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1. OCO-2 filtering and bias correction

The v10 MIP assimilates OCO-2 retrievals produced by the Atmospheric Carbon Ob-32

servations from Space (ACOS) B10 (O'Dell et al., 2012; Kiel et al., 2019) algorithm.33

The algorithm retrieves column average dry-air mole fraction of CO2 in the atmosphere34

(XCO2) using solar reflectance spectra centered around 1.6 and 2.0 µm for CO2 and 0.7635

µm for O2 to estimate the air mass. The retrievals optimize a state vector of 60 elements36

with nine parameters related to clouds and aerosols, including retrieved aerosol optical37

depth (AOD). The post-retrieval data processing also includes a quality filtering and a38

bias correction procedure. The filtering of bad quality data is made by applying a series39
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of threshold-based filters (Kiel et al., 2019). Figure S1b shows the fraction of Dec–Mar40

data that passed all the quality filter tests. Figure S1d,f shows retrieved AOD by OCO-241

for Dec–Mar, before and after quality filtering, respectively.42

The parametric bias correction is derived from a multivariate regression between XCO243

spurious variability and parameters in the retrieval state vector. The bias correction over44

western NTA during Dec–Mar is 2.7 ppm on average (Figure S1a). Errors in retrieved45

surface pressure with respect to reanalyses, the dP term, contribute about 1 ppm over west46

Africa (Figure S1c) while the dust, water cloud, and sea salt (DWS) aerosol term adds47

slightly less than a 1 ppm (Figure S1e). The bias correction is defined globally, and NTA48

lacks in situ validation data. One possible explanation for the positive flux biases in LNLG49

inversions might be that this correction is too large in the version 10 OCO-2 product, and50

has also been too large in earlier version. We looked at the relationship between NTA51

fluxes estimated during the dry season and posterior XCO2 simulated by the v10 MIP. We52

subtracted XCO2 averaged for the entire globe except for over NTA from that averaged53

over NTA for each inversion to isolate at NTA anomalies, as the inversions differ widely54

on global average posterior XCO2. We find a linear relationship with higher posterior55

XCO2 resulting from higher fluxes, and the LNLG experiment having the highest XCO256

and fluxes during these 4 months (DJFM, Fig. S2). The linear regression of the individual57

model points has an r2 of 0.56 and a slope of 4.16 PgC yr−1 per ppm. This slope implies58

that a flux error of 1 PgC yr−1 could result from an XCO2 bias of +0.75 ppm if entirely59

within DJFM, or +0.25 ppm if the bias persisted all year. We calculated the same NTA60

XCO2 anomaly from the observations, both before and after the bias correction, and show61

these as vertical lines in Fig. S2. The bias correction leads to an increase of 0.73 ppm for62

the NTA XCO2 anomaly.63
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2. Fire emission estimates

We compare three different bottom-up fire emission estimates that are available for the64

African continent in 2016, FireCCISFD11, MCD64A1 (Ramo et al., 2021), and GFED4s65

(van der Werf et al., 2017). We show burned area and monthly emissions for the NTA66

region only (Fig. S3). The Global Fire Emissions Database with small fires (GFED4s) uses67

the 500 m MODIS MCD64A1 Collection 5.1 (C5.1) burned area product and additional68

small-fire burned areas derived using active fire detections. Burned area is combined with69

fuel load and fuel consumption estimates based on the Carnegie–Ames–Stanford Approach70

(CASA) biogeochemical model to estimate emissions at 0.25◦x0.25◦ (van der Werf et al.,71

2017). van Wees and van der Werf (2019) adapted the GFED modelling framework to72

calculate emissions at 500 m, and used MCD64A1 C6 burned area. The FireCCISFD1173

and MCD64A1 emission estimates are both based on the 500-m fire emission model (van74

Wees & van der Werf, 2019), where the MCD64A1 estimate is based on MODIS MCD64A175

500-m burned area and the FireCCISFD11 estimate is based on the Sentinel-2 20-m burned76

area product, which detects 80 % more burned area than MCD64A1. While the MCD64A177

C6 product includes more burned area than C5.1, GFED4s still includes more burned area78

because of the small fire algorithm (Fig. S3A).79

The combination of lower burned area and the higher resolution of the 500 m model led80

to a net reduction in emissions compared to GFED4s, as illustrated for NTA in Figure81

S3B. The annual total NTA emissions for 2016 went from 0.46 PgC for GFED4s to 0.2982

PgC for the 500 m model. The third estimate (Ramo et al., 2021) also employed a 50083

m model (van Wees & van der Werf, 2019), but used higher-resolution 20 m burned area84

observations from the Sentinel-2 FireCCISFD11 instead of MCD64A1 C6. As a result85

of substantially more detected burned area at 20 m resolution (63 % more burned area86

than GFED4s), Sentinel-2 FireCCISFD11 estimates a larger annual total for 2016 of 0.5587
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PgC, and notably higher emissions during Mar-May at the end of the dry season when the88

other two estimates are much lower. We also show two fire emission estimates constrained89

by CO observations from the Measurements of Pollution in the Troposphere (MOPITT)90

with two different inversion system, the CMS-Flux-4DVAR (Bowman et al., 2017) and the91

