Aadnoy, B. S., & Bell, J. S. (1998), Classification of drill-induce
fractures and their relationship to in-situ stress directions. The
Log Analyst, 39 (06), 27–42.
Bailleul, J., Chanier, F., Ferrière, J., Robin, C., Nicol, A., Mahieux,
G., et al. (2013), Neogene evolution of lower trench-slope basins and
wedge development in the central hikurangi subduction margin, new
zealand. Tectonophysics, 591, 152–174.https://doi.org/10.1016/j.tecto.2013.01.003Barnes, P. M., Lamarche, G., Bialas, J., Henrys, S., Pecher, I.,
Netzeband, G. L., et al. (2010), Tectonic and geological framework for
gas hydrates and cold seeps on the Hikurangi Subduction Margin, New
Zealand. Marine Geology, 272(1–4), 26–48.https://doi.org/10.1016/j.
margeo.2009.03.012Barnes, P. M., Lpinay, M. De, Collot, J. Y., Delteil, J., & Audru,
J.-C. (1998), Strain partitioning in the transition area between oblique
subduction and continental collision, Hikurangi margin.Tectonics, 17(4), 534–557.
Barnes, P. M., Nicol, A., & Harrison, T. (2002), Late Cenozoic
evolution and earthquake potential of an active listric thrust complex
above the Hikurangi subduction zone, New Zealand. Bulletin of the
Geological Society of America, 114(11), 1379–1405.https://doi.org/10.1130/0016-7606(2002)114<1379:LCEAEP>2.0.CO;2Barton, C. A., Hickman, S., Morin, R., Zoback, M. D., & Benoit, D.
(1998), Reservoir-scale fracture permeability in the Dixie Valley,
Nevada, geothermal field. SPE/ISRM Rock Mechanics in Petroleum
Engineering, Trondheim, Norway, July 1998, 47371, 315–322.
Barton, C., & Moos, D. (2010), Geomechanical wellbore imaging: Key to
managing the asset life cycle, in M. Po¨ppelreiter, C. Garcı´a-
Carballido, and M. Kraaijveld, eds., Dipmeter and borehole image log
technology: American Association of Petroleum Geologists Memoir,92, 1–32.https://doi.org/10.1306/13181279M922689Beanland, S., & Haines, J. (1998), The kinematics of active deformation
in the North Island, New Zealand, determined from geological strain
rates. New Zealand Journal of Geology and Geophysics,41(4), 311–323.https://doi.org/10.1080/00288306.1998.9514813Bell, J. S. (2003), Practical methods for estimating in situ stresses
for borehole stability applications in sedimentary basins. Journal
of Petroleum Science and Engineering, 38(3–4), 111–119.https://doi.org/10.1016/S0920-4105(03)00025-1Bell, J. S., & Gough, D. I. (1979), Northeast-southwest compressive
stress in Alberta evidence from oil wells. Earth and Planetary
Science Letters, 45(2), 475–482.https://doi.org/10.1016/0012-821X(79)90146-8Berryman, K., Marden, M., Palmer, A., & Litchfield, N. (2009), Holocene
rupture of the Repongaere fault, Gisborne : Implications for Raukumara
Peninsula deformation and impact on the Waipaoa Sedimentary System
Holocene rupture of the Repongaere Fault, Gisborne : and impact on the
Waipaoa Sedimentary System. New Zealand Journal of Geology and
Geophysics, 52(4), 335–347.https://doi.org/10.1080/00288306.2009.9518462Brodsky, E. E., Saffer, D., Fulton, P., Chester, F., Conin, M., Huffman,
K., et al. (2017), The postearthquake stress state on the Tohoku
megathrust as constrained by reanalysis of the JFAST breakout data.Geophysical Research Letters, 44, 8294–8302.https://doi.org/10.1002/2017GL074027Brudy, M., & Zoback, M. D. (1999), Drilling‐induced tensile
wall‐fractures: Implications for determination of in‐situ stress
orientation and magnitude. International Journal of Rock Mechanics
and Mining Sciences, 36, 191–215.https://doi.org/10.1016/S0148-9062(98)00182-XByrne, T. B., Lin, W., Tsutsumi, A., Yamamoto, Y., Lewis, J. C.,
Kanagawa, K., et al. (2009), Anelastic strain recovery reveals extension
across SW Japan subduction zone Anelastic strain recovery reveals
extension across SW Japan subduction zone. Geophysical Research
Letters, 36(L23310).https://doi.org/10.1029/2009GL040749Chang, C., McNeill, L. C., Moore, J. C., Lin, W., Conin, M., & Yamada,
Y. (2010), In situ stress state in the Nankai accretionary wedge
estimated from borehole wall failures. Geochemistry, Geophysics,
Geosystems, 11(12), 1–17.https://doi.org/10.1029/2010GC003261Chanier, F., Ferriere, J., & Angelier, J. (1999), Extensional
deformation across an active margin, relations with subsidence, uplift,
and rotations: The Hikurangi subduction, New Zealand. Tectonics,18(5), 862–876.
