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Abstract16

We present a methodology that allows researchers to simulate in real time the spatiotem-17

poral dynamics of the ground electric field (GEF) in a given 3-D conductivity model of18

the Earth based on continuously augmented data on the spatiotemporal evolution of the19

inducing source. The formalism relies on the factorization of the source by spatial modes20

and time series of respective expansion coefficients and exploits precomputed frequency-21

domain GEF generated by corresponding spatial modes. To validate the formalism, we22

invoke a high-resolution 3-D conductivity model of Fennoscandia and consider a real-23

istic source built using the Spherical Elementary Current Systems (SECS) method as24

applied to magnetic field data from the IMAGE network of observations. The factoriza-25

tion of the SECS-recovered source is then performed using the principal component anal-26

ysis. Eventually, we show that the GEF computation at a given time instant on a 512×27

512 grid requires less than 0.025 seconds provided that frequency-domain GEF due to28

pre-selected spatial modes are computed in advance. Taking the 7-8 September 2017 ge-29

omagnetic storm as a space weather event, we show that real-time high-resolution 3-D30

modeling of the GEF is feasible.31

Plain Language Summary32

The solar activity in the form of coronal mass ejections leads to abnormal fluctu-33

ations of the geomagnetic field. These fluctuations, in their turn, generate so-called ge-34

omagnetically induced currents (GIC) in electrical grids, which may pose a significant35

risk to the reliability and durability of such infrastructure. Forecasting GIC is one of the36

grand challenges of modern space weather studies. One of the critical components of such37

forecasting is real-time simulation of the ground electric field (GEF), which depends on38

the electrical conductivity distribution inside the Earth and the spatiotemporal struc-39

ture of geomagnetic field fluctuations. In this paper, we present and validate a method-40

ology that allows researchers to simulate the GEF in fractions of a second (thus, in real41

time) irrespective of the complexity of the conductivity and geomagnetic field fluctua-42

tions models.43

1 Introduction44

As commonly recognized, geomagnetically induced currents (GIC) in power elec-45

tric grids may pose a significant risk to the reliability and durability of such infrastruc-46

ture (Bolduc, 2002; Love et al., 2018).47

The ultimate goal of quantitative estimation of the hazard to power grids from ab-48

normal geomagnetic disturbances (space weather events) is real-time and as realistic as49

practicable forecasting of GIC. Under GIC forecasting, we understand the time-domain50

computation of GIC using continuously augmented data on the spatiotemporal evolu-51

tion of the source responsible for the geomagnetic disturbances. Specifically, to forecast52

GIC in the region of interest, one needs: (1) to adequately parameterize the source of53

geomagnetic disturbances; (2) to forecast the spatiotemporal evolution of the source in54

the region; (3) to specify/build a three-dimensional (3-D) electrical conductivity model55

of the Earth’s subsurface; (4) to perform real-time modeling of the ground electric field56

(GEF) in a given 3-D conductivity model, i.e., to compute as fast as feasible the spa-57

tiotemporal progression of the GEF from continuously augmented data on the spatiotem-58

poral evolution of the forecasted source; (5) to convert the “forecasted” GEF into GIC.59

It is well accepted that the decades of satellite observations of the solar wind pa-60

rameters (plus observations of interplanetary magnetic field) at the L1 Lagrangian point61

are the most promising data for forecasting spatiotemporal evolution of the source with62

algorithms known as neural networks (NN). Despite numerous studies that attempt to63

forecast the source evolution using different NN architectures quantitatively, the progress64
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here is rather limited. This is, in particular, because the full potential of NN remains65

unexplored; the reader can find a rather exhaustive review of the literature on the sub-66

ject in Tasistro-Hart et al. (2021). But even if the source forecasting will be feasible in67

the future, with the measurements at the L1 point, it is nearly impossible to forecast the68

source more than an hour in advance. This, in particular, means that forecasting GEF69

in a given 3-D conductivity model from continuously augmented data on the spatiotem-70

poral evolution of the forecasted source should be performed “on the fly”, i.e., within a71

few seconds, if one wishes to approach an ultimate goal of GIC forecasting in the region72

of interest – development of trustful alerting systems for the power industry. Note that73

once the GEF is forecasted, a conversion of the GEF into GIC is rather straightforward74

(Kelbert, 2020) and requires fractions of seconds provided the geometry of transmission75

lines and system design parameters are granted by power companies.76

This paper presents and validates a methodology that allows researchers to sim-77

ulate the spatiotemporal progression of the GEF in a 3-D conductivity model “on the78

fly”.79

2 Methodology80

2.1 Governing equations in the frequency domain81

We start with the discussion of the problem in the frequency domain. Maxwell’s82

equations govern electromagnetic (EM) field variations, and in the frequency domain,83

these equations are read as84

1

µ0
∇×B = σE + jext, (1)

