
manuscript submitted to JGR: Atmospheres

The Contributions of Shear and Turbulence to Cloud1

Overlap for Cumulus Clouds2

Anthony Sulak1,2, William Calabrase1,3, Shawn D. Ryan1, and Thijs Heus13

1Cleveland State University, Cleveland, OH4
2Michigan State University, East Lansing, MI5

3Case Western Reserve University, Cleveland, OH6

Key Points:7

• Cloud Overlap of individual cumulus clouds is a good representation of the en-8

tire cloud field9

• Explicitly including shear and turbulence yields a strong improvement over max-10

imum overlap alone11

• We develop a conceptual model that represents overlap well12

Corresponding author: Thijs Heus, t.heus@csuohio.edu

–1–



manuscript submitted to JGR: Atmospheres

Abstract13

Vertical cloud overlap, the ratio of cloud fraction by area and by volume, for cumulus14

clouds are studied using large-eddy simulations (LES) due to the inefficient, wide-range15

values of cloud overlap. We can obtain information about the cloud cover of a cloud field16

by inspecting the individual clouds in that cloud field. We start with the maximum-random17

assumption and adjust this assumption for individual clouds. From this there is an under-18

prediction which leads to the conclusion that something can be added. We extend this19

by considering physical factors of cloud overlap: area variability, vertical wind shear, and20

turbulence. We use numerical schemes to calculate the effect of each contributor based21

on cloud height. We obtain great accuracy for our model of cloud overlap. Since there22

are multiple factors of cloud overlap, we look at the percentage of how much each con-23

tributes for a given binned cloud height. Furthermore, we get acceptable agreement for24

the calculated and actual total cloud cover. As such, we show that no other major con-25

tributors for cloud overlap and cloud cover exist. We end with an empirical model to de-26

scribe the numerical schemes mentioned previously.27

1 Introduction28

Clouds are a challenging component of the atmosphere to model (Bony et al., 2015).29

This is particularly true as we enter the grey zone of convection (Honnert, Masson, &30

Couvreux, 2011; Wyngaard, 2004), where some convection is resolved, but smaller clouds31

still need to be represented in the subgrid parameterization. One approach to resolve this32

problem is to formulate the convection parameterization as a function of cloud size (e.g.,33

Neggers, 2015; Plant & Craig, 2008; Sakradzija, Seifert, & Heus, 2015). So far, these pa-34

rameterizations have mainly focused on transport instead of other components of cloud35

parameterizations, such as precipitation and radiation.36

Cloud overlap is an important component of the parameterization of cloud fields,37

for two reasons: First, the way clouds and cloud fields are stacked has significant impact38

on the cloud cover, and hence on radiation (e.g., Hogan & Illingworth, 2000). This is es-39

pecially true for shallow cumulus clouds, whose small cloud size limits the effect of the40

zenith angle on the cloud cover (Kleiss et al., 2018), although in-cloud inhomogeneity41

of liquid water tends to counteract the overlap effect a bit. Second, overlap impacts the42

formation of precipitation (Ovchinnikov, Giangrande, Larson, Protat, & Williams, 2019),43

and cumulus clouds are often on the verge of precipitating or not (Seifert & Stevens, 2010).44

Park (2017, 2018) found a significant impact of the overlap parameterization on both the45

precipitation and the radiation effects of boundary layer clouds. Previous work on cloud46

overlap has focused mostly on the overlap between cloud layers, (e.g., Barker, 2008; Ge-47

leyn & Hollingsworth, 1979; Hogan & Illingworth, 2000), or on deep convective systems48

(e.g., Oreopoulos & Khairoutdinov, 2003; Pincus, Hannay, & Evans, 2005), but recently49

the significance of overlap in shallow convection has also been recognized. Previous work50

also found that Large Eddy Simulations (LES) are able to generate cloud fields with an51

overlap ratio that compares well with observations (Corbetta, Orlandi, Heus, Neggers,52

& Crewell, 2015), and that cloud fields tend to be a lot less efficiently stacked than pre-53

viously assumed (Neggers, Heus, & Siebesma, 2011). This efficiency was expressed by54

