References

Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N. Lau, and J. D. Scott (2002), The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air–Sea Interaction over the Global Oceans. J. Climate, 15 , 2205–2231, https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
Armour, K., J. Marshall, J. Scott, et al. (2016), Southern Ocean warming delayed by circumpolar upwelling and equatorward transport, Nature Geosci, 9, 549–554, https://doi.org/10.1038/ngeo2731
Barnes, E. A., and L. M. Polvani (2015), CMIP5 Projections of Arctic Amplification, of the North American / North Atlantic circulation, and of their relationship, Journal of Climate, 28, 5254-5271, https://doi.org/10.1175/JCLI-D-14-00589.1
Biastoch, A., C. W. Böning, F. U. Schwarzkopf, and J. R. E. Lutjeharms (2009), Increase in Agulhas leakage due to poleward shift in the southern hemisphere westerlies, Nature, 462, 495-498, https://doi.org/10.1038/nature08519
Biastoch, A., D. V. Sein, J. V. Durgadoo, Q. Wang, and S. Danilov (2018), Simulating the Agulhas system in global ocean models – nesting vs. multi-resolution unstructured meshes, Ocean Modelling, 121,117-131, https://doi.org/10.1016/j.ocemod.2017.12.002
Bintanja, R., et al. (2013), Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion, Nature Geoscience, 6, 376-379, https://doi.org/10.1038/ngeo1767
Bintanja, R., and F. Selten (2014), Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat,Nature 509 , 479–482, https://doi.org/10.1038/nature13259.
Blackport, R., and P. J. Kushner (2017), Isolating the Atmospheric Circulation Response to Arctic Sea Ice Loss in the Coupled Climate System, Journal of Climate, 30, 2163-2185, https://doi.org/10.1175/JCLI-D-16-0257.1
Cai, W., A. Santoso, G. Wang, G. et al. (2015), ENSO and greenhouse warming, Nature Clim Change, 5, 849–859, https://doi.org/10.1038/nclimate2743
Cattiaux, J., Y. Peings, D. Saint-Martin, N. Trou-Kechout, and S. J. Vavrus (2016), Sinuosity of midlatitude atmospheric flow in a warming world. Geophysical Research Letters, 43, 8259-8268, https://doi.org/10.1002/2016GL070309
Chemke, R., L. Zanna, and L. M. Polvani (2020), Identifying a human signal in the North Atlantic warming hole, Nature Communications, 11, 1540, https://doi.org/10.1038/s41467-020-15285-x
Chen, G., P. Zhang, and J. Lu (2020), Sensitivity of the Latitude of the Westerly Jet Stream to Climate Forcing, Geophysical Research Letters, 47, https://doi.org/10.1029/2019GL086563
cmip6-cmor-tableshttps://github.com/PCMDI/cmip6-cmor-tablesaccess date 2019/12/19
Cheng, W., J. C. H. Chiang, and D. Zhang (2013), Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 Models: RCP and Historical Simulations, J. Climate, 26,7187–7197, https://doi.org/10.1175/JCLI-D-12-00496.1
Copernicus Climate Change Service (C3S) (2017), ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS), 29.07.2020 , https://cds.climate.copernicus.eu/cdsapp#!/home
Curry, B., C. M. Lee, B. Petrie, R. E. Moritz, and R. Kwok (2014) Multiyear Volume, Liquid Freshwater, and Sea Ice Transports through Davis Strait, 2004–10, J. Phys. Oceanogr., 44, 1244-1266.
Danilov, S., G. Kivman, J. Schröter (2004), A finite-element ocean model: principles and evaluation, Ocean Model, 6 , 125–150.
Ding, Q., A. Schweiger, M. L’Heureux, et al. (2017), Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice, Nature Clim Change, 7, 289–295, https://doi.org/10.1038/nclimate3241
Donohoe, A., K. C. Armour, A. G. Pendergrass, and D. S. Battisti (2014), Shortwave and longwave radiative contributions to global warming under increasing CO2, Proceedings of the National Academy of Sciences, 111, 16700-16705
Donohue, K. A., K. L. Tracey, D. R. Watts, M. P. Chidichimo, and T. K. Chereskin (2016), Mean Antarctic circumpolar current transport measured in Drake passage, Geophys. Res. Lett., 43, 11760-11767
England, M., A. Jahn, and L. Polvani (2019), Nonuniform contribution of internal variability to recent Arctic sea ice loss, Journal of Climate , 32, 4039–4053, https://doi.org/10.1175/JCLI-D-18-0864.1
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, K. E. Taylor (2016), Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016
Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel (2017), updated daily. Sea Ice Index, Version 3.0. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center, https://doi.org/10.7265/N5K072F8. [02.04.2020].