Davatzes, N. C., & Hickman, S. H. (2010), Stress, fracture, and
fluid-flow analysis using acoustic and electrical image logs in hot
fractured granites of the Coso geothermal field, California, U.S.A. In
M. Po¨ppelreiter, C. Garcı´a-Carballido, and M. Kraaijveld, eds.,
Dipmeter and borehole image log technology (259–293).https://doi.org/10.1306/13181288M923134Davy, B. W. (1992), The influence of subducting plate buoyancy on
subduction of the Hikurangi-Chatham Plateau beneath the North Island,
New Zealand. Geology and Geophysics of Continental Margins.
Davy, B., Hoernle, K., & Werner, R. (2008), Hikurangi Plateau: crustal
structure, rifted formation, and Gondwana subduction history.Geochemistry, Geophysics, Geosystems, 9(7).
https://doi.org/10.1029/2007GC001855
DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. (1994), Effect of
recent revisions to the geomagnetic reversal time scale on estimates of
current plate motions. Geophysical Research Letters, 21,
2191–2194.
Dimitrova, L. L., Wallace, L. M., Haines, A. J., & Williams, C. A.
(2016), High-resolution view of active tectonic deformation along the
Hikurangi subduction margin and the Taupo Volcanic Zone, New Zealand.New Zealand Journal of Geology and Geophysics, 59(1),
43–57.https://doi.org/10.1080/00288306.2015.1127823Enever, J. R., Gale, W. & Fabjanczvk, M. (1999), A study of the
variability of the horizontal stress field in a sedimentary basin.9th International Society for Rock Mechanics Congress, Paris,
France, 1257-1260.
Fellgett, M. W., Kingdon, A., Waters, C. N., Field, L., Shreeve, J.,
Dobbs, M., & Ougier-simonin, A. (2019), Lithological constraints on
borehole wall failure ; a study on the Pennine coal measures of the
United Kingdom. Frontiers in Earth Science, 7(163).https://doi.org/10.3389/feart.2019.00163FROGTECH. (2014), New Zealand Basement Composition and Heat Flow GIS
Project. Report prepared for the Government of New Zealand, Department
of Petroleum and Minerals.
Gale, W. J., Enever, J. R., Blackwood, R. L. & McKay, J. (1984), An
investigation of the effect of a fault /monocline structure on the
in-situ stress field and mining conditions at Nattai Bulli Colliery NSW,
Australia. CSIRO Australia, Division of Geomechanics. Geomechanics of
Coal Mining Report No. 48.
Ghisetti, F. C., Barnes, P. M., Ellis, S., Plaza-Faverola, A. A., &
Barker, D. H. N. (2016), The last 2 Myr of accretionary wedge
construction in the central Hikurangi margin (North Island, New
Zealand): Insights from structural modeling. Geochemistry,
Geophysics, Geosystems, 17(11), 4517–4533.
https://doi.org/10.1002/2016GC006341Griffin, A. G. (2019), Subsurface SHMAX determined from
a borehole image log, onshore southern East Coast Basin, New Zealand.New Zealand Journal of Geology and Geophysics, 62(2),
273–290. https://doi.org/10.1080/00288306.2019.1570946
Griffin, A. G., Bland, K. J., Morgans, H. E. G., Strogen, D. P. (2021),
A multifaceted study of the offshore Titihaoa-1 drillhole and a Neogene
accretionary slope basin , Hikurangi subduction margin. New
Zealand Journal of Geology and Geophysics.
