,121, 1202–1217. https://doi.org/10.1002/2015JB012415 Hull, A. (1987), A late holocene marine terrace on the kidnappers coast, north island , new zealand : some implications for shore platform development processes and uplift mechanism. Quaternary Research,28(2), 183–195. Illsley‐Kemp, F., Savage, M. K., Wilson, C. J. N., & Bannister, S. (2019), Mapping stress and structure from subducting slab to magmatic rift: crustal seismic anisotropy of the North Island, New Zealand.Geochemistry, Geophysics, Geosystems, 20.https://doi.org/10.1029/2019gc008529Jaeger, J., Cook, N., & Zimmerman, R. (2007), Fundamentals of rock mechanics. Wiley-Blackwell.https://doi.org/10.1017/CBO9780511735349King, R. C., Tingay, M. R. P., Hillis, R. R., Morley, C. K., & Clark, J. (2010), Present-day stress orientations and tectonic provinces of the NW Borneo collisional margin. Journal of Geophysical Research: Solid Earth, 115(10).https://doi.org/10.1029/2009JB006997Kingdon, A., Fellgett, M. W., & Williams, J. D. O. (2016), Use of borehole imaging to improve understanding of the in-situ stress orientation of Central and Northern England and its implications for unconventional hydrocarbon resources. Marine and Petroleum Geology, 73, 1–20.https://doi.org/10.1016/j.marpetgeo.2016.02.012Kulander, B. R., Dean, S. L., & Ward Jr., B. J. (1990), Fractured core analysis: Interpretation, logging, and use of natural and induced fractures in core. American Association of Petroleum Geologists, 8, Tulsa, Oklahoma.Laird, M. G., & Bradshaw, J. D. (2004), The break-up of a long-term relationship : the Cretaceous separation of New Zealand from Gondwana. Gondwana Research, 7(I), 273–286. Langridge, R. M., Ries, W. F., Litchfield, N. J., Villamor, P., Van Dissen, R. J., Barrell, D. J. A., et al. (2016), The New Zealand active faults database. New Zealand Journal of Geology and Geophysics,59 (1), 86–96.https://doi.org/10.1080/00288306.2015.1112818Lawrence, M. J. F. (2018), Structural and Sedimentological Interpretation of Well Data from the Wairoa Area, North Island, New Zealand. GNS Science Report 2018/28, 1–76.https://doi.org/10.21420/G23W81Li, Y., & Schmitt, D. R. (1998), Drilling-induced core fractures and in situ stress. Journal of Geophysical Research, 103(B3), 5225–5239. Lin, W., Byrne, T. B., Kinoshita, M., Mcneill, L. C., Chang, C., Lewis, J. C., Yamamoto, Y., et al. (2016), Distribution of stress state in the Nankai subduction zone, southwest Japan and a comparison with Japan Trench. Tectonophysics, 692, 120–130.https://doi.org/10.1016/j.tecto.2015.05.008Lin, W., Conin, M., Moore, J. C., Chester, F. M., Nakamura, Y., Mori, J. J., Anderson, L., et al. (2013), Stress State in the Largest Displacement Area of the 2011 Tohoku-Oki Earthquake. Science,339(687).https://doi.org/10.1126/science.1229379Lin, W., Doan, M. L., Moore, J. C., McNeill, L., Byrne, T. B., Ito, T., et al. (2010), Present-day principal horizontal stress orientations in the Kumano forearc basin of the southwest Japan subduction zone determined from IODP NanTroSEIZE drilling Site C0009. Geophysical Research Letters, 37(13), 1–6.https://doi.org/10.1029/2010GL043158Lin, W., Yeh, E., Ito, H., Hung, J., Hirono, T., Soh, W., et al. (2007), Current stress state and principal stress rotations in the vicinity of the Chelungpu fault induced by the 1999 Chi-Chi , Taiwan , earthquake.Geophysical Research Letters, 34(L16307). https://doi.org/10.1029/2007GL030515 Litchfield, N. J., Van Dissen, R., Sutherland, R., Barnes, P. M., Cox, S. C., Norris, R., et al. (2014), A model of active faulting in New Zealand. New Zealand Journal of Geology and Geophysics,57(1), 32–56.https://doi.org/10.1080/00288306.2013.854256Little, T. A., & Roberts, A. P. (1997), Distribution and mechanism of Neogene to present-day vertical axis rotations , Pacific-Australian plate boundary. Journal of Geophysical Research, 102, 20447–20468. Ma, K. F., Chan, C. H., & Stein, R. S. (2005), Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw = 7.6 Chi-Chi, Taiwan, earthquake. Journal of Geophysical Research, 110, B05S19.http://dx.doi.org/10.1029/2004JB003389Magee, M. E., & Zoback , M. D. (1993), Evidence for a weak interplate thrust fault along the northern Japan subduction zone and implications for the mechanics of thrust faulting and fluid expulsion,Geology, 21, 809–812. Malinverno, A., Saito, S., & Vannucchi, P. (2016), Horizontal