Frölicher, T. L., J. L. Sarmiento, D. J. Paynter, J. P. Dunne, J. P. Krasting, and M. Winton (2015), Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models, J. Climate28 , 862–886, https://doi.org/10.1175/JCLI-D-14-00117.1
GISS (2019), GISS surface temperature analysis GISTEMP v4. Available online athttps://data.giss.nasa.gov/gistemp/.
Golaz, J.-C., et al. (2019), The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution, Journal of Advances in Modeling Earth Systems, 11, 2089-2129, https://doi.org/10.1029/2018MS001603
Good, S. A., M. J. Martin and N. A. Rayner (2013), EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates, Journal of Geophysical Research: Oceans, 118, 6704-6716, https://doi.org/10.1002/2013JC009067
Gordon, A., J. Sprintall, H. van Aken, D. Susanto, S. Wijffels, R. Molcard, A. Ffield, W. Pranowo, and S. Wirasantosa (2010), The Indonesian throughflow during 2004–2006 as observed by the INSTANT program, Dynam. Atmos. Oceans, 50, 115-128, https://doi.org/10.1016/j.dynatmoce.2009.12.002
Gregory, J. M., W. J. Ingram, M. A. Palmer, G. S. Jones, P. A. Stott, R. B. Thorpe, J. A. Lowe, T. C. Johns, K. D. Williams (2004), A new method for diagnosing radiative forcing and climate sensitivity,Geophysical Research Letters, 31, L03205, https://doi.org/10.1029/2003GL018747
Griffies, S. M., G. Danabasoglu, P. J. Durack, A. J. Adcroft, V. Balaji, C. W. Böning, E. P. Chassignet, E. Curchitser, J. Deshayes, H. Drange, B. Fox-Kemper, P. J. Gleckler, J. M. Gregory, H. Haak, R. W. Hallberg, P. Heimbach, H. T. Hewitt, D. M. Holland, T. Ilyina, J. H. Jungclaus, Y. Komuro, J. P. Krasting, W. G. Large, S. J. Marsland, S. Masina, T. J. McDougall, A. J. G. Nurser, J. C. Orr, A. Pirani, F. Qiao, R. J. Stouffer, K. E. Taylor, A. M. Treguier, H. Tsujino, P. Uotila, M. Valdivieso, Q. Wang, M. Winton, and S. G. Yeager (2016), OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project.Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016
Grosfeld, K., R. Treffeisen, J. Asseng, A. Bartsch, B. Bräuer, B. Fritzsch, R. Gerdes, S. Hendricks, W. Hiller, G. Heygster, T. Krumpen, P. Lemke, C. Melsheimer, M. Nicolaus, R. Ricker, and M. Weigelt (2016), Online sea-ice knowledge and data platform <www.meereisportal.de>, Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 85 (2), 143-155, https://doi.org/10.2312/polfor.2016.011
Haarsma R. J., M. J. Roberts, P. L. Vidale, C. A. Senior, A. Bellucci, Q. Bao, P. Chang, S. Corti, N. S. Fuckar, V. Guemas, J. von Hardenberg, W. Hazeleger, C. Kodama, T. Koenigk, L. R. Leung, J. Lu, J.-J. Luo, J. Mao, M. S. Mizielinski, R. Mizuta, P. Nobre, M. Satoh, E. Scoccimarro, T. Semmler, J. Small, and J.-S. von Storch (2016), High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geoscientific Model Development, 9, 4185-4208, https://doi.org/10.5194/gmd-9-4185-2016
Ham, Y.‐G. (2017), A reduction in the asymmetry of ENSO amplitude due to global warming: The role of atmospheric feedback, Geophys. Res. Lett., 44, 8576–8584, https://doi.org/10.1002/2017GL074842
Hansen, J., R. Ruedy, M. Sato, and K. Lo (2010), Global surface temperature change, Rev. Geophys., 48, RG4004, https://doi.org/10.1029/2010RG000345
Hegewald, J. (2019), seamore - cmorize simulation data to a given CMIP6 data request, https://doi.org/10.5281/zenodo.3585711
Hersbach, H., et al. (2020), The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society,https://doi.org/10.1002/qj.3803
Hirschi, J. J.‐M., B. Barnier, C. Böning, A. Biastoch, A. T. Blaker, A. Coward, et al. (2020), The Atlantic meridional overturning circulation in high‐resolution models. Journal of Geophysical Research: Oceans , 125, e2019JC015522, https://doi.org/10.1029/2019JC015522
Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu (2009), Improving the global precipitation record: GPCP version 2.1. Geophysical Research Letters 36, L17808
IPCC (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.