https://doi.org/10.1080/00288306.2021.1932527
Haines, A. J., & Wallace, L. M. (2020), New Zealand-wide geodetic
strain rates using a physics-based approach. Geophysical Research
Letters, 47(1).https://doi.org/10.1029/2019GL084606Hardebeck, J. L. (2004), Stress triggering and earthquake probability
estimates. Journal of Geophysical Research, 109(B04310).http://dx.doi.org/10.1029/2003JB002437Hardebeck, J. L., & Okada, T. (2018), Temporal stress changes caused by
earthquakes: a review. Journal of Geophysical Research : Solid
Earth, 123, 1350–1365.https://doi.org/10.1002/2017JB014617Heidbach, O., Barth, A., Müller, B., Reinecker, J., Stephansson, O.,
Tingay, M., & Zang, A. (2016), WSM quality ranking scheme, database
description and analysis guidelines for stress indicator. World Stress
Map Technical Report 16-01. GFZ German Research Centre for Geosciences.
http://doi.org/10.2312/wsm.2016.001
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J.,
et al. (2018), The world stress map database release 2016: crustal
stress pattern across scales. Tectonophysics, 744,
484–98. https ://doi.org/10.1016/j.tecto .2018.07.007Huffman, K. A., & Saffer, D. M. (2016), In situ stress magnitudes at
the toe of the Nankai Trough accretionary prism, offshore Shikoku
Island, Japan. Journal of Geophysical Research : Solid Earth,121, 1202–1217. https://doi.org/10.1002/2015JB012415
Hull, A. (1987), A late holocene marine terrace on the kidnappers coast,
north island , new zealand : some implications for shore platform
development processes and uplift mechanism. Quaternary Research,28(2), 183–195.
Illsley‐Kemp, F., Savage, M. K., Wilson, C. J. N., & Bannister, S.
(2019), Mapping stress and structure from subducting slab to magmatic
rift: crustal seismic anisotropy of the North Island, New Zealand.Geochemistry, Geophysics, Geosystems, 20.https://doi.org/10.1029/2019gc008529Jaeger, J., Cook, N., & Zimmerman, R. (2007), Fundamentals of rock
mechanics. Wiley-Blackwell.https://doi.org/10.1017/CBO9780511735349King, R. C., Tingay, M. R. P., Hillis, R. R., Morley, C. K., & Clark,
J. (2010), Present-day stress orientations and tectonic provinces of the
NW Borneo collisional margin. Journal of Geophysical Research:
Solid Earth, 115(10).https://doi.org/10.1029/2009JB006997Kingdon, A., Fellgett, M. W., & Williams, J. D. O. (2016), Use of
borehole imaging to improve understanding of the in-situ stress
orientation of Central and Northern England and its implications for
unconventional hydrocarbon resources. Marine and Petroleum
Geology, 73, 1–20.https://doi.org/10.1016/j.marpetgeo.2016.02.012Kulander, B. R., Dean, S. L., & Ward Jr., B. J. (1990), Fractured core
analysis: Interpretation, logging, and use of natural and induced
fractures in core. American Association of Petroleum Geologists, 8,
Tulsa, Oklahoma.Laird, M. G., & Bradshaw, J. D. (2004), The break-up of
a long-term relationship : the Cretaceous separation of New Zealand
from Gondwana. Gondwana Research, 7(I), 273–286.
Langridge, R. M., Ries, W. F., Litchfield, N. J., Villamor, P., Van
Dissen, R. J., Barrell, D. J. A., et al. (2016), The New Zealand active
faults database. New Zealand Journal of Geology and Geophysics,59 (1), 86–96.https://doi.org/10.1080/00288306.2015.1112818Lawrence, M. J. F. (2018), Structural and Sedimentological
Interpretation of Well Data from the Wairoa Area, North Island, New
Zealand. GNS Science Report 2018/28, 1–76.https://doi.org/10.21420/G23W81Li, Y., & Schmitt, D. R. (1998), Drilling-induced core fractures and in
situ stress. Journal of Geophysical Research, 103(B3), 5225–5239.
