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e Maximum horizontal stress orientation varies along strike in the Hikurangi
Subduction Margin upper plate

e Stress orientations reflect contemporary elastic strain accumulation pro-
cesses related to subduction megathrust locking

e Stress orientations in the southern HSM are oblique to focal-mechanism
stress suggesting the subduction interface is mechanically weak

Abstract

Knowledge of the contemporary in-situ stress orientations in the Earth’s crust
can improve our understanding of active crustal deformation, geodynamic pro-
cesses, and seismicity in tectonically active regions such as the Hikurangi Sub-
duction Margin (HSM), New Zealand. The HSM subduction interface is charac-
terized by varying slip behavior along strike, which may be a manifestation of
variation in the stress state and the mechanical strength of faults and their hang-
ing walls, or, alternatively, these variations in seismic behavior may generate
variation in the stress state in space and time. In this study, we analyze bore-
hole image and oriented four-arm caliper logs acquired from thirteen boreholes
along the HSM to present the first comprehensive stress orientation dataset
within the HSM upper plate. Our results reveal a NE-SW Sy, orientation
(parallel to the Hikurangi margin) within the central HSM (Hawke’s Bay region)
which rotates to a WNW- ESE Sy, orientation (roughly perpendicular to the
Hikurangi margin) in the southern HSM. This rotation of Sy,,, orientation
spatially correlates with along-strike variations in subduction interface slip be-
havior, characterized by creep and/or shallow episodic slip events in the central
HSM and interseismic locking in the southern HSM. Observed borehole Sgax
orientations are largely parallel to maximum contraction directions derived from
geodetic surface deformation measurements, suggesting that modern stress ori-
entations may reflect contemporary elastic strain accumulation processes related
to subduction megathrust locking.
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Movement along faults at tectonic plate boundaries can cause changes in the
orientations of the forces, known as stress, that make them move. Such changes
may help us explain how deformation at the surface occurs when these faults
move, the way fluid moves along these faults, and why different types of earth-
quakes occur on these faults. The Hikurangi Subduction Margin, New Zealand’s
largest and most hazardous plate boundary fault, shows a variety of deformation
and earthquake types that occur in the over-riding plate which may be linked
to stress orientation. In this study, we found that variability in the stress orien-
tations within the upper plate of Hikurangi Subduction Margin matches areas
where we see different earthquake types occurring, and observed patterns of sur-
face deformation. We suggest that stress orientations reflect the accumulation
and release of strain caused by subduction at the HSM.

1 Introduction

In-situ stress measurements can provide important insights into stress states
at global and localized scales, the geomechanical state of earthquake-hosting
faults, shear traction on faults, and processes of stress accumulation and release
on plate boundary faults. Such measurements also assist with understanding
how crustal stresses relate to strain observed geodetically and geologically (e.g.,
Zoback et al., 1987; Magee & Zoback, 1993; Townend & Zoback, 2006; Byrne
et al., 2009; Chang et al., 2010; Lin et al., 2013, 2016; Brodsky et al., 2017).
Earthquake occurrence and many earthquake rupture characteristics are partly
dependent on the shear to normal stress ratio, which is a function of the relative
magnitude of in-situ principal stresses, the orientation of the fault plane with
respect to the orientation of the principal stress orientations, pore pressure, and
fault plane friction coefficients (Jaeger et al., 2007; Schellart & Rawlinson, 2013;
Vavrycuk, 2015). Additionally, earthquakes can redistribute stress and change
both shear and normal stress on adjacent fault planes and surrounding rocks
either statically (a shift in the stress state from before to after the earthquake)
or dynamically (oscillating stress changes that occur with the passage of seismic
waves) (Stein, 1999; Seeber & Armbruster, 2000; Hardebeck, 2004; Ma et al.,
2005; Lin et al., 2007, 2016; Hardebeck & Okada, 2018).

The Hikurangi Subduction Margin (HSM), on the east coast of the North Is-
land of New Zealand (Figure la), experiences strong along-strike variations in
megathrust slip behaviour, ranging from deep interseismic locking (and stress
accumulation) beneath the southern North Island, to episodic slow slip events
(SSEs) and creep at the northern and central HSM (Figure 1b). Creep and
shallow (<15 km depth) SSEs lasting for 2-3 weeks recur every 18-24 months
offshore of the northern and central HSM (Wallace & Beavan 2010; Wallace,
2020; Figure 1b). Deep (>25 km), long-term (>1 year) slow slip events occur
approximately every ~5 years at the southern HSM (Wallace & Beavan 2010),
just down-dip of a portion of the plate interface that is strongly locked and ac-
cumulating stress likely to be released in a future great earthquake (Mw > 8.0).
Despite the recognized importance of in-situ stress states along active subduc-
tion zones in understanding strain accumulation and release, few studies have



been undertaken to directly estimate stress magnitudes in these settings (Chang
et al., 2010; Huffman & Saffer, 2016; Lin et al., 2010, 2013, 2016; Malinverno
et al., 2016; Brodsky et al., 2017; McNamara et al., 2021).
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Figure 1. (a) Tectonic setting of East Coast of North Island, New Zealand.
Fault traces from Barnes et al., (2010), Langridge et al, (2016), Mountjoy and
Barnes (2011), and Pedley et al., (2010). Black arrows indicate the long-term
motion of the Pacific relative to Australian Plate from DeMets et al., (1994)