IPCC (2014), Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
Juckes, M., K. E. Taylor, P. J. Durack, B. Lawrence, M. S. Mizielinski, A. Pamment, J. Y. Peterschmitt, M. Rixen, and S. Sénési (2020), The CMIP6 data request (DREQ, version 01.00.31), Geosci. Model Dev., 13, 201-224, https://doi.org/10.5194/gmd-13-201-2020
Jung, T., M. J. Miller, T. N. Palmer, P. Towers, N. Wedi, D. Achuthavarier, J. M. Adams, E. L. Altshuler, B. A. Cash, J. L. Kinter III, L. Marx, C. Stan, and K. I. Hodges (2012), High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate, and seasonal forecast skill, J. Climate ,25, 3155–3172, https://doi.org/10.1175/JCLI-D-11-00265.1
Johnson, G. C., J. M. Lyman, and N. G. Loeb (2016), Improving estimates of Earth’s energy imbalance, Nat Clim Change, 6 , 639–640, https://doi.org/10.1038/nclimate3043
Kageyama, M., P. Braconnot, S. P. Harrison, A. M. Haywood, J. H. Jungclaus, B. L. Otto-Bliesner, J.-Y. Peterschmitt, A. Abe-Ouchi, S. Albani, P. J. Bartlein, C. Brierley, M. Crucifix, A. Dolan, L. Fernandez-Donado, H. Fischer, P. O. Hopcroft, R. F. Ivanovic, F. Lambert, D. J. Lunt, N. M. Mahowald, W. R. Peltier, S. J. Phipps, D. M. Roche, G. A. Schmidt, L. Tarasov, P. J. Valdes, Q. Zhang, and T. Zhou (2018), The PMIP4 contribution to CMIP6 - Part 1: Overview and over-arching analysis plan. Geosci. Model Dev., 11, 1033–1057, https://doi.org/10.5194/gmd-11-1033-2018
Kay, J. E., M. M. Holland, and A. Jahn (2011), Inter-annual to multi-decadal Arctic sea ice trends in a warming world.Geophysical Research Letters, 38, L15708, https://doi.org/10.1029/2011GL048008
Keil, P., Mauritsen, T., Jungclaus, J. et al.  (2020), Multiple drivers of the North Atlantic warming hole, Nat. Clim. Chang.,  10,   667–671, https://doi.org/10.1038/s41558-020-0819-8
Knutti, R., D. Masson, and A. Gettelman (2013), Climate model genealogy: Generation CMIP5 and how we got there, Geophys. Res. Lett., 40,1194– 1199, https://doi.org/10.1002/grl.50256
Korn, P. (2017), Formulation of an Unstructured Grid Model for Global Ocean Dynamics, Journal of Computational Physics, 339, 525-552, https://doi.org/10.1016/j.jcp.2017.03.009
Large, W. G., J. C. McWilliams, S. C. Doney (1994), Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys, 32, 363–403
Lenderink, G., A. Buishand, and W. van Deursen (2007), Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrol. Earth Syst. Sci., 11,1145-1159
Lenssen, N., G. Schmidt, J. Hansen, M. Menne,A. Persin,R. Ruedy, and D. Zyss (2019), Improvements in the GISTEMP uncertainty model, J. Geophys. Res. Atmos., 124,6307-6326, https://doi.org/10.1029/2018JD029522
Loeb N. G., S. Kato, W. Su, T. Wong, F. G. Rose, D. R. Doelling, J. N. Norris, and X. Huang (2012), Advances in understanding top-of-atmosphere radiation variability from satellite observations, Surv Geophys, 33 , 359-385
Lyu, K., X. Zhang, and J. A. Church (2020), Regional Dynamic Sea Level Simulated in the CMIP5 and CMIP6 Models: Mean Biases, Future Projections, and Their Linkages, J. Climate33,6377–6398, https://doi.org/10.1175/JCLI-D-19-1029.1
