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Models and electromagnetic field calculations

0.1 Ocean state estimation framework

The modeling system used to generate the data analyzed for the purpose of this

study is briefly described here. We utilize a re-run of the latest version of the Estimat-

ing the Circulation & Climate of the Ocean (ECCO) framework, which is based on the

Massachusetts Institute of Technology general circulation model (MITgcm) from 1992 to

2015 [Fukumori et al., 2017]. The ECCO framework reconstructs the history of the ocean

over the recent satellite era by filling in the gaps of incomplete observations in a dynam-

ically and kinematically consistent manner [Stammer et al., 2016] using the MITgcm and

its adjoint-based data assimilation capabilities. Initial conditions and model parameters

for the MITgcm runs performed here are determined by ECCO-Production, version 4 in

revision 3 (ECCOv4r3; Fukumori et al., 2017). The MITgcm uses the so-called LLC90

grid, which is at a nominal 1o (0.5o at equator) resolution with 50 vertical levels. The

model features curvilinear Cartesian coordinates (Forget et al., 2015 - see their Figs. 1-3),

rescaled height coordinates [Adcroft and Campin, 2004], and a partial cell representation

of bottom topography [Adcroft et al., 1997]. The MITgcm uses a dynamic/thermodynamic

sea ice component (Menemenlis et al., 2005; Losch et al., 2010; Heimbach et al., 2010) and

a nonlinear free surface with freshwater flux boundary conditions [Campin et al., 2004].

The wind speed and wind stress are specified as 6-hourly varying input fields over a 24
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year period (1992-2015). There are 14-day adjustments to the wind stress, wind speed,

specific humidity, shortwave downwelling radiation, and surface air temperature. These

adjustments are based on estimated prior uncertainties for the chosen atmospheric reanaly-

sis [Chaudhuri et al., 2013], which is ERA-Interim [Dee et al., 2011]. The net heat flux is

then computed via a bulk formula.

The least squares problem solved by the ECCO framework utilizes the method of

Lagrange multipliers through iterative improvement, which relies upon a quasi-Newton

gradient search [Nocedal, 1980; Gilbert and Lemarechal, 1989]. The tangent linear model

(Jacobian) and its transpose (the adjoint) are needed to solve for the Lagrange multipliers.

Algorithmic (or automatic) differentiation tools [Griewank, 1992; Giering and Kaminski,

1998] have allowed for the practical use of Lagrange multipliers in a time-varying non-

linear inverse problem such as the one for the ocean because the discretized adjoint equa-

tions no longer need to be explicitly hand-coded. Each of the data points in the time in-

terval of 1992-2015 is weighted by a best-available estimate of its error variance. The ob-

servational data assimilated into the ECCO framework to arrive at the model’s objective–

to reconstruct the ocean’s historical conditions–are discussed in Wunsch and Heimbach

[2013]. These data include satellite-derived ocean bottom pressures, sea ice concentra-

tions, sea surface temperatures, sea surface salinities, sea surface height anomalies, and

mean dynamic topography, as well as profiler- and mooring-derived temperatures and

salinities [Fukumori et al., 2017]. The control variables that are solved for by ECCO in-

clude the initial condition of the velocities, sea surface heights, temperatures, and salini-

ties; time-mean three-dimensional Redi [Redi, 1982] coefficients, Gent-McWilliams [Gent

and McWilliams, 1990] coefficients, and vertical diffusivities [Gaspar et al., 1990]; and

time-varying two-dimensional surface forcing fields. Fifty-nine iterations in the optimiza-

tion run of ECCO were performed to arrive at the solution we start from. Schemes for

calculating the conductivity and specific heat at each time step as the model runs are

taken from the TEOS-10 package [MacDougall and Barker, 2011]. The relationship of

the conductance and conductivity transport to electromagnetic fields is described below.