Hogan and Illingworth (2000) using a decorrelation length ∆z0, which measures the depth55

beyond which layers are no longer perfectly stacked (maximum overlap, cmax), but shows56

no correlation in placement anymore, resulting in a random overlap (crand):57

cp = αcmax + (1− α)crand (1)

with cp the projected cloud cover, α an overlap parameter, characterized for instance as58

an exponential decay as a function of layer depth ∆z:59

α = exp

(
− ∆z

∆z0

)
(2)
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Neggers et al. (2011) found a decorrelation length around 300m, much smaller than the60

multiple kilometer range that previous studies on deep convection found.61

An alternative formulation (Brooks, Hogan, & Illingworth, 2005; Del Genio, Yao,62

Kovari, & Lo, 1996) describes the overlap as a ratio between the projected cloud cover63

and the average cloud fraction in a layer ∆z:64

r =
cv
cp
. (3)

r, which ranges between 0 and 1, then becomes the quantity to parameterize. This for-65

mulation is attractive, since cv is typically available in a convection parameterization.66

For size dependent schemes like Neggers (2015), this is also true as a function of cloud67

size. Within this formulation, Neggers et al. (2011) found that overlap is well represented68

by a ratio:69

cp = r−1cv = (1 + β∆z)−1cv (4)

with β ≈ (160m)−1, a tuning parameter. Such a formulation also makes intuitive sense,70

since the minimum possible value for r−1 is equal to one, and any irregularity in the cloud71

field adds to that, be it linear or not.72

Tuning parameters like ∆z0 and β are likely case dependent. It therefore makes73

sense to zoom in on what causes inefficient overlap in a contiguous field of clouds. Likely74

candidates include (see also Fig. 1):75

1. Differences in cloud location and cloud height between clouds. For instance, clouds76

with different locations of their maximum cloud fraction result in a less-than-maximum77

overlap. The same is true for variations in cloud top height, where the smaller clouds78

may not fully pierce through a complete grid box (See Figure 1 in Neggers et al.79

(2011)).80

2. Cloud ‘shape’, or a cloud width that is not constant with height. An obvious ex-81

ample would be cloud anvils/outflow regions for deeper convection; for shallow cu-82

mulus, clouds tend to be widest at cloud base. This is the part that is typically83

represented by maximum overlap.84

3. Wind shear may tilt clouds, affecting the overlap even for constant cloud fraction.85

4. Random turbulence yields fractal surfaces for clouds (e.g., Siebesma & Jonker, 2000),86

which generates overlap inefficiencies as well.87

In this paper, we will work towards a physics-based parameterization of overlap by88

exploring the contributions of the different processes mentioned above. Of these effects,89

all but the first one is a function of individual cloud shape, and potentially a function90

of cloud size. We will use LES to explore a variety of cases, although, as we will see, the91

results are reasonably independent of case. We will then develop a simple parameter-92

ization for cloud overlap based on our findings. The outline of the paper is as follows:93

First, we will briefly discuss the methods used, including the LES code and the cases used.94

Then, we will assess the contributions of each process mentioned above, and provide a95

parameterization for them. Finally, we will evaluate the aggregate overlap and its pa-96

rameterization: We will discuss the relative size of each effect, and the accuracy of the97

entire parameterization. We will conclude with a brief discussion of overall impact, mer-98

its, and future work.99

2 Methodology100

We are basing our analysis on cloud fields generated with MicroHH (van Heerwaar-101

den et al., 2017). This modern, fast Large Eddy Simulation model has been validated102

against a wide range of standard cases, including all the intercomparison cases used in103

this study: BOMEX (Siebesma et al., 2003), which are non-precipitating marine clouds,104
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Figure 1. Schematic illustration of different causes of overlap. Top: Overlap due to differ-

ent cloud locations. Bottom, from left to right: Overlap due to non-constant width, shear, and

turbulence.