Masson, D., and R. Knutti, (2011), Climate model genealogy,Geophys. Res. Lett., 38, L08703, https://doi.org/10.1029/2011GL046864
McDonagh, E. L., B. A. King, H. L. Bryden, P. Courtois, Z. Szuts, M. Baringer, S. A. Cunningham, C. Atkinson, and G. McCarthy (2015), Continuous estimate of Atlantic Oceanic freshwater flux at 26.5 N,J. Climate, 28, 8888-8906, https://doi.org/10.1175/JCLI-D-14-00519.1
Mauritsen, T., et al. (2012), Tuning the climate of a global model,J. Adv. Model. Earth Syst., 4, M00A01, https://doi.org/10.1029/2012MS000154
Mauritsen, T., et al. (2019), Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO2,J. Adv. Model. Earth Syst.,https://doi.org/10.1029/2018MS001400
Meehl, G. A., C. A. Senior, V. Eyring, G. Flato, J.F. Lamarque, R. J., Stouffer, K. E. Taylor, and M. Schlund, (2020), Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models, Science Advances, 6, 26, https://doi.org/10.1126/sciadv.aba1981
Meinshausen, M., Z. Nicholls, J. Lewis, M. J. Gidden, E. Vogel, M. Freund, U. Beyerle, C. Gessner, A. Nauels, N. Bauer, J. G. Canadell, J. S. Daniel, A. John, P. Krummel, G. Luderer, N. Meinshausen, S. A. Montzka, P. Rayner, S. Reimann, S. J. Smith, M. van den Berg, G. J. M. Velders, M. Vollmer, and H. J. Wang (2019), The SSP greenhouse gas concentrations and their extensions to 2500, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-222
Menary, M. B., and R. A. Wood (2018), An anatomy of the projected North Atlantic warming hole in CMIP5 models, Clim Dyn, 50,  3063–3080, https://doi.org/10.1007/s00382-017-3793-8
Meredith, M., P. L. Woodworth, T. K. Chereskin, D. P. Marshall, L. C. Allison, G. R. Bigg, K. Donohue, K. J. Heywood, C. W. Hughes, A. Hibbert, A. M. Hogg, H. L. Johnson, L. Jullion, B. A. King, H. Leach, Y.-D. Lenn, M. A. Morales-Maqueda, D. R. Munday, A. C. Naveira-Garabato, C. Provost, J.-B. Sallée, and J. Sprintall (2011), Sustained monitoring of the Southern Ocean at Drake Passage: past achievements and future priorities, Rev. Geophys., 49, L05603, https://doi.org/10.1029/2010RG000348
Müller, W. A., J. H. Jungclaus, T. Mauritsen, J. Baehr, M. Bittner, R. Budich, F. Bunzel, M. Esch, R. Ghosh, H. Haak, T. Ilyina, T. Kleine, L. Kornblueh, H. Li, K. Modali, D. Notz, H. Pohlmann, E. Roeckner, I. Stemmler, F. Tian, and J. Marotzke (2018), A Higher‐resolution Version of the Max Planck Institute Earth System Model (MPI‐ESM1.2‐HR), Journal of Advances in Modeling Earth Systems, https://doi.org/10.1029/2017MS001217
O’Neill B.C., C. Tebaldi, D. P. van Vuuren, V. Eyring, P. Friedlingstein, G. Hurtt, R. Knutti, E. Kriegler, J.-F. Lamarque, J. Lowe, G. A. Meehl, R. Moss, K. Riahi, and B. M. Sanderson (2016), The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6.Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016
Notz, D., and SIMIP community (2020), Arctic Sea Ice in CMIP6.Geophysical Research Letters,https://doi.org/10.1029/2019GL086749