principal stress orientation in the Costa Rica Seismogenesis Project (CRISP) transect from borehole breakouts. Geochemistry, Geophysics, Geosystems, 17(1), 65–77.https://doi.org/10.1002/2015GC006092McNamara, D. D., Behboudi, E., Wallace, L., Saffer, D. M., Cook, A. E., Fagereng, A., et al (2021), Variable in-situ stress orientations across the northern Hikurangi Subduction Margin. Geophysical Research Letters.https://doi.org/10.1029/2020GL091707Mochizuki, K., Sutherland, R., Henrys, S., Bassett, D., Van Avendonk, H., Arai, R., et al. (2019), Recycling of depleted continental mantle by subduction and plumes at the Hikurangi Plateau large igneous province, southwestern Pacific Ocean. Geology, 47(8), 795–798.https://doi.org/10.1130/G46250.1Moore, G. F., Boston, B. B., Sacks, A. F., & Saffer, D. M. (2013), Analysis of normal fault populations in the Kumano Forearc Basin , Nankai Trough , Japan : 1 . Multiple orientations and generations of faults from 3-D coherency mapping. Geochemistry, Geophysics, Geosystems, 114, 1989–2002. https://doi.org/10.1002/ggge.20119 Mountjoy, J. J., & Barnes, P. M. (2011), Active upper plate thrust faulting in regions of low plate interface coupling, repeated slow slip events, and coastal uplift: Example from the Hikurangi Margin, New Zealand. Geochemistry, 12(1), Q01005. https://doi. org/10.1029/2010gc003326 Nicol, A., & Beavan, J. (2003), Shortening of an overriding plate and its implications for slip on a subduction thrust, central Hikurangi Margin, New Zealand. Tectonics, 22(6),https://doi.org/10.1029/2003TC001521Nicol, A., Mazengarb, C., Chanier, F., Rait, G., Uruski, C., & Wallace, L. (2007), Tectonic evolution of the active Hikurangi subduction margin, New Zealand, since the Oligocene. Tectonics, 26(4), 1–24.https://doi.org/10.1029/2006TC002090Nicol, A., VanDissen, R., Vella, P., Alloway, B., & Melhuish, A. (2002), Growth of contractional structures during the last 10 m.y. at the southern end of the emergent Hikurangi forearc basin, New Zealand.New Zealand Journal of Geology and Geophysics, 45(3), 365–385.https://doi.org/10.1080/00288306.2002.9514979Pedley, K. L., Barnes, P. M., Pettinga, J. R., & Lewis, K. B. (2010), Seafloor structural geomorphic evolution of the accretionary frontal wedge in response to seamount subduction, Poverty Indentation, New Zealand. Marine Geology, 270(1–4), 119–138. https://doi.org/10.1016/j. margeo.2009.11.006 Peška, P., & Zoback, M. D. (1995), Compressive and tensile failure of inclined well bores and determination of in situ stress and rock strength. Journal of Geophysical Research, 100(B7), 12791–12811. Pettinga, J. R. (2004), Three ‐ stage massive gravitational collapse of the emergent imbricate frontal wedge , Hikurangi Subduction Zone , New Zealand. New Zealand Journal of Geology and Geophysics,47(3), 399–414.https://doi.org/10.1080/00288306.2004.9515066Rajabi, M., Tingay, M., & Heidbach, O. (2016a), The present-day stress field of New South Wales, Australia. Australian Journal of Earth Sciences, 63(1), 1–21.https://doi.org/10.1080/08120099.2016.1135821Rajabi, M., Tingay, M., & Heidbach, O. (2016b), The present-day state of tectonic stress in the Darling Basin, Australia: Implications for exploration and production. Marine and Petroleum Geology,77, 776–790.https://doi.org/10.1016/j.marpetgeo.2016.07.021Reinecker, J., Tingay, M. R. P., & Müller, B. B. (2003), Borehole breakout analysis from four-arm caliper logs, World Stress Map Project Guidelines World Stress Map Project-Guidelines Four-arm Caliper Logs, 1-5. Sacks, A., Saffer, D. M., & Fisher, D. (2013), Analysis of normal fault populations in the Kumano forearc basin, Nankai Trough, Japan: 2. Principal axes of stress and strain from inversion of fault orientations. Geochemistry, Geophysics, Geosystems, 14(6), 1973–1988.https://doi.org/10.1002/ggge.20118Schellart, W. P., & Rawlinson, N. (2013), Global correlations between maximum magnitudes of subduction zone interface thrust earthquakes and physical parameters of subduction zones. Physics of the Earth and Planetary Interiors, 225, 41-67.https://doi.org/10.1016/j.pepi.2013.10.001Seeber, L., & Armbruster, J.G. (2000), Earthquakes as beacons of stress change. Nature, 407, 69–72. Stein, R. S. (1999), The role of stress transfer in earthquake occurrence. Nature, 402, 605–609. Tingay, M., Reinecker, J., & Müller, B. (2008), Borehole