Lin, W., Byrne, T. B., Kinoshita, M., Mcneill, L. C., Chang, C., Lewis,
J. C., Yamamoto, Y., et al. (2016), Distribution of stress state in the
Nankai subduction zone, southwest Japan and a comparison with Japan
Trench. Tectonophysics, 692, 120–130.https://doi.org/10.1016/j.tecto.2015.05.008Lin, W., Conin, M., Moore, J. C., Chester, F. M., Nakamura, Y., Mori, J.
J., Anderson, L., et al. (2013), Stress State in the Largest
Displacement Area of the 2011 Tohoku-Oki Earthquake. Science,339(687).https://doi.org/10.1126/science.1229379Lin, W., Doan, M. L., Moore, J. C., McNeill, L., Byrne, T. B., Ito, T.,
et al. (2010), Present-day principal horizontal stress orientations in
the Kumano forearc basin of the southwest Japan subduction zone
determined from IODP NanTroSEIZE drilling Site C0009. Geophysical
Research Letters, 37(13), 1–6.https://doi.org/10.1029/2010GL043158Lin, W., Yeh, E., Ito, H., Hung, J., Hirono, T., Soh, W., et al. (2007),
Current stress state and principal stress rotations in the vicinity of
the Chelungpu fault induced by the 1999 Chi-Chi , Taiwan , earthquake.Geophysical Research Letters, 34(L16307).
https://doi.org/10.1029/2007GL030515
Litchfield, N. J., Van Dissen, R., Sutherland, R., Barnes, P. M., Cox,
S. C., Norris, R., et al. (2014), A model of active faulting in New
Zealand. New Zealand Journal of Geology and Geophysics,57(1), 32–56.https://doi.org/10.1080/00288306.2013.854256Little, T. A., & Roberts, A. P. (1997), Distribution and mechanism of
Neogene to present-day vertical axis rotations , Pacific-Australian
plate boundary. Journal of Geophysical Research, 102,
20447–20468.
Ma, K. F., Chan, C. H., & Stein, R. S. (2005), Response of seismicity
to Coulomb stress triggers and shadows of the 1999 Mw = 7.6 Chi-Chi,
Taiwan, earthquake. Journal of Geophysical Research, 110,
B05S19.http://dx.doi.org/10.1029/2004JB003389Magee, M. E., & Zoback , M. D. (1993), Evidence for a weak interplate
thrust fault along the northern Japan subduction zone and implications
for the mechanics of thrust faulting and fluid expulsion,Geology, 21, 809–812.
Malinverno, A., Saito, S., & Vannucchi, P. (2016), Horizontal principal
stress orientation in the Costa Rica Seismogenesis Project (CRISP)
transect from borehole breakouts. Geochemistry, Geophysics,
Geosystems, 17(1), 65–77.https://doi.org/10.1002/2015GC006092McNamara, D. D., Behboudi, E., Wallace, L., Saffer, D. M., Cook, A. E.,
Fagereng, A., et al (2021), Variable in-situ stress orientations across
the northern Hikurangi Subduction Margin. Geophysical Research
Letters.https://doi.org/10.1029/2020GL091707Mochizuki, K., Sutherland, R., Henrys, S., Bassett, D., Van Avendonk,
H., Arai, R., et al. (2019), Recycling of depleted continental mantle by
subduction and plumes at the Hikurangi Plateau large igneous province,
southwestern Pacific Ocean. Geology, 47(8), 795–798.https://doi.org/10.1130/G46250.1Moore, G. F., Boston, B. B., Sacks, A. F., & Saffer, D. M. (2013),
Analysis of normal fault populations in the Kumano Forearc Basin ,
Nankai Trough , Japan : 1 . Multiple orientations and generations of
faults from 3-D coherency mapping. Geochemistry, Geophysics,
Geosystems, 114, 1989–2002.
https://doi.org/10.1002/ggge.20119
Mountjoy, J. J., & Barnes, P. M. (2011), Active upper plate thrust
faulting in regions of low plate interface coupling, repeated slow slip
events, and coastal uplift: Example from the Hikurangi Margin, New
Zealand. Geochemistry, 12(1), Q01005. https://doi.
org/10.1029/2010gc003326
Nicol, A., & Beavan, J. (2003), Shortening of an overriding plate and
its implications for slip on a subduction thrust, central Hikurangi
Margin, New Zealand. Tectonics, 22(6),https://doi.org/10.1029/2003TC001521Nicol, A., Mazengarb, C., Chanier, F., Rait, G., Uruski, C., & Wallace,
L. (2007), Tectonic evolution of the active Hikurangi subduction margin,
New Zealand, since the Oligocene. Tectonics, 26(4), 1–24.https://doi.org/10.1029/2006TC002090Nicol, A., VanDissen, R., Vella, P., Alloway, B., & Melhuish, A.