and grey arrows show shortening rates at the Hikurangi Trough from Wallace et
al. (2012). (b) Interseismic coupling based on campaign GPS velocities (1995—
2008), shown in terms of coupling coefficient (Wallace et al. 2012a). Green and
pink shaded regions represent the cumulative slow slips in 2002 and 2012 (Wal-
lace et al., 2012a) and SSEs beneath the Kaimanawa ranges in 2006 and 2008
(Wallace & Eberhart-Phillips, 2013; Wallace, 2020). Area of possible locked
patch between the East Coast and Kaimanaw SSEs is shaded in red. (c) Map
showing Sy, Orientations from focal mechanisms (Townend et al., 2012) and
shear wave splitting fast orientations (Illsley-Kemp et al., 2019). Boreholes are
numbered 1: Makareo-1, 2: Kauhauroa-2, 3: Waitahora-1, 4: Kauhauroa-5, 5:
Tuhara-1A, 6: Kereru -1, 7: Whakatu-1, 8: Ngapaeruru-1, 9: Te Mai-2, 10:
Rauni-2, 11: Orui-1A, 12: Titihaoa-1, 13: Tawatawa-1, 14: U1519A, and 15:
U1518B. Abbreviations: NIDFB, North Island Dextral Fault Belt; TVZ, Taupo
Volcanic Zone.

To date, several studies have been carried out to determine the contemporary
in-situ stress patterns along the East Coast of the HSM. Analysis of earthquake
focal mechanism solutions reveal that Sy, orientations in the crust ( 60 km
depth) change from NE-SW (roughly margin-parallel; Figure 1¢) in the northern
and central Hikurangi margin to a more margin-oblique, ENE-WSW orientation,
sub-parallel to Pacific/ Australia relative plate motion, further south (Figure 1c).
These measurements are largely from earthquakes within the subducting slab
most located at depths >25 km depth (Townend et al., 2012). In contrast,
the seismic anisotropy fast orientations determined from shear wave splitting
methods that sample the upper ~40 km (Figure 1c) suggest a dominant Sy,
orientation of NE-SW for most of the HSM forearc (generally margin-parallel),
while the northern HSM forearc displays variable fast orientations, with a more
dominant ENE-WSW inferred Sy.. orientation (Illsley-Kemp et al., 2019).
Shallow (<3km) Sy,ax Orientations have been determined from limited anal-
ysis of borehole image logs from boreholes drilled onshore and offshore HSM
(Heidbach et al., 2018; Lawrence, 2018; Griffin, 2019; Griffin et al., 2021; McNa-
mara et al., 2021). Analysis of borehole image data from four onshore boreholes
show NE-SW to ENE-WSW Sy, orientations in the central HSM (Heidbach
et al., 2018; Lawrence, 2018;), and an E-W to NW-SE SHmax orientation is
determined from two borehole image logs in the southern HSM (Heidbach et
al., 2018; Griffin, 2019; Griffin et. al, 2021). Boreholes offshore the northern
HSM drilled as part of the International Ocean Discovery Program (IODP) Ex-
peditions 372 and 375 show an E-W Sy, .. orientation close to the Hikurangi
trench, and a NW-SE Sy, orientation in the offshore forearc (McNamara et
al., 2021), indicating strong variations in stress orientations across the forearc.

In this study, we provide a detailed analysis of Sy, Orientations from stress
related drilling-induced borehole failures, and assess their variability within the
upper plate of the HSM. We analyze six borehole image and oriented four-arm
caliper logs (not previously used for stress orientation studies), and provide a re-
analysis of the seven borehole image logs investigated in Heidbach et al. (2018),
Lawrence (2018), Griffin (2019), and Griffin et al. (2021) with a focus on ac-



quiring higher resolution measurements (length, width, orientation) of induced
borehole features. We then discuss spatial variations in contemporary Sga«
orientations and their relationship to far-field stresses and long-term patterns
of tectonic deformation, and their potential links to along-strike variations in
subduction megathrust slip behavior.

2 Geological Setting

The Hikurangi Subduction Margin (HSM) lies along the Pacific-Australian plate
boundary at the southern end of the Tonga-Kermadec Trench, off the east coast
of the North Island, New Zealand (Figure 1a). The Hikurangi Subduction Mar-
gin accommodates westward subduction of the Hikurangi Plateau (a Cretaceous
large igneous province) beneath the continental crust of North Island at the
Hikurangi Trough (Davy, 1992). The Hikurangi Plateau is ~10-15 km thick and
transitions to a more typical 5-7 km thick oceanic plate further north at the Ker-
madec Trench (Davy et al., 2008; Davy, 1992; Ghisetti et al., 2016; Mochizuki
et al., 2019). The southern termination of the HSM is located somewhere be-
neath New Zealand’s northeastern South Island, where oblique convergence is
transferred to the Marlborough Fault System and Alpine Fault in the South
Island (Barnes et al., 1998; Little & Roberts, 1997).

