Changes in Flood Dynamics in the Lower Mekong River Basin Due to Upstream
Flow Regulation
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1. Introduction 2. Models: HIGW-MAT? (1°) and CaMa-Flood? (10km
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tributaries are planned to be completed by 2030 (Fig. 1).
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In this study, we address the following two questions:

1. What is the role of seasonal flood pulse and TSR flow
reversal in modulating the TWS variations in the MRB?
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2. What are the potential impacts of changes in flood pulse
due to upstream flow regulation on river-lake flood
inundation dynamics in the LMRB?
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The modeling framework used comprises of a global
hydrological model (HiGW-MAT') and a river-floodplain
routing model (CaMa-Flood?). GRACE data are also used.
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Fig 2: A schematic depiction of various hydrological processes (soil moisture movement, crop, and groundwater dynamics)
simulated by HIGW-MAT! model (a) and the schematic of the treatment of river-floodplain geometry in CaMa-Flood? model.
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Fig. 3: (a, b) Comparison of simulated | Fig. 4: Comparison of simulated terrestrial water storage (TWS) variations | |Fig. S: Effects of potential flow regulation| | Fig. 6: (A) Changes in flood occurrence during an average
flood occurrence (number of months) with GRACE-based TWS, and role of river-floodplain storage on TWS by different degree at the dam location year; (B) changes in flooded areas under different degrees of
with satellite-based data; (c-g) dynamics over the entire MRB (top) and only for the lower portion of the shown in Fig. 6 on streamflow dynamics ||flow regulation and altered peak timing (one month early
simulated and observed water levels. basin shown in Fig. 3 (bottom). at selected locations in the LMRB. and delayed); (C) same as in (A) but for dry and wet years.
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