∇×E = iωB, (2)

where µ0 is the magnetic permeability of free space; ω is angular frequency; jext(r, ω)
is the extraneous (inducing) electric current density; B(r, ω;σ),E(r, ω;σ) are magnetic
and electric fields, respectively. σ(r) is the spatial distribution of electrical conductiv-
ity, r = (r, ϑ, ϕ) a position vector, either in the spherical or Cartesian coordinates. Note
that we neglected displacement currents and adopt the following Fourier convention

f(t) =
1

2π

∞∫
−∞

f̃(ω)e−iωtdω. (3)

We also assume that the current density, jext(r, ω), can be represented as a linear com-85

bination of spatial modes ji(r),86

jext(r, ω) =

L∑
i=1

ci(ω)ji(r). (4)

Note that the form of spatial modes ji(r) (and their number, L) varies with application.87

For example, jext(r, ω) is parameterized via spherical harmonics (SH) in Püthe and Ku-88

vshinov (2013); Honkonen et al. (2018); Guzavina et al. (2019); Grayver et al. (2021),89

current loops in Sun and Egbert (2012), or eigenmodes from the PCA analysis of the physics-90

based models in Egbert et al. (2021); Zenhausern et al. (2021).91

By virtue of the linearity of Maxwell’s equations with respect to the jext(r, ω) term,
we can expand the total (i.e., inducing plus induced) electric field as a linear combina-
tion of individual fields Ei,

E(r, ω;σ) =

L∑
i=1

ci(ω)Ei(r, ω;σ), (5)
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where the Ei(r, ω;σ) field is the “electric” solution of the following Maxwell’s equations92

1

µ0
∇×Bi = σEi + ji, (6)

∇×Ei = iωBi. (7)

2.2 Governing equations in the time domain93

The transformation of the Equation (5) into the time domain leads to the repre-
sentation of the time-varying ground electric field as convolution integrals

E(rs, t;σ) =

L∑
i=1

t∫
−∞

ci(τ)Ei(rs, t− τ ;σ)dτ, (8)

or equivalently

E(rs, t;σ) =

L∑
i=1

∞∫
0

ci(t− τ)Ei(rs, τ ;σ)dτ, (9)

where rs stands for the position vector at the surface of the Earth. The reader is referred94

to Appendix A for more details on the convolution integrals in Equations (8) and (9).95

Since the radial component of the GEF is negligibly small (due to insulating air)96

and is not used in GIC calculations (Kelbert, 2020), we will confine ourselves to forecast-97

ing of the horizontal electric field solely; thus, hereinafter, Ei will stand for Ei = (Ex,i Ey,i).98

2.3 Real-time modeling of the GEF. A concept99

Equation (9) shows how the GEF can be modeled using continuously augmented
data on the time evolution of the nowcasted or forecasted ci (note that forecasting of the
ci is outside the scope of this paper). To make the formula ready for implementation,
one needs: (a) to specify a set of spatial modes, ji, i = 1, 2, . . . , L in the region, where
GIC nowcasting/forecasting is required; we will discuss the construction of ji in Section 3.1;
(b) to set up a 3-D conductivity model in this region; and (c) to estimate an upper limit
of integrals in Equation (9), or, in other words, to estimate a time interval, T , above which
Ei(rs, τ ;σ) becomes negligibly small. The latter will allow us to rewrite Equation (9)
as

E(rs, t;σ) ≈
L∑
i=1

T∫
0

ci(t− τ)Ei(rs, τ ;σ)dτ. (10)

Note that the upper limit in the integrals could be different for different spatial modes,100

different components of the field, and different locations. However, one can choose a con-101

servative approach, taking a single T irrespective of modes/components/locations as a102

maximum from all individual upper limit estimates. We will discuss the estimation of103

T in Sections 3.3 and 3.4 .104

The details of numerical calculation of the integrals in (10) are presented in Ap-
pendix B. In short, assuming that ci(t), i = 1, 2, . . . , L are time series with the sam-
pling interval ∆t and T = Nt∆t, we approximate E(rs, tk;σ) at tk = k∆t as

E(rs, tk;σ) ≈
L∑
i=1

{
Nt∑
n=0

di(tk, n∆t;T )GnEi(rs;σ) +
[
ci(tk − T )− ci(tk)

]
Li (rs, T ;σ)

}
, (11)

where di is defined as

di(t, τ ;T ) =

ci(t− τ)− ci(t)−
ci(t− T )− ci(t)

T
τ, τ ∈ [0, T ]