Petersen, M. R., X. S. Asay‐Davis, A. S. Berres, Q. Chen, N. Feige, M. J. Hoffman, et al. (2019), An evaluation of the ocean and sea ice climate of E3SM using MPAS and interannual CORE‐II forcing. Journal of Advances in Modeling Earth Systems, 11, 1438– 1458, https://doi.org/10.1029/2018MS001373
Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey (2003), The MODIS cloud products: algorithms and examples from terra, IEEE Trans Geosci Remote Sens, 41,459-473
Rackow, T., H. F. Goessling, T. Jung, D. Sidorenko, T. Semmler, D. Barbi, and D. Handorf (2018), Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability, Climate Dynamics 50, 2369, https://doi.org/10.1007/s00382-016-3192-6
Rackow, T., and S. Juricke (2020), Flow‐dependent stochastic coupling for climate models with high ocean‐to‐atmosphere resolution ratio.Q J R Meteorol Soc., 146, 284-300, https://doi.org/10.1002/qj.3674
Rackow T., D. V. Sein, T. Semmler, S. Danilov, N. V. Koldunov, D. Sidorenko, Y. Wang, T. Jung (2019), Sensitivity of deep ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0,Geosci. Model Dev., 12, 2635–2656, https://doi.org/10.5194/gmd-12-2635-2019
Rackow, T. , D. Sidorenko, H. F. Goessling, A. Timmermann, and T. Jung (2014), Modeling ENSO with ECHAM6-FESOM: Influence of the ocean resolution, Ocean Sciences Meeting 2014, Hawaii Convention Center, Honolulu, USA, 23 February 2014 - 28 February 2014, https://doi.org/10.13140/2.1.2537.9209
Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, A. Kaplan (2003), Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108 (D14),4407, https://doi.org/10.1029/2002JD002670
Reichler, T., J. Kim (2008), How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89, 303–311
Ricker, R., S. Hendricks, L. Kaleschke, X. Tian-Kunze, J. King, and C. Haas (2017), A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data. The Cryosphere, 11,1607–1623, https://doi.org/10.5194/tc-11-1607-2017
Ridderinkhof, H., P. van der Werf, J. Ullgren, H. van Aken, P. van Leeuwen, and W. de Ruijter (2010), Seasonal and interannual variability in the Mozambique Channel from moored current observations, J. Geophys. Res., 115, C06010, https://doi.org/10.1029/2009JC005619
Roach, A., K. Aagard, C. Pease, S. Salo, T. Weingartner, V. Pavlov, and M. Kulakov (1995), Direct measurements of transport and water properties through Bering Strait, J. Geophys. Res., 100, 18443-18457.
Roach, L. A., J. Dörr, C. R. Holmes, F. Massonnet, E. W. Blockley, D. Notz, T. Rackow, M. N. Raphael, S. P. O’Farrell, D. A. Bailey, and C. M. Bitz (2020), Antarctic Sea Ice Area in CMIP6, Geophysical Research Letters, 47, e2019GL086729, https://doi.org/10.1029/2019GL086729
Schauer, U., A. Beszczynska Moeller, W. Walczowski, E. Fahrbach, J. Piechura, and E. Hansen (2008), Variation of measured heat flow through the Fram Strait between 1997 and 2006, in: Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate, edited by: Dickson, R., Springer, 65-85.
Sein, D. V., S. Danilov, A. Biastoch, J. V. Durgadoo, D. Sidorenko, S. Harig, and Q. Wang (2016), Designing variable ocean model resolution based on the observed ocean variability, Journal of Advances in Modeling Earth Systems, 8, 904-916.
