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Introduction  

This material is additional detail that complements the main manuscript. We describe the 

forcings used by the model simulations and properties of those models. There are extra 

figures to show changes in individual models to help understand the multi-model means 

and medians. 

 

Text S1 

Forcing datasets 

The CMIP6 HighResMIP (Haarsma et al. 2016) historic atmosphere-only forcings 

(experiment highresSST-present) were described in Roberts et al. (2020). Here we 

describe the coupled model forcings, together with the future forcing. 

For nearly all models, the HighResMIP recommendations have been followed for the 

forcing datasets (Haarsma et al. 2016), including using simplified aerosol optical 

properties. These optical properties are a combination of a model constant background 

natural aerosol (typically diagnosed from a pre-industrially-forced simulation), together 

with time-varying volcanic and anthropogenic aerosol from the Max Planck Institute 

Aerosol Climatology version 2 (MACv2-SP; Stevens et al. 2015) scheme. The latter uses 

sulphate aerosol patterns to scale the aerosol forcing magnitude over time. Note that 

this forcing by design excludes other natural aerosol variability (such as dust) and hence 

the simulations do not explicitly account for any variability driven by such forcing (Reed 

et al. 2019), apart from that which is integrated in the SST forcing itself. The exception to 

this is the CNRM-CM6-1 model, which uses its own aerosol scheme (Voldoire et al. 

2019).  

The CMIP6 (Eyring et al. 2016) historic, time-varying forcings for solar (Matthes et al. 

2017), ozone concentration (Hegglin et al. 2016) and greenhouse gases (GHG) 

(Meinshausen and Vogel 2016) are used. The land surface properties and land use 

remain constant, representative of the year 2000 using a repeating seasonal cycle. Future 

forcings use the CMIP6 SSP585 scenario from 2015-2050. 

HighResMIP produced a future SST and sea-ice dataset for 2015-2050 by 

combining large-scale patterns of warming from a group of CMIP5 RCP8.5 coupled 

simulations, together with a base state and interannual variability from the historic 

observed data. This is not meant to represent a real future projection, but is a way to test 

whether models respond in a similar way to a given future forcing, in contrast to coupled 

models where the atmosphere-ocean-sea-ice system is free to evolve to a different mean 

state. 

 

 

Text S2 

Additional information on atmosphere-only simulations 

The NICAM16 model is notable for its large TC frequencies (see Fig. S1), and this is likely 

due to having no convective parameterisation and hence a stronger likelihood of a warm 
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core signal in geopotential height between 500-250 hPa due to column uplift. As noted 

previously, the trackers have been applied uniformly across the models rather than being 

tuned individually. 

The changes in activity in the atmosphere-only future projections are shown in Fig. S2. 

 

Text S3 

Individual model performance 

The track density bias and future change for each individual model is shown in Fig. S3 

and S4 for atmosphere-only and coupled model simulations respectively. It is the median 

values at each point from the figures in columns 2 and 4 that make Fig. 3. 

The normalized probability density function (pdf) of 10m wind speeds at peak intensity 

from each model for the period 1979-2014 are shown in Fig. S5, together with 

observations. The bias value used in Fig. 4 is derived by summing the root mean square 

error between model and observations over each 5 ms-1 bin. 

The pdfs of the difference in 10m wind speeds between periods 2020-2050 and 1950-

1980 are shown in Fig. S6. There is no clear signal of an increase in more intense storms 

at the expense of weaker ones across the multi-model ensemble. 
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Figure S1. Tropical cyclone frequency (mean storms per year during May-November in 

Northern Hemisphere, and October-May for the Southern Hemisphere, for HighResMIP 

atmosphere-only simulations meaned over 1979-2014 from models, as diagnosed using 

the TempestExtremes algorithm, and observations. The donut chart is divided into ocean 

basins, the totals in the centre are (NH, SH) mean storm counts per year. The thickness of 

the donut is scaled to the total NH TC observed frequency (i.e. donuts thicker than in 

panel (o1) indicate more NH TCs while thinner indicate fewer NH TCs.). Most of these 

models are shown in Roberts et al. 2020 but now including MRI-AGCM3-2 and 

NICAM16. 
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Figure S2: Summary plot for atmosphere-only simulations of the percentage differences 

in activity between future (2020-2050) and historic (1950-1980) periods using four 

measures, with each bar including data from all models. Blue are lower resolution and 

red higher resolution groups of models. Metrics are: (frequency and ACE) using TRACK 

and TempestExtremes (TempExt).  
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Figure S3. Model tropical cyclone track density (storm transits per month per 4 degree 

cap) from atmosphere-only simulations using TempestExtremes: for each pair of models, 

the bias for model in the historic period (1979-2014), and the difference between future 