0, τ 6∈ [0, T ].
(12)
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The reasoning to represent time-dependent part in Equation (11) in this form is given105

in Appendix B. Note also that quantities GnEi(rs;σ) and Li(rs, T ;σ) are time-invariant,106

and for the given ji, i = 1, 2, . . . , L and 3-D conductivity model are calculated only once,107

then stored and used, when the calculation of E(rs, tk;σ) is required. Actual form and108

estimation for GnEi(rs;σ) and Li(rs, T ;σ) are also discussed in Appendix B.109

Equation (11) is an essence of the real-time GEF calculation, showing that O (L×Nt ×Ng)110

summations and multiplications are required at a (current) time instant tk plus some over-111

head to read the precomputed GnEi(rs;σ) and Li(rs, T ;σ) from the disc. Note that Ng112

is a number of points rs, at which the GEF is computed.113

3 Real-time modeling of the GEF. Validation of the concept114

The validation of the presented concept will be performed using Fennoscandia as115

a test region. The choice of Fennoscandia is motivated by several reasons. First, it is a116

high-latitude region, where GIC are expected to be especially large. Second, there ex-117

ists a 3-D electrical conductivity model of the region (Korja et al., 2002). Third, the re-118

gional magnetometer network (International Monitor for Auroral Geomagnetic Effect,119

IMAGE (Tanskanen, 2009), allows us to build a realistic model of the source. Finally,120

the last but not the least consideration to choose this region is the fact that we have al-121

ready performed a comprehensive 3-D EM model study in this region (Marshalko et al.,122

2021).123

3.1 Building a model of the source124

First, let us rewrite Equation (4) in the time domain125

jext(r, t) =

L∑
i=1

ci(t)ji(r). (13)

We will further assume that the extraneous current jext(r, t) is divergence-free, it flows126

in a thin layer at the altitude of h = 90 km, and this layer is separated from the Earth127

by the insulating atmosphere. Following the Spherical Elementary Current Systems (SECS)128

method (Vanhamäki & Juusola, 2020), this current is represented as129

jext(r, t) = δ(r −R)

M∑
m=1

Sm(t)[P (r, rm)eϑ +Q(r, rm)eϕ], (14)

where δ is Dirac’s delta function, eϑ and eϕ are unit vectors of the spherical coordinate
system, r = (R,ϑ, ϕ), rm = (R,ϑm, ϕm), R = a + h, a is a mean radius of the Earth,
rm is the location of the pole of the m-th spherical elementary current system and Sm
is the so-called scalar factor associated with the m-th pole. Expressions for P (r, rm) and
Q(r, rm) are presented in Appendix D. Note that in practice r and rm are usually taken
as the nodes of two (similar) grids, which are slightly shifted with respect to each other
(the reason for the shift is explained in Appendix D). Once Sm(t), m = 1 . . .M are ob-
tained by means of the SECS method as applied to some real data for some event, one
can perform the PCA of Sm(t) expecting that the spatial structure of Sm(t) will be well
approximated with a small number of modes vi, i = 1, 2, . . . L allowing to represent ji as

ji(r) = δ(r −R)

M∑
m=1

vi(rm)[P (r, rm)eϑ +Q(r, rm)eϕ], i = 1, 2, ..., L. (15)

The aim of this section is to obtain vi and, consequently, ji (using Equation 15). To this130

end, we apply the SECS method to 10-sec vector magnetic field data from all available (38)131

stations of the IMAGE network during the 7-8 September 2017 geomagnetic storm. Lo-132

cations of IMAGE sites are shown in Figure 1. Considered (8-hours) time period is from133
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20:00:00 UT, September 7, 2017, to 03:59:50 UT, September 8, 2017, thus, including the134

onset and the main phase of the storm. S was estimated at 0.5◦×1◦ grid of 21◦×38◦135

part of a sphere. Coordinates of the region are 59◦N – 79◦N and 4◦E – 42◦E. This set136

up, in particular, means that S was computed at M = 42 × 39 = 1638 grid points137

and N = 2880 time instants. Note that the same event, region and grid were consid-138

ered in our recent study (Marshalko et al., 2021).139

The PCA of Sm(t) is performed in a similar manner as it was done, for example,
in Alken et al. (2017); Egbert et al. (2021); Zenhausern et al. (2021). Specifically, we con-
struct a matrix F as

F =


S1

1 S1
2 · · · S1

M

S2
1 S2

2 · · · S2
M

...
...

. . .
...