Sein, D. V., N. V. Koldunov, S. Danilov, Q. Wang, D. Sidorenko, I. Fast, T. Rackow, W. Cabos, and T. Jung (2017), Ocean Modeling on A Mesh with Resolution Following the Local Rossby Radius. Journal of Advances in Modeling Earth Systems, 9, 2601–2614. https://doi.org/10.1002/2017MS001099
Sein, D. V. , N. V. Koldunov, S. Danilov, D. Sidorenko, C. Wekerle, W. Cabos, T. Rackow, P. Scholz, T. Semmler, Q. Wang, and T. Jung (2018), The Relative Influence of Atmospheric and Oceanic Model Resolution on the Circulation of the North Atlantic Ocean in a Coupled Climate Model,Journal of Advances in Modeling Earth Systems, 10, 2026-2041, https://doi.org/10.1029/2018MS001327
Semmler, T., S. Danilov, T. Rackow, D. Sidorenko, J. Hegewald, D. Sein, Q. Wang, T. Jung (2017), AWI AWI-CM 1.1 HR model output prepared for CMIP6 HighResMIP, Earth System Grid Federation,http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.HighResMIP.AWI.AWI-CM-1-1-HR
Semmler, T., S. Danilov, T. Rackow, D. Sidorenko, D. Barbi, J. Hegewald, D. Sein, Q. Wang, T. Jung (2018), AWI AWI-CM 1.1 MR model output prepared for CMIP6 CMIP, version 20191219, Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.359
Semmler, T., E. Manzini, D. Matei, H. K. Pradhan, T. Jung (2019), AWI AWI-CM 1.1 MR model output prepared for CMIP6 PAMIP pdSST-pdSIC, version 20191219, Earth System Grid Federation,https://doi.org/10.22033/ESGF/CMIP6.12040
Sidorenko, D., T. Rackow, T. Jung, T. Semmler, D. Barbi, S. Danilov, K. Dethloff, W. Dorn, K. Fieg, H. F. Goessling, D. Handorf, S. Harig, W. Hiller, S. Juricke, M. Losch, J. Schröter, D. V. Sein, Q. Wang, (2015), Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate, Climate Dynamics, 44,757-780.
Sidorenko D., N. V. Koldunov, Q. Wang, S. Danilov, H. F. Goessling, O. Gurses, P. Scholz, D. V. Sein, E. Volodin, C. Wekerle, T. Jung (2018), Influence of a salt plume parameterization in a coupled climate model, Journal of Advances in Modeling Earth Systems, 10,https://doi.org/10.1029/2018MS001291
Smedsrud, L. H., R. Ingvaldsen, J. E. Ø Nilsen, and Ø. Skagseth (2010), Heat in the Barents Sea: transport, storage, and surface fluxes,Ocean Sci., 6, 219-234.
Smeed, D., B. Moat, D. Rayner, W. Johns, M. Baringer, D. Volkov, and E. Frajka-Williams (2019), Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2018, https://doi.org/10.5285/8cd7e7bb-9a20-05d8-e053-6c86abc012c2
Smith D. M., J. A. Screen, C. Deser, J. Cohen, J. C. Fyfe, J. Garcia-Serrano, T. Jung, V. Kattsov, D. Matei, R. Msadek, Y. Peings, M. Sigmond, J. Ukita, J.-H. Yoon, X. Zhang (2018), The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: investigating the causes and consequences of polar amplification,Geoscientific Model Development Discussions,https://doi.org/10.5194/gmd-2018-82
Spreen, G., L. Kaleschke, and G.Heygster (2008), Sea ice remote sensing using AMSR-E 89 GHz channels, J. Geophys. Res., 113, C02S03, doi:10.1029/2005JC003384
Steele, M., R. Morley, and W. Ermold (2001), PHC: A Global Ocean hydrography with a high-quality Arctic Ocean, Journal of Climate, 14, 2079-2087
Stevens, B., M. Giorgetta, M. Esch, T. Mauritsen, T. Crueger, S. Rast, M. Salzmann, H. Schmidt, J. Bader, K. Block, R. Brokopf, I. Fast, S. Kinne, L. Kornblueh, U. Lohmann, R. Pincus, T. Reichler, and E. Roeckner (2013), Atmospheric component of the MPI-M earth system model: ECHAM6.J Adv Model Earth Syst, 5 , 146–172
Stroeve, J., and D. Notz (2015), Insights on past and future sea-ice evolution from combining observations and models, Global and Planetary Change, 135 , 119-132
Timmermann, A., S. An, J. Kug, et al. (2018), El Niño–Southern Oscillation complexity. Nature,  559,  535–545. https://doi.org/10.1038/s41586-018-0252-6
