e It is well-known that the first-order kinematic source characteristics of typical earth-
quakes, such as slip rate, rupture propagation speed, and moment duration scaling, can be
well-explained by a model where the fault experiences a sudden frictional strength drop.

e Slow slip events (SSEs) are slip transients similar to typical earthquakes, but their first-or-
der source characteristics are quite different. For example, an SSE has a lower slip rate
than a typical earthquake (fast earthquake). A sudden frictional strength drop model cannot
explain SSEs to first order.

e \We consider a frictional-viscous model (e.g., Ando et al., 2010) to explain the first-order
characreristics of SSEs. It is inspired by the recent geological observations that imply the
occurrence of SSEs in fault zones with a finite thickness of ~100s of meters. The bulk
matrix of the fault zone deforms viscously, while pervasive frictional surfaces are distributed
In the viscous matrix.

e QOur frictional-viscous model can simultaneously explain various kinematic source param-
eters for SSEs, with the viscous coefficient n_v = 10%4 - 1075 u/(2B) and stress drop = ~10
kPa.
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e Sudden stress drop model can explain fast EQs to first order.

But it cannot explain SSE
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e The physical picture of the present model: fast EQs happen on friction-
al-only faults. SSEs happen on frictional-viscous mixing faults, where the 3D
fault zone mostly consists of viscous deformation, while frictional (brittle) de-
formation sparsely exists in the fault zone as well.

e These 3D features are parameterized as “friction law” on a 2D fault. The
total fault strength equals the sum of the frictional and viscous strength
components. The frictional strength can experience a sudden drop
(slip-weakening), while the viscous strength increases linearly with slip rate
V. Such a boundary condition is equivalent to a mechanical system where
the frictional and viscous force act in parallel. (e.g., Ando et al., 2010; Lavier
et al., 2013; Beall et al.,2019).
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S of analytical results

3D BIEM dynamic rupture simulations:
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Two KEY “friction law” parameters:
/\T : frictional strength drop 7}, : viscous coefficient

lytical relations

e 1), affects the source kinematics through <1+ il
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e As 7]y increases -->V and Vr decreases, T increases
e MO-T scaling remains M, o T°
e When 7, ~ 10* — 10° 1/(28) & AT ~ 10 kPa, all these kinematic pa-

rameters are simultaneously explained with the frictional-viscous
model.
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Compare with analytical results:
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e Explicit stress/friction heterogeneity is not required to gener-
ate slow slip rate V and slow rupture propagation speed Vr.

Yielding stress 10 times higher in nuc. zone (diffusive):
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e Siress concentration/amplification effect for the frictional-viscous model: the actual
shear stress on the frictional contact builds up significantly faster than the average shear
stress on the fault, because of the small fraction of the area that is frictionally locked needs to
bear the load for a considerably greater area. As a result, a frictional-viscous fault would have
a shorter event interval and a smaller average stress drop.