Three major tectonic phases during the Neogene to present-day have been iden-
tified: 1) an early to middle Miocene compressional stage that resulted in exten-
sive reverse faulting, folding, and tectonic uplift along the margin (Chanier et al.,
1999; Barnes et al., 2002; Bailleul et al., 2013); 2) a mixed compressional and ex-
tensional stage from the mid-Miocene to early Pliocene resulting in widespread
compressional tectonics and localized subsidence and normal faulting in the in-
ner portion of the subduction wedge (Hawke’s Bay region) (Barnes et al., 2002);
3) a compressional stage associated with and structural inversion of listric thrust
faults and folds during the Quaternary and rapid, late Quaternary uplift of the
Coastal Ranges, Axial Ranges, and Raukumara Peninsula (Beanland & Haines,
1998; Nicol et al., 2002, 2007; Nicol & Beavan, 2003; Bailleul et al. 2013). Late
Quaternary extensional faulting in the Raukumara Peninsula is likely the result
of gravitational collapse due to rapid uplift (Berryman et al., 2009; Pettinga,
2004; Walcott, 1987).

Neogene to present tectonic deformation across the HSM is complex and in-
cludes contributions from shortening associated with subduction at the Hiku-
rangi Trough, clockwise rotation of the FEast Coast forearc, strike-slip faulting
along the North Island Dextral Fault Belt (NIDFB), and back-arc extension in
the Taupo Volcanic Zone (TVZ) (Beanland & Haines, 1998; Wallace et al., 2004;
Figure 1a). The East Coast forearc has rotated for at least the last few Myr at
rate of 3°-4°/Myr relative to the Australian plate (Nicol et al. 2007). This rota-
tion results in back-arc rifting in the central North Island’s Taupo Volcanic Zone
(TVZ), transpression in the southern North Island, and creates a large along-
strike change in convergence rate at the Hikurangi Trough, from 20 mm/year
in the south to 60 mm/year at the northern Hikurangi Trough (Wallace et al.
2004; Figure 1a). Wallace et al. (2004) suggest that an along-strike change from



subduction of the large igneous province (Hikurangi Plateau) at the Hikurangi
Trough, to normal oceanic crust along the Kermadec Trench exerts a torque on
the forearc, producing clockwise rotation of the eastern North Island. Overall,
relative motion between the Pacific and Australian plates occurs through this
region at ~40 mm/yr, and is oblique to the orientation of the plate boundary.
The oblique relative motion is partitioned into a margin-perpendicular compo-
nent and a margin-parallel component. The margin-perpendicular component
occurs along the Hikurangi subduction interface and provides a NW-SE shorten-
ing which is accommodated via the subduction interface and active thrust faults
within the accretionary wedge and overriding plate (Barnes et al., 1998; Nicol
and Beavan, 2003). The margin-parallel component is largely accommodated
by a combination of right-lateral strike-slip on the North Island Dextral Fault
Belt (NIDFB) and vertical-axis clockwise rotation of the North Island forearc
(Beanland & Haines, 1998; Nicol et al., 2007; Wallace et al., 2004).

3 Data and Methodology

We analyze borehole image logs acquired from eleven boreholes using a range
of tools including; the Schlumberger Fullbore Formation Microimager (FMI™:;
Figure 2a) and Oil Based Mud Imaging tool (OBMI™), Baker Atlas Simultane-
ous Acoustic and Resistivity Imager (STAR™), Tiger Energy Services Acoustic
Formation Imaging Technology (AFIT; Figure 2b), and two orientated four-arm
caliper logs (Figure 2c). The tool types and their borehole wall coverage for each
borehole are summarized in Table 1.
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Figure 2. (a) Statically and dynamically normalized resistivity image log (FMI)
showing borehole breakouts and natural fractures in borehole Tuhara-1A, (b)
Dynamically normalized travel time and amplitude images from an acoustic im-
age log (AFIT) acquired in Orui-1A borehole showing petal centerline fractures
(PCFs), natural fractures, and a fault (observable offset of other geological fea-
tures across a natural fracture). (c) Plot of an oriented four-arm caliper log
(C1-C3 and C2-C4) from borehole Kereru-1. The 10% tolerance of bit size
(black line) is shown as a grey shaded zone, plotted next to pad 1 azimuth and
borehole orientation information showing caliper enlargement indicative of the
presence of a borehole breakout.

Image log acquisition, data processing, and quality assessment is performed
on all image logs, the details of which are documented in the supplemental
information (Text S1 & S2).

From the borehole image logs, we identify stress-induced borehole failures, in-
cluding borehole breakouts (BOs; Figure 2a & 2c¢), drilling-induced tensile frac-
tures (DITFs), and petal-centerline fractures (PCFs; Figure 2b). BOs and
DITFs are well-known indicators of horizontal in-situ stress orientations in verti-
cal to semi-vertical boreholes, in which it is assumed one of the principal stresses
is the vertical stress (S,). BOs and DITFs develop parallel to the contemporary
minimum (S;,;,) and maximum (Sy,,,,) horizontal stresses respectively (Bell,
2003; Bell & Gough, 1979; Aadnoy & Bell, 1998). In such cases, BOs and DITFs
can also be used to determine Sy, Orientations in boreholes deviated >20° as
long as corrections are applied to address the impact of vertical stress (S,) on
their development (Peska & Zoback, 1995). BOs form as enlargements of the
borehole diameter on opposite sides of the borehole wall where the circumferen-
tial hoop stress, induced by non-uniform horizontal principal stress magnitudes,
is large enough to exceed the rock strength (Bell & Gough, 1979; Zoback, 2007).
Borehole breakouts typically appear on resistivity image logs as a pair of wide,
conductive (in water-based mud) or resistive (in oil-based mud, such as OBMI
tool; King et al., 2010) zones. In acoustic televiewer logs, they appear as low
amplitude, out-of-focus zones (Figure 2a). In both types of logs, BOs are lo-
cated ~180° from each other around the circumference of the borehole wall. BOs
often correlate with borehole enlargement and associated large caliper values as
the result of the borehole failure (Figure 2¢; Tingay et al., 2008). Oriented
four-arm caliper data is also used to infer the presence of BOs along boreholes.
To reliably distinguish BOs from other non-stress related features that affect
borehole shape, such as keyseats and washouts, we apply the criteria presented
by Reinecker et al., (2003).