SN1 SN2 · · · SNM

 , (16)

where Snm is Sm(t) estimated at the n-th time instant at the m-th grid point. Further,
according to the PCA concept, we form an M ×M covariance matrix R

R = FTF, (17)

and apply an eigenvalue decomposition to R

RV = ΛV, (18)

where Λ is a diagonal matrix containing the eigenvalues λi, i = 1, 2, ...,M of R. The
vi column vector of V is the eigenvector of R corresponding to the eigenvalue λi. Both
V and Λ are matrices of the size M×M . The superscript T in Equation (17) denotes
the transpose. The eigenvectors vi represent the spatial modes (principal components;
PCs), whereas the eigenvalues give the respective PC’s variance contribution. The cor-
responding time series ci are calculated as

ci = Fvi. (19)

PCs are usually sorted in order from the largest to the smallest eigenvalues. The PC cor-
responding to the largest eigenvalue will explain the most variance, followed by the sec-
ond, third PC, etc... In practice, the PCs corresponding to a few of the largest eigen-
values explain most of the analyzed fields’ variance. The cumulative variance of L PCs
can be calculated as (Alken et al., 2017)

κL =

L∑
i=1

λi

M∑
i=1

λi

, (20)

Figure 2 presents the cumulative variance for the first 30 spatial modes. Horizontal dashed140

line allows us to estimate the number of modes needed to explain 99 % of the spatial vari-141

ability of Sm(t). It is seen from the figure that one needs L = 21 spatial modes to ex-142

plain most (99 %) of the variance. This is a dramatic reduction from the total M = 1638143

spatial modes. These 21 modes will be used in the further discussion of the real-time cal-144

culation of the GEF. Figure 3 shows ji corresponding to spatial modes of different i, il-145

lustrating the fact that the modes with larger i capture smaller spatial structures of the146

source. The respective time series ci are presented in Figure 4. Figure 5 compares the147

maps of the original and the PCA-based source for two snapshots of the enhanced ge-148

omagnetic activity. The original source is built using the SECS method (cf. Equation 14),149

whereas PCA-based source is calculated using Equations (13) and (15). It is seen that150

the agreement between the original and PCA-based sources is very good both in terms151
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of the amplitude and spatial pattern. In addition, Figure 6 demonstrates the compar-152

ison of the time series of these sources for two exemplary sites (shown in Figure 5 as white153

circles): one is located in the region where the significant source current is observed, an-154

other – aside from this region. Again, we observe good agreement between the two sources,155

especially for the site above which the source current is large.156

3.2 3-D conductivity model of Fennoscandia157

We took the 3-D conductivity model of the region from Marshalko et al. (2021),158

where it was constructed using the SMAP (Korja et al., 2002) – a set of maps of crustal159

conductances (vertically integrated electrical conductivities) of the Fennoscandian Shield,160

surrounding seas, and continental areas. The SMAP consists of six layers of laterally vari-161

able conductance. Each layer has a thickness of 10 km. The first layer comprises con-162

tributions from the seawater, sediments, and upper crust. The other five layers describe163

conductivity distribution in the middle and lower crust. SMAP covers an area 0◦E – 50◦E164

and 50◦N – 85◦N and has 5′×5′ resolution. We converted the original SMAP database165

into a Cartesian 3-D conductivity model of Fennoscandia with three layers of laterally166

variable conductivity of 10, 20, and 30 km thicknesses (Figures 7.a-c). This vertical dis-167

cretization is chosen to be compatible with that previously used by Rosenqvist and Hall168

(2019) and Dimmock et al. (2019, 2020) for GIC studies in the region. Conductivities169

in the second and the third layer of this model are simple averages of the conductivities170

in the corresponding layers of the original conductivity model with six layers. To obtain171

the conductivities in Cartesian coordinates, we applied the transverse Mercator map pro-172

jection (latitude and longitude of the true origin are 50◦N and 25◦E, correspondingly)173

to the original data, and then performed the interpolation to a laterally regular grid. The174

lateral discretization and the size of the resulting 3-D part of the conductivity model of175

Fennoscandia were taken as 5×5 km2 and 2550×2550 km2, respectively. Deeper than176

60 km, we used the 1-D conductivity profile obtained by Kuvshinov et al. (2021) (cf. Fig-177

ure 7.d), which is an updated version of the 1-D profile from Grayver et al. (2017).178

Note that the lateral discretization and the size of the conductivity model of Fennoscan-179

dia imply that the GEF is calculated at a grid comprising Ng = 512× 512 points.180

3.3 Computation of Ei(rs, ω;σ)181

As is seen from Equations (B13) and (C2) one needs to compute Ei(rs, ω;σ) at a182

number of frequencies, or, in other words, to solve Maxwell’s equations (6). These equa-183

tions are numerically solved using the 3-D EM forward modeling code PGIEM2G (Kruglyakov184