ARM-SGP (Brown et al., 2002) a diurnal cycle over land, and RICO (vanZanten et al.,105

2011), somewhat deeper and precipitating marine clouds. Further, we are using a sub-106

set of the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation107

(LASSO; Gustafson et al., 2017) database. These are realistic and routine simulations108

of cumulus fields over the ARM-Southern Great Planes observatory in Oklahoma. From109

this LASSO database, we included 10 days from 2016 in the current study and selected110

the configurations with the best match to the observations in cloud cover and liquid wa-111

ter path. Since the simulations in the LASSO database were done on a relatively coarse112

resolution of 100m, we re-ran all cases with MicroHH, on a higher resolution.113

We simulated all cases using the forcing and settings as described in the respec-114

tive case description papers. Each simulation was run on a 25m resolution in both the115

horizontal and vertical direction, with a horizontal domain size of 25km2. For BOMEX,116

we simulated 10 hours, and discarded the first 3 as spin up. Since BOMEX is a steady117

state case, the final 7 hours are aggregated in our analysis. For RICO, we simulated 60118

hours, which allows the cloud field to deepen significantly (cloud top = 3600) and or-119

ganize (Seifert & Heus, 2013).120

As we will see, the results are applicable to all of the cases mentioned above. We121

will therefore focus on the 8th hour of RICO in the discussion below of the individual122

effects, and will use the other cases to evaluate the resulting overlap model in section 6.123

To quantify the contribution of various effects on the cloud overlap, we calculate124

and then model the inverse overlap ratio r−1 for every process. Ignoring non-linear in-125

teractions, these contributions then add up to the total inverse overlap:126

r−1tot = r−1fld + r−1shape + r−1shr + r−1turb (5)
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with the terms on the righthand side referring to the contributions of overlap inefficien-127

cies of the cloud field, mean area fluctuations with height, influence of shear, and the ef-128

fect of turbulence, respectively.129

3 Overlap of individual clouds versus cloud fields130

Before we can assess the contributions to the overlap of cloud geometry, we first131

need to study the relative contributions of the intra-cloud and inter-cloud inefficiencies132

to the cloud overlap. For this, we calculate the inverse overlap for each cloud n:133

r−1tot(n) =
Aproj(n)h(n)

V (n)
, (6)

with Aproj the projected area, h the height of, and V the volume of each cloud. In Fig.134

2, we show the relationship between the cloud overlap of individual clouds as a function135

of their height, versus the cloud overlap in that cloud field as a function of layer thick-136

ness. While we clearly see a strong correlation between the two, the relationship is not137

one-to-one. This can mostly be attributed to the variability in cloud height: If smaller138

clouds only partially fill a cloud layer, the average cloud fraction by volume cv decreases139

relative to the projected cloud fraction by area cp. To quantify this effect, we need to140

estimate the cloud area as a function of the height distribution. This is a work in progress141

by the authors, but beyond the scope of the current paper.
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Figure 2. Inverse overlap of the cloud field as a function of layer depth against the inverse

overlap of individual clouds of a particular height.

142

4 Contributions to Individual Cloud Overlap143

The next step is to quantify the various effects on cloud overlap of individual clouds.144

The inverse overlap is plotted as a function of cloud width (defined as
√
Aproj ; a differ-145

ent definition would yield similar results) in Fig. 3a; it is plotted as a function of cloud146

height in Fig. 3b. We observe that an inverse overlap of 5 or beyond is possible, espe-147

cially for the larger clouds. We also observe a clear linear relationshop between size and148

inverse overlap. However, the correlation between r−1tot and cloud height is clearly higher149

(R > 0.95) then the correlation with cloud width (R ≈ 0.74). We will therefore ex-150

press our overlap relations as a function of cloud height. While this could seemingly com-151

plicate a parameterization of overlap as a function of cloud size, it will likely actually152

help: Most spectral macrophysical models (Neggers, 2015, e.g.,) are expressed as a cloud153

core width; this in turn seems to correlate better with cloud height than with cloud width.154

The null hypothesis for individual cloud overlap is the limit case of most overlap param-155
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Figure 3. Inverse overlap of individual clouds: a) versus cloud width and b) versus cloud

height.