– historic (2020-2050 – 1950-1980), are shown respectively. The observed period used is 

1979-2014. Note ECMWF does not have future simulation data, and CMCC-CM2-(V)HR4 

does not contain the required diagnostics for TempestExtremes.  
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Figure S4. As Fig. S3 but for coupled simulations using TempestExtremes. 
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Figure S5. Pdf of 10m wind speed from (a) atmosphere-only and (b) coupled simulations 

over the period 1979-2014 using TempestExtremes (apart from CMCC-CM2 which uses 

TRACK).  
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Figure S6. Change in the 10m wind speed pdf between 1950-1985 and 2015-2050 in (a) 

atmosphere-only and (b) coupled simulations. The dashed lines show the lower 

resolution models, and the solid lines the higher resolution models.  
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Institution MOHC, 
UREAD, 
NERC 

EC-Earth 
KNMI, 
SHMI, 
BSC, 
CNR 

CERFAC
S 

MPI-M CMCC ECMWF NICAM MRI CESM 

Model 
name 

HadGEM
3-GC31 

EC-
Earth3P 

CNRM-
CM6-1 

MPI-
ESM1-2 

CMCC-
CM2-
(V)HR4 

ECMWF-
IFS 

NICAM1
6 

MRI-
AGCM3-
2 

CESM1-3 

Resolutio
n names 

LM, MM, 
HM 

LR, HR LR, HR HR, XR HR4, 
VHR4 

LR, HR 7S, 8S H, S LL, HH 

Model 
atmosphe
re 

MetUM IFS 
cyc36r4 

ARPEGE
6.3 

ECHAM6
.3 

CAM4 IFS 
cyc43r1 

NICAM1
6 

MRI-
AGCM3-
2 

CAM5 

Atmos 
dynamica
l scheme 
(grid) 

Grid 
point 
(SISL, 
lat-lon) 

Spectral 
(linear, 
reduced 
Gaussian
) 

Spectral 
(linear, 
reduced 
Gaussian) 

Spectral 
(triangula
r, 
Gaussia
n) 

Grid 
point 
(finite 
volume, 
lat-lon) 

Spectral 
(cubic 
octohedra
l, reduced 
Gaussian
) 

non-
hydrosta
tic, 
icosahe
dral, 
finite 
volume 

Spectral 
(linear, 
Gaussia
n) 

Finite 
volume, 
spectral 
element 

Atmos 
grid 
name 

N96, 
N216, 
N512 

Tl255, 
Tl511 

Tl127, 
Tl359 

T127, 
T255 

1°x1°, 
0.25°x0.
25° 

Tco199, 
Tco399 

glevel-7, 
8 

Tl319, 
Tl959 

1.25°x0.9°, 
0.25°x0.25
° 

Atmos 
mesh 
spacing 
(0N), km 

208, 93, 
39 

78, 39 156, 55 100, 52 100, 28 50, 25 56, 28 60, 20 100, 28 

Atmos 
nominal 
res 
(CMIP6) 

250, 100, 
50 

100, 50 250, 50 100, 50 100, 25 50, 25 100, 50 50, 25 100, 25 

Atmos 
model 
levels 
(top) 

85 (85 
km) 

91 (0.01 
hPa) 

91 (78.4 
km) 

95 (0.01 
hPa) 

26 (2 
hPa) 

91 (0.01 
hPa) 

40 km 64 (0.01 
hPa) 

30 (3 hPa) 

Ocean 
resol 
(degree) 

1, 0.25, 
0.08 

1, 0.25 1, 0.25 0.4, 0.4 0.25, 
0.25 

1, 0.25 N/A N/A 1, 0.1 

Analysis 
grid 

Native Regrid  

0.7x0.7, 
0.35x0.3
5 

Regrid 

1.4x1.4, 
0.5x0.5 

Native  

 

Native Regrid 

1x1, 
0.5x0.5 

Regrid Native Native 
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Ensemble 
size 

3 3 1 1 1 3 1 1 1 

Table S1. Summary of models and their properties as used in this work following the 

CMIP6 HighResMIP experiment design. SISL = semi-implicit, semi-Lagrangian.   
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