& Kuvshinov, 2018), which is based on a method of volume integral equations (IE) with185

a contracting kernel (Pankratov & Kuvshinov, 2016). PGIEM2G exploits a piece-wise186

polynomial basis; in this study, PGIEM2G was run using the first-order polynomials in187

lateral directions and third-order polynomials in the vertical direction.188

Figures 11, 12, and 13 demonstrate Ei(rs, ω;σ) at observatories Abisko (ABK), Up-189

psala (UPS), and Saint Petersburg (SPG), respectively. The results are for the excita-190

tions corresponding to the first, seventh, fourteenth and twenty-first spatial modes and191

are shown for the frequency range from 10−5 Hz to 1 Hz. From these figures, a few ob-192

servations can be made. The behavior of Ei (with respect to frequency) varies with lo-193

cation and mode. Real and imaginary parts of Ei are comparable in magnitude. As ex-194

pected, Ei are smooth functions with respect to the frequency; apparent non-smoothness195

of the results in some plots is due to the fact that absolute values of real and imaginary196

parts are shown.197

Finally, it is important to note that Ei decrease – irrespective of the mode and lo-198

cation – as frequency decreases; specifically, the magnitude of Ei drops down more than199

two orders of magnitude as frequency decreases from 1 Hz down to 10−3 Hz. These plots200
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suggest a value for T in Equation (10); recall, that useful rule of thumb is that the value201

for T corresponds to the inverse of frequency at which the field becomes small compared202

to the higher frequencies. Following this rule, T = 1000 seconds seems to be a reason-203

able choice which will be further justified in the next section.204

3.4 Model study to justify a value for T205

First, we calculate time-domain electric field for a chosen 8-hours event using a nu-206

merical scheme presented in Ivannikova et al. (2018); Marshalko et al. (2020, 2021). Specif-207

ically, we calculate jext(t, r) using Equations (13) and (15) and taking 21 terms in ex-208

pansion (13). Further, according to Marshalko et al. (2021), we calculate the electric field209

as follows:210

1. The source jext(t, r) is transformed from the time to the frequency domain with211

a fast Fourier transform (FFT).212

2. Frequency-domain Maxwell’s equations (1)-(2) are numerically solved using PGIEM2G213

at FFT frequencies between 1
K and 1

2∆t where K is the length of the event, and214

∆t is the sampling rate of the considered time series. In this study ∆t is 10 sec,215

and K is 8 h.216

3. E(t, r) is obtained with an inverse FFT of the frequency-domain field.217

Electric field calculated using the above scheme is considered as a reference (“true”) so-218

lution. We also calculate electric field using Equation (11) with T = 900 sec (15 min)219

and with T = 3600 sec (1 hour).220

Figures 11, 12, and 13 show electric field time series modeled at three geomagnetic
observatories. Comparison is between the reference GEF and GEF modeled using the
“real-time” scheme. It is seen that both “real-time” (either calculated using T = 15
min or T = 1 h) electric fields agree well with the reference electric field. Table 1 con-
firms this quantitatively by presenting correlation coefficients between corresponding time
series and the normalized root-mean-square errors, which are defined as

nRMSE(a, b) =

√√√√√ N∑
i=1

(ai − bi)2

N

/√√√√√ N∑
i=1

b2i

N
, (21)

where a and b are the reference GEF time series and GEF time series calculated exploit-221

ing real-time scheme, respectively, ai and bi are elements of these time series, and N is222

the number of time instants. Since results for T = 15 min and T = 1 h appear to be223

very similar, we present in the next section the estimates of computational loads for the224

case when T is taken as 15 min.225

3.5 Computational loads for the real-time GEF calculation226

Once GnEi(rs;σ) and Li(rs, T ;σ) are computed and stored on the disc, GEF at a227

grid Nx×Ny and time instant tk is computed using Equation (11). In accordance with228

this equation, the GEF calculation requires forcasting/nowcasting the L×Nt array c,229

reading the L×Nt×Ng array GnEi and L×Ng array Li, and performing O (L×Nt ×Ng)230

summations and multiplications. For our problem setup with Ng = 512 × 512, Nt =231

90 and L = 21 the calculation of E(rs, tk;σ) takes from 0.00625 to 0.025 seconds, de-232

pending on the computational environment. Note that to store arrays for this setup one233

needs 7.25 Gigabytes of disc space.234
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4 Conclusions235

In this paper, we presented a formalism for the real-time computation of the ground236

electric field (GEF) in a given 3-D Earth’s conductivity model excited by a continuously237

augmented spatially- and temporally-varying source responsible for a space weather event.238

The formalism relies on a factorization of the source by spatial modes and time se-239

ries of respective expansion coefficients, and exploits precomputed frequency-domain GEF240

generated by corresponding spatial modes.241

To validate the formalism, we invoked a high-resolution 3-D conductivity model242

of Fennoscandia and considered a realistic source built with the use of the SECS method243

as applied to magnetic field data from the IMAGE network of observations. Factoriza-244

tion of the SECS-recovered source is then performed using the principal component anal-245

ysis. Eventually, we show that the GEF computation at a given time instant on a 512×246

512 grid requires at most 0.025 seconds provided that frequency-domain GEF due to the247

pre-selected spatial modes are computed in advance. This opens a practical opportunity248

for GEF forecasting, using, for example, L1 data.249

We illustrate the concept on a Cartesian geometry problem setup. Global-scale im-250

plementation is rather straightforward; for this scenario, the source could be obtained251

either using magnetic field data from a global network of observatories or exploiting the252

results of the first-principle modeling of the global magnetosphere-ionosphere system.253
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Appendix A Properties of transfer functions and impulse responses373