DITFs develop on the borehole wall where there is a significant difference be-
tween the two horizontal principal stress magnitudes and the local stress con-
centrations around the borehole wall lead to hoop stresses that overcome the
tensile strength of the rock (Brudy & Zoback, 1999; Zoback, 2007; Barton &
Moos, 2010). DITFs typically appear as narrow, conductive (on resistivity im-
age logs) or low amplitude and longer travel time (on acoustic image logs) pairs,



~180° from each other around the circumference of the borehole wall. DITFs
are generally parallel or slightly inclined to the borehole axis in vertical to semi-
vertical boreholes (Barton et al., 1998; Bell, 2003; Tingay et al., 2008; Rajabi et
al., 2016a, 2016b). In this study, all BOs and DITFs are reported as individual
feature length and width, such that a single BO or DITF measurement does not
span a number of separate individual BOs or DITFs, similar to what has been
done in previously analyzed HSM image logs (Lawrence, 2018; Griffin, 2019).
This is an important aspect of quantifying induced features from borehole im-
age logs because geological properties, such as varying strength associated with
variably bedded lithologies, impact the development and growth (both width
and length) of borehole breakouts (Kingdon et al., 2016; Fellgett et al., 2019).
It is also important to capture each induced feature individually for accurate
statistical considerations of borehole stress orientations.

PCFs are induced fractures that form within the bedrock ahead of the drill bit in
response to stress concentrations at the bottom of the borehole during drilling,
and propagate inward towards the borehole (Li & Schmitt, 1998; Davatzes &
Hickman, 2010; Wenning et al., 2017). PCFs appear as conductive (resistivity
image logs) or low amplitude (acoustic image logs) partial sinusoids that merge
into discontinuous borehole axial centerline fractures (Figure 2b; Kulander et
al., 1990). The average of the centerline fracture orientations or dip orientation
of the partial sinusoids of a PCF is parallel to the orientation of Sy, ;. (Davatzes
& Hickman, 2010). In contrast to the DITFs, the centerline portions of PCFs
are often less than 180° apart from each other around the circumference of the
borehole wall.

Finally, we use the A-E World Stress Map (WSM) quality ranking system
and circular statistical analysis for stress orientation indicators (Heidbach
et al., 2016). The borehole locations, image log intervals, Sy,,.. orientation
mean, standard deviation, and the quality classification are based on the
length-weighted method (Heidbach et al., 2016) for individual boreholes are
summarized in Table 1 and Table 2.

4 Results
4.1 Central HSM (Hawke’s Bay region)

A total of 810 BOs with a combined length of 454 m are identified from bore-
hole image logs and oriented four-arm caliper logs acquired in Kauhauroa-2,
Kauhauroa-5, Makareao-1, Tuhara-1A, Kereru-1, and Whakatu-1 boreholes in
the Central HSM region (Figure 3; data set 1; see Fig. 5 for the borehole
locations and names). Using only BOs from boreholes with B-C quality rank-
ings (following the WSM criteria), and so more likely to display far-field stress
orientation measurements, a dominant 157°/337° £ 18° orientation is observed,
indicating a NW-SE S, ;,, orientation, from which we infer an Sy, . orientation
of 067°/247° (ENE-WSW) (Figure 3). The only exception is borehole Whakatu-
1 (WSM D quality ranking), in the southeast area of the central HSM, which
shows a dominant BO orientation of 054°/234° £13° (NE-SW), from which we



infer a NW-SE Sy, orientation (144°/324°) (Table 1; Figure 3). 2 DITF
pairs are observed in boreholes Kauhauroa-5 and Tuhara-1A with mean Sy, .«
orientation of 020°/195° (NNE-SSW) and 079°/263° (ENE-WSW), respectively
(Figure 3). No BOs, DITFs, or PCFs are observed in Waitahora-1 borehole from
OBMI image logs (this image log only provided ~37% coverage of borehole wall)
or from oriented four-arm caliper data.

Table 1. Stress Indicators From Analysis of Borehole Image Logs and Oriented
Four-Arm Caliper Data in the Central HSM, New Zealand.