CMS-Flux-LETKF (Miyazaki et al., 2020). The CO-based emission estimates are based92

upon a 4◦x5◦ grid and so have a slightly coarser representation. The CO-based approaches93

are between the other estimates with substantial differences in March 2016. For NTA,94

the annual mean fire emissions for 2016 are 0.46 PgC yr−1 (GFED4s), 0.29 PgC yr−1
95

(MCD64A1), and 0.55 PgC yr−1 for FireCCISFD11. For the CO-based estimates, despite96

their different seasonality, their annual mean fire emissions remain close to the GFED4s97

with 0.45 PgC yr−1 for the CMS-Flux-LETKF and 0.43 PgC yr−1 the CMS-Flux-4DVAR.98

During ATom-4, the ATom-EC indicates a dry-to-wet transition season flux of -0.26 ±99

0.37 PgC yr−1 (mean±standard-deviation), while all the inversions suggest small positive100

fluxes. Fig. 3 shows large concentrations of HCN below the optimized ATom-4 subregion,101

indicating a biomass burning signature. Small agricultural fires are set to burn crop waste,102

and to clear the land for the next planting season (Yevich & Logan, 2003; Curtis et al.,103

2018; Hickman et al., 2021). This practice could explain the presence of small fires detected104

at higher spatial resolution including for the month of April and May in NTA. This is105

illustrated on Fig. S3 where the FireCCISFD11 estimate shows larger emissions than106

GFED4s for the months of March, April and May 2016. It is possible that despite finding107

a stronger correlation with all NTA fluxes, the optimized ATom-4 region undersamples108

fire influence (see next section). However, comparing back-trajectory footprints (Fig. S5)109

and CO concentrations (Fig. 4) shows reasonably good spatial correspondence.110

3. Sensitivity to the choice of box boundaries
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We quantify the impact of the choice of alternate box boundaries on our flux estimates111

via the flux-∆CO2 emergent constraint relationships. Fig. S4 shows the location of the112

top 12 highest correlation derived boxes for each campaign. These are all in similar113

locations generally with shifts by 5 degrees and 100 hPa around the optimal box, with114

the exception of ATom-4 which shows alternate boxes capturing the fire plume mentioned115

above. In these lower boxes, the CO2 concentrations are higher and the ATom-4 emergent116

constraint produces positive flux estimates averaging between 0 and 2 PgC yr−1 in closer117

agreement with the inversions. For each ATom we use these 12 different boxes to calculate118

monthly fluxes and the 104 combinations of these to calculate annual mean fluxes. The119

mean of all the annual estimates is 0.28 PgC yr−1 (similar to our optimal estimate of 0.14120

PgC yr−1) with a standard deviation of 0.1 PgC yr−1. We add this standard deviation121

in quadrature with other components of our uncertainty estimate (see Materials and122

Methods).123

4. Back trajectories

The global 14-day land flux contributions are shown in Fig. S5 for NTA-optimized124

boxes.125
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Figure S1. Aspects of the OCO-2 B10 Dec-Mar filtering and bias correction. A)

Average bias correction after quality filtering. B) Fraction of observations passing quality

filters. C) Bias correction caused by the dpfrac term. D) OCO-2 retrieved AOD before

quality filtering. E) bias correction due to the dust, water cloud, and sea salt (DWS). F)

OCO-2 retrieved AOD after quality filtering. All plots present December through March

(2014-2019) averages and are aggregated into 5° × 5° latitude–longitude square bins.
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Figure S2. Dec-Mar mean net land CO2 fluxes averaged over NTA (2016-2018) versus

XCO2 simulated by the v10 MIP for NTA relative to the rest of the world. Black symbols

show experiment means. The same NTA XCO2 anomaly metric for the observations is

shown as vertical lines for with and without the bias correction.
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Figure S3. A) 2016 NTA monthly burned area and B) mean fire emissions estimated

by MCD64A1, FireCCISFD11, GFED4s, CMS-Flux-4DVAR (Bowman et al., 2017) and

CMS-Flux-LETKF (Miyazaki et al., 2020).
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Figure S4. The top 12 highest correlation boxes for each campaign. Color shading

shows the distribution of observed ∆CO2 as in Fig. 1. The highest 5 (rank 1-5) are

delineated by dark dashed lines, the second 7 (rank 5-12) by green solid lines. Lighter

pinks represents smaller correlations. Bins containing no flight data are white. Note that

all 12 boxes are different despite the apparent redundancy due to inclusion of bins with

no data.
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Figure S5. Left column: Pressure-latitude coverage of the NOAA Picarro CO2 mea-

surements from the ATom DC-8 flights in the Atlantic basin. Optimized boxes for NTA

influence are shown in blue and dates intersecting these boxes are listed above each panel.

Right column: 14-day footprints averaged over the NTA optimized boxes. The locations

of the measurements made within the optimized boxes are indicated by blue dots.
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Figure S6. Same as Fig. 6 but with points colored by model. Point shape indicates

experiment for IS (squares), OG (circles), LNLG (diamonds), and LNLGOGIS (triangles).
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Figure S7. Average NTA land seasonal cycle (2016-2018). The ATom-EC and the

scaled averaged seasonal cycle are also shown.
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Figure S8. Same as Fig. 6 but with points colored by model. The 3 TM5 models are

TM5-4DVAR, OU and CT, and the 5 GEOS-Chem models are Ames, CMS-Flux, COLA,

UT and WOMBAT. Point shape indicates experiment for IS (squares), OG (circles),

LNLG (diamonds), and LNLGOGIS (triangles).
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