Tokarska, K. B., M. B. Stolpe, S. Sippel, E. M. Fischer, C. J. Smith, F. Lehner, and R. Knutti (2020), Past warming trend constrains future warming in CMIP6 models, Science Advances, 6,https://doi.org/10.1126/sciadv.aaz9549
Tonboe, R. T., S. Eastwood, T. Lavergne, A. M. Sørensen, N. Rathmann, G. Dybkjær, L. T. Pedersen, J. L. Høyer, and S. Kern (2016), The EUMETSAT sea ice concentration climate data record, The Cryosphere, 10,2275–2290, https://doi.org/10.5194/tc-10-2275-2016
Trenberth, K. E., J. T. Fasullo, K. von Schuckmann, and L. Cheng (2016), Insights into Earth’s energy imbalance from multiple sources.Journal of Climate, 29, 7495-7505, https://doi.org/10.1175/JCLI-D-16-0339.1
Turner, J., J. S. Hoskins, T. J. Bracegirdle, G. J. Marshall, and T. Phillips (2015), Recent changes in Antarctic sea ice,Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373, 20140163, https://doi.org/10.1098/rsta.2014.0163
de la Vara, A., W. Cabos, D. V. Sein, D. Sidorenko, N. V. Koldunov, S. Koseki, P. M. M. Soares, and S. Danilov (2020), On the impact of atmospheric vs oceanic resolutions on the representation of the sea surface temperature in the South Eastern Tropical Atlantic, Clim Dyn , https://doi.org/10.1007/s00382-020-05256-9
Wang, C., L. Zhang, S. K. Lee, L. Wu, and C. R. Mechoso (2014), A global perspective on CMIP5 climate model biases. Nature Climate Change, 4, 201-205, https://doi.org/10.1038/nclimate2118
Wang, Q., S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang, T. Jung, J. Schröter (2014), The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model,Geosci Model Dev, 7, 663–693
Wang, Q., C. Wekerle, S. Danilov, X. Wang, and T. Jung (2018), A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4, Geosci. Model Dev., 11, 1229-1255.
Weaver, A. J., J. Sedláček, M. Eby, K. Alexander, E. Crespin, T. Fichefet, G. Philippon-Berthier, F. Joos, M. Kawamiya, K. Matsumoto, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, K. Zickfeld (2012), Stability of the Atlantic meridional overturning circulation: A model intercomparison. Geophys. Res. Lett., 39, L20709.
Weijer, W., W. Cheng, S. S. Drijfhout, A. V. Fedorov, A. V. Hu, L. C. Jackson, W. Liu, E. L. McDonagh, J. V. Mecking, and J. Zhang (2019), Stability of the Atlantic Meridional Overturning Circulation: A Review and Synthesis, Journal of Geophysical Research: Oceans,124, 5336-5375, https://doi.org/10.1029/2019JC015083
Wekerle, C., Q. Wang, S. Danilov, T. Jung, and J. Schröter (2013), The Canadian Arctic Archipelago throughflow in a multiresolution global model: Model assessment and the driving mechanism of interannual variability, J. Geophys. Res. Oceans, 118, 4525–4541, https://doi.org/10.1002/jgrc.20330
Wild, M. (2020), The global energy balance as represented in CMIP6 climate models, Clim Dyn,  55,  553–577, https://doi.org/10.1007/s00382-020-05282-7
Woodgate, R. A. (2018), Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data, Progress in Oceanography , 160 , 124-154
Zampieri, L., and H. F. Goessling (2019), Sea ice targeted geoengineering can delay Arctic sea ice decline but not global warming,Earth’s Future, 7, https://doi.org/10.1029/2019EF001230
Zappa, G., L. C. Shaffrey, and K. I. Hodges (2013), The ability of CMIP5 models to simulate North Atlantic extratropical cyclones, Journal of Climate, 26, 5379­-5396, https://doi.org/10.1175/JCLI­D­12­00501.1
Zappa, G., and T. G. Shepherd (2017), Storylines of Atmospheric Circulation Change for European Regional Climate Impact Assessment,Journal of Climate, 30, 6561-6577, https://doi.org/10.1175/JCLI-D-16-0807.1