Boreh¥tar Max Tool BorehbolmgdeatudeumbdieanS.D Total Quality

ID bore- namecoverage type Stmaxd®) length
hole (%) ter- (m)
De- val
vi- (m
a- MD)
tion
(°)
North€emhauroa- FMI™ - BO °/249° C
cen- 2 2138.5
tral
HSM
Kauhauroa- FMI™ - BO 1 °/232°- 31 B
5 1750.2DITF 020°/195° D
Makareo- FMI™ - BO °/238° B
1 939.7
Tuhara- FMI™ - BO 1  °/251° 016 B
1A 2148 DITF 079°/263° D
SouthKmareru - - BO °/259° C
cen- -1 arm 1920
tral caliper
HSM
Whakatu- - - BO °/324° D
1 arm 1400
caliper

Note. Spnax 8zimuth means, standard deviations (S.D.), and data quality rank-
ing are calculated according to World Stress Map conventions (Heidbach et al.,
2016).
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diagram of breakout orientations for each borehole is shown below BO panels.
4.2 Southern HSM

A total of 1517 BOs with a combined length of 520 m are identified from borehole
image logs in boreholes Ngapaeruru-1, Rauni-2, Titihaoa-1, Tawatawa-1, Te
Mai-2, and Orui-1A boreholes (Figure 4; data set 1). For borehole stress data
with a WSM quality ranking of B-C (Ngapaeruru-1, Tawatawa-1, and Ranui-2)
we observe an Sy .. orientation of 016°/196° + 21° (NNE-SSW) from which
we infer an Sy,,.,. orientation of 106°/286° (WNW- ESE) (Figure 4). BOs
in boreholes Ngapaeruru-1, Tawatawa-1, Te Mai-2, and the shallow (<1130
m MD) interval of Ranui-2 show a consistent WNW-ESE Sy, orientation
(Figure 4), whereas BOs measured in boreholes Titihaoa-1, the deeper (>1130
m MD) imaged interval of Ranui-2, and Orui-1A provide dominantly NW-SE
Shmax Orientations (Figure 4). Our reanalysis of BOs from borehole Ranui-2
suggest a 51° clockwise Sy, Orientation rotation from E-W (094°/274° + 17°)
in the shallower imaged depth interval (842-1130 m MD) to NW-SE (145°/325°
+ 16°) in the deeper imaged interval (1130-1422 m MD) (Table 2) that was first
reported by Griffin (2019).

Table 2. Stress Indicators From Analysis of Borehole Image Logs in the South-
ern HSM, New Zealand.

Boreh¥tar Max Tool % Imagdeatudumb¥éieanS.D Total Quality

D bore- name Bore-in-  type SHmax®) length
hole hole ter- (m)
de- sur- val
vi- face (m
a- coveradd)
tion
)

South®igapaeruru- FMI™ - BO °/292° B
HSM1 17.78 1417

Rauni- - FMI™ - BO °/274°16 49 B

2" 254 1130 BO 145°/325° B
1130-
1422

Te AFIT0 - BO °/289° D

Mai- 147.5

2

Orui- AFIT0 - BO 1 °/335°- 0.8 D

1A 114.5 PCF 1 125° - 02 C

DITF 133/295° D

Titihaoa- FMI™ . BO °/332° D

1 2741

Tawatawa- STAR - BO °/283° B

1 1540

11



Note. Synax azimuth means, standard deviations (S.D.), and data quality rank-
ing are calculated according to World Stress Map conventions (Heidbach et al.,
2016). *Measured stress feature orientatioind are not corrected for borehole
deviations> 20°.
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Figure 4. Graph of BO azimuths (red dots), DITF azimuths (blue dots), and
stratigraphy column against measured depth (m MD) for boreholes at the south-
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ern HSM. Mean BO azimuths and the standard deviation for individual borehole
are plotted in black and dashed grey lines respectively. Bi-directional rose dia-
gram of breakout orientations for each borehole is shown below BO panels.

5 Discussion

Our results show that the contemporary Sy, Orientations in the upper plate
of the HSM change from dominantly NE-SW, parallel to the subduction mar-
gin, within the central HSM to WNW-ESE/NW-SE within the southern HSM
(Wairarapa region), roughly perpendicular to the subduction margin (Figure 5).
This along-strike rotation in HSM Sy, orientations may be explained in a few
ways; 1) HSM kinematics, 2) long-term tectonic deformations, and 3) lateral
variations in basement topography.
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Figure 5. Map of Sy, at the East Coast of North Island determined from
borehole Breakouts in (orange arrows) and IODP borehole image analysis from
McNamara et al., 2021 (blue arrows). Green shaded region represents the East
Coast cumulative slow slip (Wallace et al., 2012a). Active faults (normal faults:
yellow; strike slip: red; reverse fault: black) traces from Litchfield et al. (2014)
and Langridge et al, (2016). The bold black line shows the Hikurangi Through.
Black arrow indicate the relative convergence vector between the Pacific and
Australian Plates from DeMets et al., (1994) and grey arrows show shorten-
ing rates at the Hikurangi Trough from Wallace et al. (2012). Abbreviations:

15




NIDFB, North Island Dextral Fault Belt; TVZ, Taupo Volcanic Zone.