0.2 Calculation of electromagnetic fields

Ohm’s Law for a moving conductor,

J = σ (E + u × F) , (1)
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is a vector equation describing the electric current density J generated by an electric field

E and/or the velocity u of the conducting fluid as it moves through the magnetic field F,

which we take to be the prescribed background main magnetic field; the total magnetic

field B = F + b includes a component b associated with J that is neglected in this equa-

tion. When the flow velocity is not considered, (1) reduces to J = σE, and the electrical

conductivity σ can be observed as simply the ratio of J and E, as might be obtained from

in situ measurements, for example. Alternatively, in experiments where σ is observed, one

may infer instead the flow velocity components u. Hence, it is fairly direct to see how in

situ electromagnetic (EM) observations can be used to infer or constrain ocean conductiv-

ity and/or velocity.

As the first departure from these truly in situ observations, one can describe config-

urations where EM observations on the seafloor, for example, can be used to estimate bulk

integrated ocean parameters. Consider a controlled electric current source on the seafloor

and assume the cable/antenna length is of a scale exceeding that of the ocean thickness.

The electrical currents return throughout the water column and their amplitude will be

modulated by any changes in the conductance. We see then a potential observational ad-

vantage as this seafloor system can be used to monitor depth integrated ocean parameters.

Where the conductivity fluctuates due to change in water temperature, for example, this

system could be regarded as a bulk thermometer of ocean temperature. Using an alternat-

ing current source to remove problems such as electrode drift, very high accuracy could

be achieved. One would likely operate this system at frequencies low enough such that

the ocean appears “electrically thin,” meaning that the electromagnetic wavelengths in the

ocean are much larger than the ocean thickness such that the return electric currents reach

through the water column as described. The associated period increases with conductance,

and therefore typically also with ocean thickness, but does not exceed 10 minutes even in

the thickest ocean regions [Tyler, 2017].

One need not, however, have in situ or seafloor observations of J and E in order to

make parameter estimates. Maxwell’s equations can be combined with (1) into a govern-

ing electromagnetic induction equation:

∂tB = ∇ ×
[
u × B −

1
µ0σ
∇×B

]
, (2)

where µ0 is the vacuum permeability constant. Here the opportunity for inferring the

ocean parameters σ, u from remote observations of B is expressed. Specialized forms of
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the induction equation appropriate for large scales near the Earth’s surface are described

in detail in Tyler [2017]. Even when due to electric currents within the ocean, the mag-

netic fields pass through sea ice and can reach satellite altitudes. But because of geomet-

ric attenuation away from the sources, the fields associated with features having length

scales much smaller than the satellite altitude will be reduced. Hence, the remote mag-

netic fields mostly describe depth-integrated, large-scale ocean features. One can see in

the specialized forms of the induction equation [Tyler, 2017] that the ocean parameters

that are potentially inferred are the conductance Σ =
∫
h
σdr and the conductivity transport

Tσ =
∫
h
σudr.

One can regard the electric currents in the ocean (and their associated magnetic

fields which reach beyond the ocean) as generated by either a time-dependent component

of the magnetic field incident on the ocean surface, or as due to the ocean flow whereby

a small part of the flow’s kinetic energy is spent driving these currents. The first process

is referred to as electromagnetic ’induction’ and a very common application involves mag-

netic fields incident on the ocean due to electric currents in the ionosphere and magneto-

sphere. One can regard the induction process as one where electric currents at one loca-

tion (e.g. the ionosphere) entrain electric currents in another conductor (e.g. the ocean)

through the connection of their Coulomb clouds which can reach over great distance and

even through insulators. The second process is referred to as ’motional induction’ and

can be loosely regarded as due to the tendency of a moving electrical conductor to en-

train a permeating magnetic field. In the case of a perfect conductor, the magnetic field is

regarded as ’frozen in’ and moves with the conductor. The ’frozen in’ scenario is not typ-

ically achieved in ocean applications as the conductivity is not high enough to reduce the

importance of the magnetic diffusion term (the last term in (2)).

Finally, for the purposes of this paper it should be noted that while Σ is a parameter

potentially recoverable from either induction or motional induction processes, Tσ can be

recovered/constrained only in processes of motional induction. Because Σ and Tσ might

be inferred in different and varying conditions that also involve a range of expected errors,

in this study we shall consider the addition of Σ and Tσ to the GAM separately and with

prescribed reference error levels.
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0.3 Generalized Additive Model specification

We present scatterplots of the 1992-2015 averages of the ocean heat content (OHC)

versus each of its potential predictors in Fig. S1, including the aforementioned electro-

magnetic variables. The strongest correlation is between OHC and the seafloor depth (Fig.