(2002), Growth of contractional structures during the last 10 m.y. at
the southern end of the emergent Hikurangi forearc basin, New Zealand.New Zealand Journal of Geology and Geophysics, 45(3),
365–385.https://doi.org/10.1080/00288306.2002.9514979Pedley, K. L., Barnes, P. M., Pettinga, J. R., & Lewis, K. B. (2010),
Seafloor structural geomorphic evolution of the accretionary frontal
wedge in response to seamount subduction, Poverty Indentation, New
Zealand. Marine Geology, 270(1–4), 119–138.
https://doi.org/10.1016/j.
margeo.2009.11.006
Peška, P., & Zoback, M. D. (1995), Compressive and tensile failure of
inclined well bores and determination of in situ stress and rock
strength. Journal of Geophysical Research, 100(B7),
12791–12811.
Pettinga, J. R. (2004), Three ‐ stage massive gravitational collapse of
the emergent imbricate frontal wedge , Hikurangi Subduction Zone , New
Zealand. New Zealand Journal of Geology and Geophysics,47(3), 399–414.https://doi.org/10.1080/00288306.2004.9515066Rajabi, M., Tingay, M., & Heidbach, O. (2016a), The present-day stress
field of New South Wales, Australia. Australian Journal of Earth
Sciences, 63(1), 1–21.https://doi.org/10.1080/08120099.2016.1135821Rajabi, M., Tingay, M., & Heidbach, O. (2016b), The present-day state
of tectonic stress in the Darling Basin, Australia: Implications for
exploration and production. Marine and Petroleum Geology,77, 776–790.https://doi.org/10.1016/j.marpetgeo.2016.07.021Reinecker, J., Tingay, M. R. P., & Müller, B. B. (2003), Borehole
breakout analysis from four-arm caliper logs, World Stress Map Project
Guidelines World Stress Map Project-Guidelines Four-arm Caliper Logs,
1-5.
Sacks, A., Saffer, D. M., & Fisher, D. (2013), Analysis of normal fault
populations in the Kumano forearc basin, Nankai Trough, Japan: 2.
Principal axes of stress and strain from inversion of fault
orientations. Geochemistry, Geophysics, Geosystems, 14(6),
1973–1988.https://doi.org/10.1002/ggge.20118Schellart, W. P., & Rawlinson, N. (2013), Global correlations between
maximum magnitudes of subduction zone interface thrust earthquakes and
physical parameters of subduction zones. Physics of the Earth and
Planetary Interiors, 225, 41-67.https://doi.org/10.1016/j.pepi.2013.10.001Seeber, L., & Armbruster, J.G. (2000), Earthquakes as beacons of stress
change. Nature, 407, 69–72.
Stein, R. S. (1999), The role of stress transfer in earthquake
occurrence. Nature, 402, 605–609.
Tingay, M., Reinecker, J., & Müller, B. (2008), Borehole breakout and
drilling‐induced fracture analysis from image logs. World Stress Map
Project-Guidelines: Image Logs, 1-8.
Tobin, H., Kinoshita, M., Ashi, J., Lallemant, S., Kimura, G., Screaton,
E., et al. (2009), NanTroSEIZE Stage 1 expeditions : introduction and
synthesis of key results. In Proceedings of the Integrated Ocean
Drilling Program: 314/315/31.