The convolution integrals in Equation (9) represent the response of the medium374

to a time-varying extraneous current. These relations follow from the properties of a phys-375

ical system we consider. We list these properties below and discuss implications. The376

presentation closely follows a more detailed analysis by Svetov (1991). Note that for the377

sake of clarity, we discuss the properties on an example of abstract scalar quantities and378

omit their dependence on spatial variables and electrical conductivity pertinent to our379

application.380

1. Linearity allows us to define a response, ζ(t), of the medium at time t to an ex-
traneous forcing as

ζ(t) =

∞∫
−∞

F(t, t′)χ(t′)dt′, (A1)

where χ is the extraneous forcing that depends on time t′ and F(t, t′) is the medium381

Green’s function.382

2. Stationarity implies that the response of the medium does not depend on the
time of occurrence of the excitation. In this case F(t, t′) ≡ f(t−t′) and eq. (A1)
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is rewritten as a convolution integral

ζ(t) =

∞∫
−∞

f(t− τ)χ(τ)dτ =

∞∫
−∞

f(τ)χ(t− τ)dτ, (A2)

where f(t) represents the impulse response of the medium. In the frequency do-
main, the convolution integral degenerates to

ζ̃(ω) = f̃(ω)χ̃(ω), (A3)

where f̃(ω) is called the transfer function and we use tilde sign (̃·) to denote complex-
valued quantities. Equations (A2) and (A3) are related through the Fourier trans-
form

f̃(ω) =

∞∫
−∞

f(t)eiωtdt. (A4)

3. Since we work in the time domain with a real-valued forcing, the impulse response383

is also real. To see implications of this, let us define the inverse Fourier transform384

of f̃(ω) = fR(ω) + ifI(ω) as385

f(t) =
1

2π

∞∫
−∞

f̃(ω)e−iωtdω

=
1

2π

∞∫
−∞

[fR(ω) cos(ωt) + fI(ω) sin(ωt)] dω

+
i

2π

∞∫
−∞

[fI(ω) cos(ωt)− fR(ω) sin(ωt)] dω, (A5)

For an impulse response to be real, the last term in the integral (A5) has to van-386

ish. This is possible only if fR(ω) and fI(ω) are even and odd functions of ω, re-387

spectively. Therefore, Equation (A5) reduces to388

f(t) =
1

π

∞∫
0

[fR(ω) cos(ωt) + fI(ω) sin(ωt)] dω. (A6)

4. Impulse response is causal. This property implies that f(t) = 0 for t < 0. Un-
der this assumption, the convolution integral (A2) is recast to

ζ(t) =

∞∫
0

f(τ)χ(t− τ)dτ =

t∫
−∞

f(t− τ)χ(τ)dτ. (A7)

Due to causality and exploiting Equation (A6), the impulse response is determined
by using either only real or imaginary part of f̃(ω):

f(τ) =
2

π

∞∫
0

fR(ω) cos (ωτ)dω = − 2

π

∞∫
0

fI(ω) sin (ωτ)dω. (A8)

Appendix B Details of the numerical computation of the real-time GEF389

As discussed in the main text, to calculate the GEF in near-real time one needs
to efficiently estimate integrals in the right-hand side (RHS) of the equation below

E(rs, t;σ) =

L∑
i=1

∞∫
0

ci(t− τ)Ei(rs, τ ;σ)dτ ≈
L∑
i=1

T∫
0

ci(t− τ)Ei(rs, τ ;σ)dτ. (B1)
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With finite T , one must account for a possibly substantial linear trend in time series ci(t).
By removing the trend, we are forced to work with the following function

di(t, τ ;T ) =

ci(t− τ)− ci(t)−
ci(t− T )− ci(t)

T
τ, τ ∈ [0, T ]

0, τ 6∈ [0, T ].
(B2)

Substituting Equation (B2) into the RHS of Equation (B1), and considering (for sim-
plicity) only one term in the sum, we obtain

T∫
0

ci(t− τ)Ei(rs, τ ;σ)dτ = ci(t)

T∫
0

Ei(rs, τ ;σ)dτ+

T∫
0

di(t, τ ;T )Ei(rs, τ ;σ)dτ +
ci(t− T )− ci(t)

T

T∫
0

τEi(rs, τ ;σ)dτ.