Geodetic measurements over the last 25 years have been used to determine
New Zealand’s contemporary surface strain field (Dimitrova et al., 2016; Haines
&Wallace, 2020). The rotation of borehole-derived Sy, orientations along the
HSM in the upper plate is remarkably consistent with the variation in coupling
behavior on the HSM subduction interface (Figure 1b) and the along-strike rota-
tion observed in the maximum contraction directions determined from geodetic
measurements along the HSM forearc (Dimitrova et al., 2016; Haines & Wal-
lace, 2020; Figure 6a). Maximum contraction directions determined from cam-
paign GPS data reveal that the central HSM has a dominant E-W maximum
contraction direction, whereas the southern HSM shows a NW-SE contraction
direction (Figure 6a; Haines & Wallace, 2020), broadly compatible with the
borehole-derived Sy, orientations reported here. The along-strike variations
in maximum contraction directions from GPS are suggested to be related to
along-strike changes in interseismic coupling on the HSM plate interface (Wal-
lace et al., 2004; Dimitrova et al., 2016). In the northern and central HSM,
the subduction interface is largely creeping and experiences shallow (<15 km),
episodic slow slip events on the offshore. At the southern HSM the plate inter-
face is strongly interseismically coupled to ~30 km depth, and is currently accu-
mulating elastic strain in the surrounding crust that will eventually be relieved
in future large earthquakes (Wallace, 2020; Figure 1b). The strong agreement
between the geodetic maximum contraction directions and the observed stress
field from the borehole observations indicate that Sy, orientations and their
variability at HSM are strongly influenced by along-strike variations in elastic
strain accumulation in the overriding plate due to changes in interseismic cou-
pling on the subduction interface.

In the central HSM (where the plate boundary is largely creeping) borehole-
derived Syp,ax Orientations and maximum contraction directions are reasonably
consistent and sub-parallel to far-field relative Pacific-Australian plate motion.
In contrast, at the southern HSM borehole-derived Sy, orientations and
maximum contraction directions are roughly perpendicular to far-field relative
Pacific-Australian plate motion, but are parallel to the convergence direction.
This observation may be due to the fact that the subducting plate drags the
forearc wedge in the direction of subduction and increases elastic compression
strain and stress on the plate interface and within the forearc itself aligning
elastic strain accumulation and Sy, ., Stress orientations into that orientation.
These Sy Orientation observations are at odds with those of Townend and
Zoback (2006) showing that stress orientations in central Japan (from earth-
quake focal mechanisms) do not agree with maximum contraction directions
associated with cyclical subduction zone locking. This difference in the conclu-
sions between our study and Townend and Zoback (2006) may be related to
the fact that we utilize shallow (<3 km) stress orientations, which may be more
susceptible to temporal changes in elastic strain resulting from interseismic cou-
pling rather than stress orientations from earthquake focal mechanisms sampling
greater depths. This observation at the HSM may be reflecting longer-term ac-

16



cumulation of stress (related to long-term tectonic processes) independent of
stage within the earthquake cycle.
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Figure 6. (a) Map of maximum contraction directions from GPS data (Haines
& Wallace, 2020) and borehole-derived Sy, ., Orientations (orange arrows) and
IODP borehole image analysis from McNamara et al. (2021) (blue arrows). (b)
Map of Synax Orientations and inferred faulting regime from focal plane mech-
anisms (0-60 km; square: extensional, circle: strike-slip, and triangle: compres-
sional regime; Townend et al., 2012), seismic anisotropy measurements (0-40 km;
black lines). Dashed blue lines show depth of subduction interface from sea level
(Williams et al., 2013). (c¢) The map showing depth to basement map of North
Island adapted from FROGTECH (2014). The clockwise rotation of Sy, oOri-
entation along the HSM strike follows the basement topography. Black arrows
indicate the long-term motion of the Pacific relative to Australian Plate from
DeMets et al., (1994) and grey arrows show shortening rates at the Hikurangi
Trough from Wallace et al. (2012). Red dots show the borehole locations.

Although borehole-derived Sy,,, orientations at the HSM are broadly consis-
tent with maximum contraction directions, Sg,,,, orientations are not uniform
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within the forearc and in places deviate from the observed maximum contraction
directions (Figure 6a). Some of these variabilities may be due to longer-term
partitioning of oblique relative motion and strain into margin-parallel, margin-
perpendicular, and strike-slip components. Similar deviations from maximum
contraction directions are observed within the Nankai subduction zone (Chang
et al., 2010) and Costa Rica margin (Malinverno et. al, 2016). For example,
borehole-derived Sy, orientations in the accretionary prism across the Nankai
subduction zone are subparallel to the plate convergence vector between the
Philippine Sea plate and Japan, perpendicular to the plate boundary, and for
one borehole in the shelf edge is parallel to the plate boundary (Lin et al., 2010;
Chang et al. 2010; Wu et al. 2012). The variations of stress among these
sites and the deviation of borehole-derived Sy, orientations from the plate
motion vectors derived from GPS data are suggested to be attributed to the
strain partitioning into trench-parallel, right-lateral slip and thrust tectonics
due to oblique plate convergence (Tobin et al. 2009; Lin et al. 2010). Alterna-
tively, such stress variations have also been attributed to other factors such as
thrusting and bending within individual geologic domains and local extension
deformations derived by gravitation collapse of the prism in the forearc (Chang
et al., 2010; Lin et al., 2016).