https://doi.org/10.2204/iodp.proc.314315316.101.2009
Townend, J., & Zoback, M. D. (2006), Stress, strain, and mountain
building in central Japan. Journal of Geophysical Research: Solid
Earth, 111(3), 1–11.https://doi.org/10.1029/2005JB003759Townend, J., Sherburn, S., Arnold, R., Boese, C., & Woods, L. (2012),
Three-dimensional variations in present-day tectonic stress along the
Australia-Pacific plate boundary in New Zealand. Earth and
Planetary Science Letters, 353–354, 47–59.https://doi.org/10.1016/j.epsl.2012.08.003Vavryčuk V. (2015), Earthquake Mechanisms and Stress Field. In:Beer M., Kougioumtzoglou I., Patelli E., Au IK. (Eds) Encyclopedia
of Earthquake Engineering. Springer, Berlin, Heidelberg.https://doi.org/10.1007/978-3-642-36197-5_295-1Walcott, R. I. (1987), Geodetic strain and the deformation history of
the North Island of New Zealand during the late Cainozoic. Philosophical
Transactions of the Royal Society of London. Series A,Mathematical and Physical Sciences, 321, 163-181.
Wallace, L. M. (2020), Slow Slip Events in New Zealand. Annual
Review of Earth and Planetary Sciences, 1–29.
Wallace, L. M., & Beavan, J. (2010), Diverse slow slip behavior at the
Hikurangi subduction margin, New Zealand. Journal of Geophysical
Research: Solid Earth, 115(12), 1–20.https://doi.org/10.1029/2010JB007717Wallace, L. M., & Eberhart‐Phillips, D. (2013), Newly observed, deep
slow slip events at the central Hikurangi margin, New Zealand:
Implications for downdip variability of slow slip and tremor, and
relationship to seismic structure. Geophysical Research Letters,40(20), 5393–5398.https://doi.org/10.1002/2013gl057682Wallace, L. M., Beavan, J., Bannister, S., & Williams, C. (2012a),
Simultaneous long-term and short-term slow slip events at the Hikurangi
subduction margin , New Zealand : Implications for processes that
control slow slip event occurrence, duration, and migration.Journal of Geophysical Research, 117(B11402).
https://doi.org/10.1029/2012JB009489
Wallace, L. M., Beavan, J., McCaffrey, R., & Darby, D. (2004),
Subduction zone coupling and tectonic block rotations in the North
Island, New Zealand. Journal of Geophysical Research: Solid
Earth, 109(12), 1–21.https://doi.org/10.1029/2004JB003241Wallace, L. M., Fagereng, Å., & Ellis, S. (2012b), Upper plate tectonic
stress state may infl uence interseismic coupling on subduction
megathrusts. Geology, 40(10), 895–898.https://doi.org/10.1130/G33373.1Wenning, Q. C., Berthet, T., Ask, M., Zappone, A., Rosberg, J. E., &
Almqvist, B. S. G. (2017), Image log analysis of in situ stress
orientation, breakout growth, and natural geologic structures to 2.5 km
depth in central Scandinavian Caledonides: Results from the COSC-1
borehole. Journal of Geophysical Research: Solid Earth,122(5), 3999–4019.https://doi.org/10.1002/2016JB013776Western Energy New Zealand. (2001), Well Completion Report Kauhauroa-4B,
Ministry of Economic Development New Zealand, Unpublished Open file
Petroleum Report 2610.
Williams, C. A., Eberhart-Phillips, D., Bannister, S., Barker, D. H. N.,
Henrys, S., Reyners, M., & Sutherland, R. (2013), Revised interface
geometry for the hikurangi subduction zone, New Zealand.
Seismological Research Letters, 84(6), 1066–1073.https://doi.org/10.1785/0220130035Wu, H., Kinoshita, M., & Sanada, Y. (2012), Stress state estimation by
geophysical logs in NanTroSEIZE Expedition 319-Site C0009, Kumano Basin
, southwest Japan. Geophysical Research Letters,39(L18303).https://doi.org/10.1029/2012GL053086Zal, H. J., Jacobs, K., Savage, M. K., Yarce, J., Mroczek, S., Graham,
K., et al. (2020), Temporal and spatial variations in seismic anisotropy
and VP/VS ratios in a region of slow slip. Earth and Planetary
Science Letters, 532, 115970.https://doi.org/10.1016/j.epsl.2019.115970Zoback, M. D. (2007), Reservoir Geomechanics. Cambridge University
Press.
Zoback, M. D., Zoback, M. L., Eaton, J. P. , Mount, V. S. & Suppe, J.
(1987), New evidence on the state of stress of the San Andreas Fault,Science, 238, 1105–1111.
https://doi:10.1126/science.238.4830.1105.