(B3)

Recall that T should be taken large enough to make approximation (B1) valid; partic-
ularly, this means that

T∫
0

Ei(rs, τ ;σ)dτ ≈
∞∫

0

Ei(rs, τ ;σ)dτ. (B4)

But the integral in the RHS of the latter equation is zero since it corresponds to the elec-
tric field generated by the time-constant source. Then, Equation (B3) can be approx-
imated as

T∫
0

ci(t−τ)Ei(rs, τ ;σ)dτ ≈
T∫

0

di(t, τ ;T )Ei(rs, τ ;σ)dτ+[ci(t− T )− ci(t)]Li(rs, T ;σ), (B5)

where

Li(rs, T ;σ) =
1

T

T∫
0

τEi(rs, τ ;σ)dτ. (B6)

The integrals Li(rs, T ;σ) can be computed using the digital filter technique (see Appendix390

C), whereas first term in the RHS of Equation (B5) is estimated as follows.391

Taking into account that we have ci(t) at discrete time instants, t = n∆t, n =
0, 1, . . . , we approximate di(t, τ ;T ) using the Whittaker-Shannon (sinc) interpolation for-
mula

di(t, τ ;T ) ≈
n∆t≤T∑
n=0

di(t, n∆t;T ) sinc
τ − n∆t

∆t
, (B7)

where

sinc(x) =
sinπx

πx
. (B8)

Recall that sinc interpolation is a method to construct a continuous band-limited func-
tion from a sequence of real numbers, in our case time series di at time instants t = n∆t, n =
0, 1, . . . . Note that in our context, the term “band-limited function” means that non-
zero values of a Fourier transform of this function are confined to the frequencies

|ω| ≤ π

∆t
. (B9)

Using the approximation (B7) and taking into account that Ei(rs, τ ;σ) = 0, τ <
0 (cf. Appendix A), one obtains

T∫
0

di(t, τ ;T )Ei(rs, τ ;σ)dτ ≈
∞∫

0

di(t, τ ;T )Ei(rs, τ ;σ)dτ = (B10)
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∞∫
−∞

di(t, τ ;T )Ei(rs, τ ;σ)dτ =

n∆t≤T∑
n=0

di(t, n∆t;T )

∞∫
−∞

Ei(rs, τ ;σ) sinc
τ − n∆t

∆t
dτ.

Thus, we can write

T∫
0

di(t, τ ;T )Ei(rs, τ ;σ)dτ =

n∆t≤T∑
n=0

di(t, n∆t;T )GnEi(rs;σ), (B11)

where

GnEi(rs;σ) =

∞∫
−∞

Ei(rs, τ ;σ) sinc
τ − n∆t

∆t
dτ. (B12)

Further, following the properties of the Fourier transform as applied to sinc function, we
obtain that

GnEi(rs;σ) =
∆t

2π

π
∆t∫

− π
∆t

Ei(rs, ω;σ)e−iωn∆tdω = Re

{
∆t

π

π
∆t∫

0

Ei(rs, ω;σ)e−iωn∆tdω

}
. (B13)

Finally, substituting Equation (B11) in Equation (B5), and (B5) in the RHS of (B1) we
obtain Equation (11)

E(rs, tk;σ) ≈
L∑
i=1

{
Nt∑
n=0

di(tk, n∆t;T )GnEi(rs;σ) +
[
ci(tk − T )− ci(tk)

]
Li (rs, T ;σ)

}
,

where di(tk, n∆t;T ), Li (rs, T ;σ), and GnEi(rs;σ) are defined in Equations (B2)), (B6)392

and (B13), respectively. Note that the estimation of the integral in the RHS of Equa-393

tion (B13) is performed using a suitable quadrature formula.394

An important note here is that, according to (B13), one does not need to compute395

Ei(rs, ω;σ) for ω > π
∆t . This may be obvious, however, this is not the case if one uses396

piece-wise constant (PWC) approximation of ci(t) as it is done, for example, in Grayver397

et al. (2021). With PWC approximation, one is forced to compute the fields at very high398

frequencies irrespective of ∆t value; this can pose a problem from the numerical point399

of view.400

Appendix C Computation of Li(rs, T ;σ)401

With the use of Equation (A8), Ei(rs, τ ;σ) can be written as

Ei(rs, τ ;σ) = − 2

π

∞∫
0

ImEi(rs, ω;σ) sin(ωτ) dω. (C1)

Substituting the latter equation into Equation (B6) and rearranging the order of inte-
gration, we write Li(rs, T ;σ) in the following form

Li(rs, T ;σ) = T

∞∫
0

Φ(ωT ) ImEi(rs, ω;σ)dω, (C2)

where Φ(ωT ) reads

Φ(ωT ) = − 2

π

1

T 2

T∫
0

τ sin(ωτ)dτ = − 2

π

[
sin(ωT )

(ωT )2
− cos (ωT )

ωT

]
. (C3)
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Integrals in (C2) can be efficiently estimated using the digital filter technique. Specif-
ically, one needs to construct a digital filter for the following integral transform

F (T ) = T

∞∫
0

Φ(ωT )f(ω)dω. (C4)

To obtain filter’s coefficients for this transform, we exploit the same procedure as in Werthmüller
et al. (2019) using the following pair of output and input functions

F (T ) =
(T + 1)e−T − 1

T
,

f(ω) =
ω

1 + ω2
.