Townend et al. (2012) derived Sy, Orientations from earthquake focal mech-
anisms using a Bayesian approach for earthquake data between 2004-2011 with
M;,> 3. Their observations reveal that Sy, ., orientation changes from NE-SW
in the central HSM to a more oblique Sy, Orientation, sub-parallel to Pacific-
Australia relative plate motion, in the southern HSM (Figure 6b). Only two
focal mechanism solutions are located within the upper plate of the HSM or near
the subduction interface; one strike-slip event with a NE-SW Sy, ... orientation
(latitude 38°S; North of central HSM) at 7 km depth, and one compressional
event with a WNW-ESE Sy, .. orientation (latitude 40.5°S; southern HSM)
at 25 km depth (at the top of subducting plate near the subduction interface;
Figure 6b). In the central HSM (where the plate boundary is largely creeping)
borehole-derived NE-SW Sy, orientations and maximum contraction direc-
tions agree with the NE-SW Sy, .. orientations derived from focal mechanism
inversions within the upper plate and subducting plate, implying that far-field
plate boundary forces exerted at the HSM primarily control the present-day
crustal stresses in the upper plate in this area. In contrast, the southern HSM
shows stress field rotation with depth from borehole-derived WNW-ESE/NW-
SE Symax Orientations (roughly margin-perpendicular) in the shallow crust of
upper plate to NE-SW/ ENE-WSW focal mechanism-derived Sy, orienta-
tions within the subducting plate (Figure 6b). The NE-SW/ ENE-WSW Sy, .-
orientations derived from focal mechanism inversions indicate a normal or strike-
slip tectonic regime within the subducting plate of the southern HSM. There is
one compressional event at ~25 km depth (near the subduction interface) where
the borehole-derived Sy, orientation agrees with a focal mechanism-derived
WNW-ESE Sy.ax Orientation (latitude 40.5°S; Figure 6b). This implies that
the overriding plate broadly is in a condition of horizontal compression parallel
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to convergence direction, potentially as deep as the plate interface (£10 km)
(barring localized variations) and the tectonic regime becomes more strike-slip
and normal within the subducting plate. The change in stress orientation with
depth in the southern HSM is more compatible with a theoretically mechani-
cally weak plate interface with low resolved shear stress and normal effective
stress on the plate interface. The fact that the upper plate is in the state of
horizontal compression parallel to plate convergence, on the other hand, implies
that contemporary Sy,.x Orientation is being driven by subduction of Hikurangi
Plateau beneath North Island. Taking these observations into consideration, we
propose that plate interface remains mechanically weak along the whole HSM
and that a small increase of elastic compression strain and stress caused by the
interseismically coupled southern HSM interface is sufficient to rotate Syax
orientation in the upper plate toward the subduction direction.

More recently, Illsley-Kemp et al. (2019) measured seismic anisotropy using
shear wave splitting fast orientations from earthquake data in 2005-July 2018
with M, >0. Some studies consider fast orientations as a proxy for Sg,., Ori-
entation if other significant crustal anisotropies are not present (e.g. fracturing,
faulting, grain and crustal preferred orientations). The seismic anisotropy was
derived from events 40 km deep and fast orientations were dominantly NE-SW
(margin-parallel) for most of the HSM forearc, and more ENE-WSW in the
northern and central HSM (Figure 6b). With the exception of some portions
of the central HSM, the fast directions from shear-wave splitting studies do not
agree well with the Sy, orientations we measure in the shallow boreholes.
This could mean either (a) that the shear wave splitting fast directions are
not controlled by contemporary Sy, orientation, or (b) that the fast direc-
tions are mainly controlled by structural features such as faults and the stress
state at greater depths, which may be different than the near-surface which our
study samples. In fact, propagating waves sample the volume of crust above the
hypocenter without taking the variation of anisotropic with depth into account.

Long-term tectonic deformation resulting from rapid clockwise rotation of the
Hikurangi forearc (Wallace et al. 2004) may also possibly explain the along-
strike variation in Sy, orientation. The clockwise rotation of forearc, which ac-
commodates the margin-parallel component of oblique Pacific-Australian plate
motion, results in significant tectonic transitions along the strike (Nicol et al.,
2007; Wallace et al., 2004). Tectonic regime varies from back-arc rifting within
the TVZ in the central part of North Island, strike-slip and normal faulting on-
shore of the northern and central HSM to transpression and reverse faulting at
the southern HSM (Figure 5). The rotation of Sy, orientations from margin-
parallel in the onshore central HSM to margin-perpendicular in the southern
HSM likely reflects this transition in the tectonic regime, Such that the NE-SW
SHmax Orientation in the central HSM reflects margin-normal extension due to
the transmission of slab rollback forces across the forearc and into the adja-
cent extensional back-arc rift (Wallace et al., 2012b). The clockwise rotation of
the Hikurangi forearc may also explain why our observed contemporary Sg, .«
orientation of NE-SW is not consistent with active large-scale NE-SW striking
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compressional faults in the central HSM. The imaged intervals of the central
HSM boreholes are located within the hanging walls of active NE-SW striking
compressional faults and within NE-SW oriented fault-bend fold axes identified
from seismic reflection profiles (Western Energy New Zealand, 2001; Barnes et
al., 2002). It is possible that the deformation and growing rate of these reverse
faults within the central HSM have changed through time, allowing forces ex-
erted by forearc rotation surpass the NW-SE compression stress on these active
faults. In this case, the rotation of the forearc, which accommodates the margin-
parallel component, induces a NE slip motion on these pre-existing faults. This
also suggests that these reverse faults in the context of current stress field could
be currently active as strike-/oblique-slip faults. Another possibility is that
due to frequent earthquakes in this region, the Sy, ., orientation within the
central HSM has changed from a potential NW-SE orientation perpendicular
to the margin, compatible with the orientation of observed reverse faults and
fold axes, to the contemporary NE-SW orientation subparallel to the margin.
During the interseimic period, strain and stress accumulation along the reverse
faults and subduction interface drives compression in the upper plate parallel
to convergence direction. Following great earthquakes or frequent earthquakes,
the margin-perpendicular component is reduced due to post-seismic stress re-
lease, allowing a strike-slip motion in direction of long-term oblique relative
plate motion on these faults. This implies that the stress state associated with
seismicity perturbations is quite long lasting (these boreholes are drilled over
the course of 4 years) such that stress state require a long time to recover or
the perturbations were significant enough to permanently reorient the stress. In
this scenario, the intermediate principal stress (Sy,,;,) and minimum principal
stress (S,) would switch and principal stresses re-orient in response to forces
exerted by long-term relative plate motion and fluctuations in the magnitude
of stress parallel to plate convergence, modulated by the seismic cycles. Sacks
et al. (2013) and Moore et al. (2013) used a similar concept to explain the
contrast between Sy, orientations and normal fault strikes within Kumano
Basin of the Nankai subduction zone.