breakout and drilling‐induced fracture analysis from image logs. World Stress Map Project-Guidelines: Image Logs, 1-8. Tobin, H., Kinoshita, M., Ashi, J., Lallemant, S., Kimura, G., Screaton, E., et al. (2009), NanTroSEIZE Stage 1 expeditions : introduction and synthesis of key results. In Proceedings of the Integrated Ocean Drilling Program: 314/315/31. https://doi.org/10.2204/iodp.proc.314315316.101.2009 Townend, J., & Zoback, M. D. (2006), Stress, strain, and mountain building in central Japan. Journal of Geophysical Research: Solid Earth, 111(3), 1–11.https://doi.org/10.1029/2005JB003759Townend, J., Sherburn, S., Arnold, R., Boese, C., & Woods, L. (2012), Three-dimensional variations in present-day tectonic stress along the Australia-Pacific plate boundary in New Zealand. Earth and Planetary Science Letters, 353–354, 47–59.https://doi.org/10.1016/j.epsl.2012.08.003Vavryčuk V. (2015), Earthquake Mechanisms and Stress Field. In:Beer M., Kougioumtzoglou I., Patelli E., Au IK. (Eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg.https://doi.org/10.1007/978-3-642-36197-5_295-1Walcott, R. I. (1987), Geodetic strain and the deformation history of the North Island of New Zealand during the late Cainozoic. Philosophical Transactions of the Royal Society of London. Series A,Mathematical and Physical Sciences, 321, 163-181. Wallace, L. M. (2020), Slow Slip Events in New Zealand. Annual Review of Earth and Planetary Sciences, 1–29. Wallace, L. M., & Beavan, J. (2010), Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. Journal of Geophysical Research: Solid Earth, 115(12), 1–20.https://doi.org/10.1029/2010JB007717Wallace, L. M., & Eberhart‐Phillips, D. (2013), Newly observed, deep slow slip events at the central Hikurangi margin, New Zealand: Implications for downdip variability of slow slip and tremor, and relationship to seismic structure. Geophysical Research Letters,40(20), 5393–5398.https://doi.org/10.1002/2013gl057682Wallace, L. M., Beavan, J., Bannister, S., & Williams, C. (2012a), Simultaneous long-term and short-term slow slip events at the Hikurangi subduction margin , New Zealand : Implications for processes that control slow slip event occurrence, duration, and migration.Journal of Geophysical Research, 117(B11402). https://doi.org/10.1029/2012JB009489 Wallace, L. M., Beavan, J., McCaffrey, R., & Darby, D. (2004), Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. Journal of Geophysical Research: Solid Earth, 109(12), 1–21.https://doi.org/10.1029/2004JB003241Wallace, L. M., Fagereng, Å., & Ellis, S. (2012b), Upper plate tectonic stress state may infl uence interseismic coupling on subduction megathrusts. Geology, 40(10), 895–898.https://doi.org/10.1130/G33373.1Wenning, Q. C., Berthet, T., Ask, M., Zappone, A., Rosberg, J. E., & Almqvist, B. S. G. (2017), Image log analysis of in situ stress orientation, breakout growth, and natural geologic structures to 2.5 km depth in central Scandinavian Caledonides: Results from the COSC-1 borehole. Journal of Geophysical Research: Solid Earth,122(5), 3999–4019.https://doi.org/10.1002/2016JB013776Western Energy New Zealand. (2001), Well Completion Report Kauhauroa-4B, Ministry of Economic Development New Zealand, Unpublished Open file Petroleum Report 2610. Williams, C. A., Eberhart-Phillips, D., Bannister, S., Barker, D. H. N., Henrys, S., Reyners, M., & Sutherland, R. (2013), Revised interface geometry for the hikurangi subduction zone, New Zealand. Seismological Research Letters, 84(6), 1066–1073.https://doi.org/10.1785/0220130035Wu, H., Kinoshita, M., & Sanada, Y. (2012), Stress state estimation by geophysical logs in NanTroSEIZE Expedition 319-Site C0009, Kumano Basin , southwest Japan. Geophysical Research Letters,39(L18303).https://doi.org/10.1029/2012GL053086Zal, H. J., Jacobs, K., Savage, M. K., Yarce, J., Mroczek, S., Graham, K., et al. (2020), Temporal and spatial variations in seismic anisotropy and VP/VS ratios in a region of slow slip. Earth and Planetary Science Letters, 532, 115970.https://doi.org/10.1016/j.epsl.2019.115970Zoback, M. D. (2007), Reservoir Geomechanics. Cambridge University Press. Zoback, M. D., Zoback, M. L., Eaton, J. P. , Mount, V. S. & Suppe, J. (1987), New evidence on the state of stress of the San Andreas Fault,Science, 238, 1105–1111. https://doi:10.1126/science.238.4830.1105.