(C5)

Appendix D Formulas for P and Q402

The formulas for P (r, rm) and Q(r, rm) (in slightly different notations) are taken
from Vanhamäki and Juusola (2020) (see their Sections 2.3 and 2.5) and are as follows

P (r, rm) =
sinC

4πR
cot

γ

2
, (D1)

Q(r, rm) =
cosC

4πR
cot

γ

2
, (D2)

where R = a + h, r = (R,ϑ, ϕ), rm = (R,ϑm, ϕm) and γ is an angle between r and
rm; γ can be determined from the following spherical trigonometry formula

cos γ = cosϑ cosϑm + sinϑ sinϑm cos(ϕ− ϕm), (D3)

and cosC and sinC are given as

cosC =
cosϑm − cosϑ cos γ

sinϑ sin γ
, (D4)

sinC =
sinϑm sin(ϕm − ϕ)

sin γ
. (D5)

From Equations (D1) and (D2), it is seen that P (r, rm) and Q(r, rm) tend to infinity as403

r tends to rm. The simplest way to deal with this issue is, as mentioned in Vanhamäki404

and Juusola (2020), is to consider the grids for r and rm that are shifted with respect405

to each other. This approach is used in the current paper.406
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Table 1. Normalized root-mean-square errors and correlation coefficients between reference

GEF components and GEF components simulated using real-time 3-D GEF modeling approach

with 15 min and 1 h time segments at Abisko (ABK), Uppsala (UPS) and Saint Petersburg

(SPG) geomagnetic observatories. The results are shown for a time window from 20:00:00 UT, 7

September 2017, to 03:59:50 UT, 8 September 2017.

ABK UPS SPG

nRMSE(Ex,orig, Ex,15min) 0.286 0.188 0.205
nRMSE(Ex,orig, Ex,1h) 0.279 0.139 0.14

nRMSE(Ey,orig, Ey,15min) 0.271 0.163 0.268
nRMSE(Ey,orig, Ey,1h) 0.278 0.122 0.182

corr(Ex,orig, Ex,15min) 0.984 0.991 0.989
corr(Ex,orig, Ex,1h) 0.984 0.995 0.995

corr(Ey,orig, Ey,15min) 0.985 0.993 0.983
corr(Ey,orig, Ey,1h) 0.979 0.997 0.992
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Figure 1. Location of IMAGE magnetometer network. Credit: Finnish Meteorological Insti-

tute.
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Figure 3. A selection of PCA-recovered Ji, i = 1, 7, 14, 21. See details in the text.
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Figure 5. Left: the original external equivalent current; right: the external equivalent current

constructed using 21 spatial modes. The results are for two time instants: 23:16:00 and 23:52:00

UT on September 7, 2017.
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Figure 6. Time series of the original external equivalent current (black curves) and external

equivalent current constructed using 15 (blue curves) and 21 spatial modes (red curves) above

two exemplary sites (Jäckvik (JCK) and Tartu (TAR)). Locations of the sites are shown in Fig-

ure 5 as white circles.
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Figure 7. Conductivity distribution [S/m] in the model of Fennoscandia: (a)–(c) Plane view

on 3 layers of the 3-D part of the model; (d) global 1-D conductivity profile from Kuvshinov et

al. (2021) used in this study. Locations of geomagnetic observatories Abisko (ABK), Uppsala

(UPS), and Saint Petersburg (SPG) are marked with circles in plot (a).
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Figure 8. From left to right: absolute values of real part, imaginary part and magnitude of

Ei(rs, ω;σ) with respect to frequency, and for a number of spatial modes. Results are for obser-

vatory Abisko (ABK) located near the seashore (cf. Fig. 7a). Top and bottom rows show the

results for Ex,i and Ey,i components, respectively.
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Figure 9. The same caption as in Figure 8 but for inland, Uppsala (UPS), geomagnetic obser-

vatory.
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Figure 10. The same caption as in Figure 8 but for Saint Petersburg (SPG) geomagnetic

observatory.
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Figure 11. Electric field components at Abisko (ABK) geomagnetic observatory location

obtained using 3-D EM modeling with 21 spatial modes for the whole 8 h time interval (red

curves) and electric field components at the same observatory simulated using real-time 3-D GEF

modeling approach with 15 min (blue curves) and 1 h (green curves) time segments.
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Figure 12. The same caption as in Figure 11 but for Uppsala (UPS) geomagnetic observatory.
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Figure 13. The same caption as in Figure 13 but for Saint Petersburg (SPG) geomagnetic

observatory.

–29–