eterizations for contiguous clouds, that is, maximum overlap. This can be used to as-156

sess the mean shape contribution to the individual cloud overlap:157

r−1shape(n) =
A(n)max
A(n)avg

− 1, (7)

where A(n)max is the maximum area of cloud n, and A(n)avg the average area across158

its height. We subtract 1 to retrieve the effect of maximum overlap beyond the theoret-159

ical minimum.160

To quantify the influence of shear, we realign each cloud so that its center of mass161

as a function of height is constant (see Fig. 4). The effect of shear can then be estimated162

as the difference between the original inverse overlap and the inverse overlap of the re-163

aligned cloud. Finally, the effect of turbulence is estimated by creating a convex hull around

Figure 4. Schematic overview of the method to estimate a) the shear contribution and b) the

turbulence contribution to the inverse overlap.

164

each cloud (see Fig. 4), and take the difference in overlap between that hull and the orig-165

inal cloud. This is a rough estimate of the effect of turbulence, and likely an overesti-166

mation: A cloud with significant concave features (e.g., anvils) would result in spuriously167

added volume to the hull, without an increase in the projected cloud cover.168

Fig. 5 plots the actual inverse overlap of each cloud against the cloud inverse over-169

lap with only the contributions of shape (panel a), shear (b), and turbulence (c). From170

the figure it is clear that a maximum overlap assumption underestimates the inverse over-171

lap by a factor of 2, and that all effects contribute significantly to the cloud overlap. Taken172
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together (panel e), it is clear that the sum of the effects overestimates the actual inverse173

overlap. This is likely due to double counting in the convex hull estimation of the tur-174

bulence. However, a model that only includes shape and shear has a clear bias to un-175

derestimate the actual inverse overlap. Some contribution of turbulence remains neces-176

sary.
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Figure 5. Actual inverse overlap of individual clouds vs the estimated contributions of a)

shape, b) shear, and c) turbulence.

177

5 Parameterization of shear and turbulence178

While our cloud shape model is already expressed as a function of large scale pa-179

rameters, the same is not true for shear or turbulence. For shear, a simple model based180

on a cylinder tilted due to shear (Fig. 6; see also Neggers et al., 2011) relates the inverse181

overlap to the updraft speed w and the shear across the cloud ∆u:182

r−1shear =
b

l
=
h∆u

lw
, (8)

with the symbols explained in Fig. 6a. Note that this model assumes constant shear as183

a function of height, and ignores directional shear. It also assumes a constant updraft184

speed w, even though there are significant differences between updraft and remnant ve-185

locity. From Fig. 6b, it is clear that while the model shows a large spread and can clearly186

be refined in future work, the average is in line with the observed overlap due to shear.187

To develop a model for the turbulence component, we assume that each cloud can be
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Figure 6. Parameterization of shear-induced overlap: a) Schematic representation; b) Parame-

terized vs observed shear-induced overlap.

188

approximated as a fractal, here taken as a 3-dimensional version of a Koch snowflake.189
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If the cloud is sufficiently deep, the projected cloud cover of the fractal will approach the190

area of the circumscribing sphere (see Fig. 7a). Since the height of the sphere and the191

fractal are the same, the inverse overlap is equal to the ratio between the volumes of the192

fractal and the sphere, which is equal to
√
3π
2 ; see the appendix for a derivation. For smaller193

clouds, the fractal will not quite saturate the circumscribed sphere, so a decorrelation194

length scale is appropriate here:195

r−1turb(h) =

√
3π

2
· h

h0 + h
(9)

with h0 the decorrelation length, empirically estimated as 200m. Note that we use the196

ratio of the volumes in this exercise, and not the ratio of the projected areas; this is to197

avoid double counting with the shape effect. The results are shown in Fig. 7b. Like with198

the shear model, while there is a significant spread around the curve, the model tends199

to capture the overall behavior reasonably well.
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Figure 7. Parameterization of turbulence-induced overlap: a) schematic representation of a

2D-Koch snowflake and its circumscribed circle; b) Parameterized vs observed turbulence-induced

overlap.