S1a). There is a fairly good correlation between OHC and sea surface height anomaly,

as has been noted in previous studies (Fig. S1b). There is a strong correlation between

OHC and both bottom pressure (Fig. S1c) and conductance (Fig. S1d). Ekman transport

convergence is known to be related to ocean heat uptake [Buckley et al., 2015] and the di-

vergence of the conductivity transport, ∇ · Tσ , is related to heat transport convergence

through the velocity field. It is expected that ∇ · Tσ would be related to the time rate of

change in OHC, not OHC itself. This is true in the ECCO output, as ∇ · Tσ is poorly cor-

related with OHC (Fig. S1e), and is therefore excluded from the rest of our analysis. Each

individual component of Tσ is poorly correlated with OHC, but a marginally fair correla-

tion between OHC and |Tσ | (Fig. S1f) justifies the exploratory use of |Tσ | in our GAM.

The scatterplots shown in Fig. S1 look virtually identical when either monthly or annual

averages of each quantity are considered, and their correlations are qualitatively the same.

This motivates our use of a Generalized Additive Model (GAM) of the form:

ˆOHC = f0 + f1( ˆSSH) + f2(p̂b) + f3(Σ̂) + f4(Ĥ) + f5(|T̂σ |) + g( ˆSSH, p̂b, Σ̂, Ĥ, |T̂σ |) (3)

ˆSSH = SSH(η f ac + εη f ac )θ(λ − λz) + εSSH

p̂b = pb(m + εm) + εpb

Σ̂ = Σ(b + εb)θ(ĜΣ(b + εb)) + εΣ

Ĥ = H + εH

|T̂σ | = |Tσ(b + εb)|θ(Ĝ |Tσ |(b + εb)) + ε |Tσ |

θ(x) =


1, if x ≥ 0

0, if x < 0

where fi(·) for i = 0, ..., 6 are smoother functions, g(·) is the sum of tensor products of

each cross-pairwise combination of arguments (i.e., squares of each variable are not in-

cluded), the ·̂ indicates a measurement (without is the truth), the variables with arguments

and without a ·̂ are derived from the quantities that a satellite measures (arguments being

intermediate quantities that are inferred), and εX indicates measurement error for variable

X . SSH is a function of all of the correction factors (η f ac) involved in the retrieval algo-
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rithm and post-processing from satellite altimetry (e.g., the tides). SSH has been observed

over poleward latitudes (λ) of λz = 66o for only a subset of the history of satellite al-

timetry. The bottom pressure pb is a function of the mass (m) inferred from the retrieval

algorithm from satellite gravimetry. The conductance Σ and conductivity transport Tσ are

functions of the magnetic field b inverted from the retrieval algorithm and post-processing

from satellite magnetometry; the functions that indicate whether these inversions are pos-

sible (when ≥ 0) are represented by ĜΣ and Ĝ |Tσ | respectively. The accuracy in which Σ

and/or Tσ may be estimated from satellite magnetic data has not yet been established,

so we only examine sensitivities of the RMSE to example values. To do this for each

variable in (3), random noise is selected from a normal distribution with mean zero and

standard deviation equal to various levels (εX in Eq. 3 for each variable X). This noise is

added to the predictors in (3) because the satellite data carry the majority of the observa-

tional uncertainties. OHC is re-estimated using the GAM approach with the added noise.

The standard deviations (i.e., measurement errors) are set to be εSSH = 1 cm, εpb
= 2 bar,

εΣ = 3 S, εH = 1 m, and ε |Tσ | = 0.5 S m s−1 for the sensitivity calculations.
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Figure 1. Scatterplots between ocean heat content (OHC - units in J m−2) and (a) the seafloor depths (units

in meters), (b) the sea surface heights (units in meters), (c) the bottom pressures (units in bars), (d) the con-

ductances (units in S), (e) the magnitudes of the divergences of the conductivity transports (units in S s−1),

and (f) the magnitudes of the conductivity transports (units in S m s−1). The darker blue colors indicate there

is a greater density of dots. Also listed are the correlations between each of the quantities plotted (corr).
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