Lateral variations in surface and basement topography may also play a role in
the observed along-strike variation in upper plate borehole-derived Sy, orien-
tations (Figure 6¢). Basement structures such as faults, folds, and seamounts
that are not covered by thick sediments can cause significant stress rotation at
both regional and large scales by introducing geomechanical inhomogeneities
and lateral discontinuities (Gale et al., 1984; Enever et al. 1999; Rajabi et al.,
2016a). In fact, the presence of seamounts on the incoming plate have been sug-
gested as a possible localized effect on stress field orientations and shear-wave
splitting fast directions in the offshore northern HSM (McNamara et al., 2021;
Zal et al., 2020). The SEEBASE™ model of New Zealand, a depth to basement
map based on the integrated interpretation of gravity, magnetic, borehole, and
seismic data (Figure 6¢) clearly shows a significant change in sediment thickness
overlying the basement rocks, and basement topography along the HSM mar-
gin (FROGTECH , 2014). The onshore northern and central HSM basement is
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located at depths ~9-15 km and covered by thick Neogene sediments, whereas
at the onshore and offshore southern HSM the Mesozoic greywacke basement is
uplifted and located at relatively shallow depths (<5 km), and in some locations
above sea level. Thin sediment packages directly overlying mechanically strong
basement rocks, may be more reflective of the tectonic stresses experienced by
the basement. Hence, it is possible that the basement compressional structures
striking NNE/NE-SSW/SW control the observed margin-perpendicular, NW-
SE Siimax Orientation within the shallow crust of the southern HSM.

In addition to large-scale stress variations, localized variations have been ob-
served between and within individual boreholes which could be attributed to
local active geological structures such as faults, surface topography, and vari-
able mechanical properties. For instance a localized NW-SE Sy, .. orientation
(144° £ 11°) is noted from four-arm caliper data in borehole Whakatu-1 (south
of Napier; Figure 5), perpendicular to the dominant NE-SW Sy, - orientation
of the central HSM. The NW-SE Sy, orientation in Whakatu-1 is margin-
perpendicular implying a localized compressional tectonic regime at this locale,
which agrees well with observed onshore and offshore active, NNE-SSW striking,
compressional faults in this region (Figure 5; Litchfield et al. (2014); Langridge
et al, (2016)), such as the reverse fault responsible for growth of the Cape Kid-
napper’s anticline (Hull, 1987). Furthermore, Dimitrova et al. (2016) reported a
possible locked patch in southern central HSM between shallow SSEs on the East
Coast and deep Kaimanawa SSEs west of the East Coast (Figure 1b). Downdip
changes in interseismic coupling behavior of the subduction interface and the
accumulated strain associated with the locked patch could also be influencing
the compressional tectonic regime in this region and borehole Whakatu-1.

6 Conclusions

This paper presents the first comprehensive analysis of contemporary Sy ax
orientations along the HSM, and discusses stress field orientation variability
within the context of variable tectonics and slip behavior of this subduction
margin. Sypay Orientations in the central HSM are predominately NE-SW (sub-
parallel to plate boundary), which rotates to a dominantly WNW-ESE Sy, ..
orientation in the southern HSM (approximately perpendicular to the plate
boundary). Our borehole-derived Sy, orientations agree with the maximum
contraction strain directions from GPS measurements along the HSM suggesting
that the observed stress orientations along the HSM are influenced by elastic
strain accumulation due to interseismic coupling on the Hikurangi subduction
interface. The long-term tectonic deformation arising from rapid rotation of the
Hikurangi forearc, causing reverse faulting and strike-slip in the southern part
of the margin and a combination of extension and strike-slip in the northern and
central margin and the basement topography may also be at play in influencing
the along-strike variations in observed stress orientations. In the southern HSM,
borehole-derived Sy,,,, orientations are inconsistent with Sy,,, orientations
derived from focal mechanism solutions in the subducting plate, implying that
the southern HSM interface is mechanically weak. Further interpretation of
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HSM stress state could be achieved by constraining stress magnitudes, which
will be the focus of future studies.
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