200

5.1 Combined201

Finally, Fig. 8 shows the skill of the model in three different ways, for four differ-202

ent cases: The top row shows the observed vs. predicted inverse overlap for each cloud;203

the middle row shows the contribution of each component to the overall inverse overlap204

as a function of cloud size, and the bottom row shows a histogram of the relative error205

in predicted inverse overlap. From these graphs, we see consistently good behavior of the206

model, with a predicted inverse overlap within 10% of the correct value for more than207

80% of the clouds, and a small bias towards underpredicting. We also see that, while dif-208

ferent from case to case and size to size, all three components contribute significantly209

to the inverse overlap, and a maximum overlap assumption can only explain less than210

a third of the inverse overlap, independent of cloud size. Turbulence is a consistently strong211

contributor, which is good news as it has a mostly scale independent parameterization212

with only the saturation depth h0 as a parameter.213

6 Discussion and Conclusions214

In this study, we presented a model for the cloud overlap of cumulus convection.215

We show that the overlap is dominated by the overlap within each cloud; the cloud over-216
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Figure 8. Overall results of the entire parameterization for (left to right): BOMEX, RICO

at 8 hrs, RICO at 60 hrs, ARM at 8hrs, and ARM at 11 hrs. Top to bottom: Contributions as a

function of cloud width, overall predicted inverse overlap, and distribution of accuracy.

lap between different clouds is of secondary importance. For the intra-cloud overlap, we217

distinguish three components (shape, shear, and turbulence), each of which has a sig-218

nificant contribution. Our empirical model of these effects is able to predict the cloud219

overlap very well for a variety of cumulus cases, which gives confidence that the model220

has some generic applicability. Also, our turbulence model can be modeled as a linear221

inverse overlap with a decorrelation length of 200m; this matches well with the obser-222

vationally found value of 160m-590m (Corbetta et al., 2015).223

Beyond the cloud overlap, several other factors are to be considered for an accu-224

rate description of the radiative impact or of the generated precipitation, and these are225

areas of interest for future research. First, if our model would be applied directly, the226

implicit assumption would be that the liquid water content is homogeneous across the227

cloud. While this is clearly a risky assumption at best, it is likely to hold up better in228

a bin-macrophysical convection model where the properties of clouds as a function of cloud229

size are available: With the liquid water content known as a function of cloud size, it is230

only the variability within each cloud size and within each cloud that needs to be included,231

as opposed to the much larger variation in liquid water content between clouds of dif-232

ferent sizes.233

Second, for a radiative model, another missing factor is the solar zenith angle. For234

very shallow clouds, where the linear horizontal cloud size is much larger than the cloud235

depth, this is a simple geometric factor; for fields containing deeper clouds the sides will236

block a significant amount of sunlight as well. According to Kleiss et al. (2018), how-237

ever, this effect should be minimal for the cloud fields under current consideration.238

A The volume of a 3D Koch fractal239

A 3D Koch fractal can be generated from a equilateral tetrahedron with rib length240

s0, surface area per facet a0, and volume v0 = s3

6
√
2
. In each iteration, the facet area241

of each new tetrahedron is 1
4 times the previous facet area, so that:242

an =
an−1

4
= a0

(
1

4

)n
(A.1)

–9–
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vn =

(
an
a0

) 3
2

v0 (A.2)

And the number of added tetrahedrons is equal to:243

Tn = 4 · 6n−1 =
2

3
· 6n, (A.3)

so that the total volume Vn after n iterations is equal to:244

Vn = v0

1 +

n∑
j=1

Tj

(
1

4

) 3j
2

 = v0

1 +
1

2

n∑
j=1

(
3

4

)j . (A.4)

Taking the limit n→∞ yields:245

V∞ = 3v0 =
s3

2
√

2
. (A.5)

The circumsphere of the fractal is the same as the circumsphere of the original tetrahe-246

dron, and has a radius Rsphere =
√

3
8s, resulting in an inverse overlap ratio of:247

r−1turb =
Vsphere
V∞

=
4π
3

(
3
8

) 3
2

1
2
√
2

=
π
√

3

2
. (A.6)
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