Alexis S Templeton

and 17 more

The Oman Drilling Project established an “Active Alteration” multi-borehole observatory in dunite and harzburgite undergoing low-temperature serpentinization in the Samail ophiolite. The highly serpentinized rocks are in contact with strongly reducing fluids. Distinct hydrological regimes, governed by differences in rock porosity and fracture density, give rise to steep redox (Eh +200 to -750 mV) and pH (pH range 8.5 to 11.2) gradients within the 300 to 400 meter deep boreholes. The serpentinites and fluids host an active subsurface ecosystem. Microbial cell abundances vary at least 6 orders of magnitude, from ≤3.5*101 cells/g to 2.9*107 cells/gram. Low levels of biological sulfate reduction (2-1000 fmol/cm3/day) can be detected in rock cores, particularly in rocks in contact with reduced groundwaters with pH <10.5. Thermodesulfovibrio is the predominant sulfate reducer identified via metagenomic sequencing of adjacent groundwater communities. We infer that transport and reaction of microbially generated sulfide with the serpentine and brucite assemblages gives rise to optical darkening and sulfide overprinting, including the formation of tochilinite-vallerite group minerals, potentially serving as an indicator that this system is inhabited by microbial life. Olivine mesh-cores replaced with ferroan brucite and minor awaruite, abundant veins containing hydroandradite garnet and polyhedral serpentine, and late-stage carbonate veins are suggested as targets for future spatially-resolved life-detection investigations. The high-quality whole-round core samples that have been preserved can be further probed to define how life distributes itself and functions within a system where chemical disequilibria are sustained by low-temperature water/rock interaction, and how biosignatures of in-situ microbial activity are generated.

Adrian Brown

and 17 more

Perseverance landed at the Octavia E. Butler landing site next to the Séítah dune region in Jezero crater on 18 February 2021, in close proximity to the largest exposed carbonate deposit on Mars. These carbonate signatures have been shown to be associated with the strongest olivine signatures at Jezero crater (Goudge+ 2015, Brown+ 2020). Alteration of olivine can lead to carbonate+H2 production, an energy source for microbes (Mayhew+, 2013). The question of the origin of the olivine-carbonate unit represents both an opportunity and a challenge for the rover mission and future sample return efforts. Carbonate The landing site is not near the region of carbonate detections (Figure 1), however the rover’s westward traverse will take us over the carbonates on approach to the crater rim. No reliable indications of the 2.5 μm carbonate band have yet been convincingly detected by the SCAM VISIR instrument. Olivine Studies of the olivine-carbonate unit concluded the olivine is relatively Fe-rich and coarse grained (mm: Poulet+ 2007, Clenet+ 2013). The strongest in-situ olivine signatures are found in dune material analysed by LIBS/VISIR (Beyssac+ Mandon+ this conf). This grain size characterization work may be used to investigate the interaction of olivine with water and CO2 (Escamilla-Roa+ 2020). These surface-gas processes are enhanced when olivine is in fine grain form. Ash dispersal modeling is ongoing (Ravanis+ this conf) to determine the range different sized ash particles could have traveled on ancient Mars. We cannot directly compare the 1 μm band for CRISM and VISIR, so we developed a new method that measures the curvature of three points on the absorption bands to assess their relative Fo# shifts and applied it to both datasets. Lab spectroscopy will be used to assess spectral variations with composition versus grain size. Two key factors driving the Fo# are mantle composition and melt temperature. Brown+ (2020) estimated a range of Fo44-65 for the most redshifted olivine observed by CRISM. McGetchin+Smythe (1978) showed that an Fe-rich mantle composition would produce highly viscous lavas and suggested an upper bound of Fo70 for olivine. Understanding the astrobiological potential of the olivine-carbonate unit is a priority of M2020 (Farley+ 2020) and we will speculate on potential formation models in this contribution.

Christopher Herd

and 15 more

The NASA Mars 2020 Perseverance rover mission will collect a suite of scientifically compelling samples for return to Earth. On the basis of orbital data, the Mars 2020 science team* identified two notional sample caches to study (1) the geology of Jezero crater, collected during the prime mission and (2) the ancient crust outside of Jezero crater, collected during a possible extended mission. Jezero crater geology consists of well-preserved, Early Hesperian to Late Noachian deltaic and lacustrine deposits sourced from a river system that drained Noachian terrain. The crater floor comprises at least two distinct units of sedimentary or volcanic origin whose relationship to the deltaic deposits is presently unclear. Remotely-sensed data reveal signatures of carbonate+olivine and clay minerals within crater floor and crater margin units. Samples from within Jezero that comprise the prime mission notional sample collection thus include: crater floor units; fine- and coarse-grained delta facies, the former with potential to preserve organic matter and/or biosignatures, the latter to possibly constrain the type and timing of sediment deposition; chemical sediments with the potential to preserve biosignatures; a sample of crater rim bedrock; and at least one sample of regolith. The region of southern Nili Planum, directly outside the western rim of Jezero crater, is geologically distinct from Jezero crater and contains diverse Early or even Pre-Noachian lithologies, that may contain records of early planetary differentiation, magnetism, paleoclimate and habitability. The notional sample collection from this region will include: layered and other basement rocks; megabreccias, which may represent blocks of (pre-)Noachian crust; basement-hosted hydrothermal fracture fill; olivine+carbonate rocks that are regionally significant and may be related to units within Jezero crater; and mafic cap unit rocks. The samples described are notional and may change with ongoing surface investigations. However, the samples we anticipate collecting align well with community priorities for Mars exploration, addressing geologic diversity, potential ancient biologic activity on Mars, planetary evolution, volatiles, and human health hazards. *Many other Mars 2020 team members were involved in this planning