Elias N. Mansbach

and 8 more

Primitive achondrites like the acapulcoites-lodranites (AL) clan are meteorites that formed on bodies in the process of forming a metallic core, providing a unique window into how early solar system processes transformed unmelted material into differentiated bodies. However, the size and structure of the parent body of ALs and other primitive achondrites are largely unknown. Paleomagnetism can establish the presence or absence of a metallic core by looking for evidence of a dynamo magnetic field. We conducted a magnetic study of the Acapulco acapulcoite to determine its ferromagnetic minerals and their recording properties. This is the first detailed rock magnetic and first paleomagnetic study of a primitive achondrite group. We determined that metal inclusions located inside silicate grains consist of two magnetic minerals, kamacite and tetrataenite, which have robust recording properties. However, the mechanisms and timing by which these minerals acquired any natural remanent magnetization are unknown. Despite this, Acapulco has not been substantially remagnetized since arriving on Earth and therefore should retain a record dating to 4.55 billion years ago. Future studies could characterize this record by using high resolution magnetometry measurements of individual grains and developing an understanding of how and when they became magnetized. Our discovery of tetrataenite in ALs provides the first mineralogical evidence for slow cooling (~5 x 103 °C Ma-1) of the AL parent body at low temperatures (~320°C). Its presence means that the AL parent body is unlikely to have been catastrophically disrupted at AL peak temperatures (~1200°C) without subsequent reaccretion.

Nicolas Mangold

and 21 more

Early observations from the Perseverance rover suggested a deltaic origin for the western fan of Jezero crater only from images of the Kodiak butte. Here, we use images from the SuperCam Remote Micro-Imager and the Mastcam-Z camera to analyze the western fan front along the rover traverse, and further assess its depositional origin. Outcrops in the middle to lower half of hillslopes are composed of planar, inclined beds of sandstone that are interpreted as foresets of deltaic deposits. Foresets are locally structured in ~20-25 m thick, ~80-100 m long, antiformal structures interpreted as deltaic mouth bars. Above these foresets are observed interbedded sandstones and boulder conglomerates, interpreted as fluvial topset beds. One well-preserved lens of boulder conglomerate displays rounded clasts within well-sorted sediment deposited in fining upward beds. We interpret these deposits as resulting from lateral accretion within fluvial channels. Estimations of peak discharge rates give a range between ~100 and ~500 m3.s-1 consistent with moderate to high floods. By contrast, boulder conglomerates exposed in the uppermost part of hillslopes are poorly sorted and truncate underlying beds. The presence of these boulder deposits suggests that intense, sediment-laden flood episodes occurred after the deltaic foreset and topset beds were deposited, although the origin, timing, and relationship of these boulder deposits to the ancient lake that once filled Jezero crater remains undetermined. Overall, these observations confirm the deltaic nature of the fan front, and suggest a highly variable fluvial input.
Within the young solar system, a strong magnetic field permeated the protoplanetary disc. The solar nebular magnetic field is likely the source of magnetization for some meteorites like the CM and CV chondrites, which underwent aqueous alternation on their parent bodies before the solar nebular field dissipated. Since aqueous alteration produced magnetic minerals (e.g. magnetite and pyrrhotite), the meteorites could have acquired a chemical remanent magnetization from the nebular field while part of their respective parent bodies. However, questions about the formation history of the parent bodies that produced magnetized CM and CV chondrites await answers—including whether the parent bodies exhibit a detectable magnetic field today. Here, we use thermal evolution models to show that a parent body of the CM chondrites could record ancient magnetic fields and, perhaps, exhibit strong present-day crustal remanent fields. An undisturbed planetesimal would experience one of three thermal evolution cases with respect to the lifetime of the nebular field. First, if a planetesimal formed too late for 26Al-driven water ice melting to occur before the solar nebula dissipates, then aqueous alteration would not occur in the presence of the nebular field and result in no magnetization (Fig. panel a). Second, if a planetesimal forms early enough to undergo alteration before the nebula dissipates but not enough to heat beyond the blocking temperature(s) of the magnetic mineral(s), then nearly the entire planetesimal could be magnetized (Fig. panel b). Lastly, if a planetesimal forms early enough to undergo alteration and subsequently heats beyond the blocking temperature, then any magnetization would be erased except for a thin shell near the surface (Fig. panel c). Our thermal model results suggest that planetesimals that formed between ~2.7 and 3.7 Myr after CAIs could acquire large-scale magnetization. Spacecraft missions could detect this magnetization if it is at the strength recorded in CM chondrites and if it is coherent at scales of tens of kilometers. In-situ magnetometer measurements of chondritic asteroids could help link magnetized asteroids to magnetized meteorites. Specifically, a spacecraft detection of remanent magnetization at 2 Pallas would bolster the claim that 2 Pallas is a parent body of CM chondrites.
The five large moons of Uranus are important targets for future spacecraft missions. To motivate and inform the exploration of these moons, we model their internal evolution, present-day physical structures, and geochemical and geophysical signatures that may be measured by spacecraft. We predict that if the moons preserved liquid until present, it is likely in the form of residual oceans less than 30 km thick in Ariel, Umbriel, Titania, and Oberon. The preservation of liquid strongly depends on material properties and, potentially, on dynamical circumstances that are unknown. Miranda is unlikely to preserve liquid until present unless it experienced tidal heating a few tens of million years ago. The triaxial shapes estimated from Voyager 2 data for Miranda and Ariel further support the prospect that these moons are internally differentiated with a rocky core and icy shell. We find that since the thin residual layers may be hypersaline, their induced magnetic fields could be detectable by future spacecraft-based magnetometers. However, if the ocean is maintained primarily by ammonia, and thus well below the water freezing point, then its electrical conductivity may be too small to be detectable by spacecraft. Lastly, our calculated tidal Love number (k2) and dissipation factor (Q) are consistent with the Q/k2 values previously inferred from dynamical evolution models. In particular, we find that the low Q/k2 estimated for Titania supports the hypothesis that Titania currently holds an ocean.

Elias N. Mansbach

and 5 more

Paleomagnetic studies of meteorites constrain the evolution of magnetic fields in the early solar system. These studies rely on the identification of magnetic minerals that can retain stable magnetizations over ≳4.5 billion years (Ga). The ferromagnetic mineral tetrataenite (γ’-Fe0.5Ni0.5) is found in iron, stony-iron and chondrite meteorite groups. Nanoscale intergrowths of magnetostatically-interacting tetrataenite have been shown to carry records of paleomagnetic fields. Tetrataenite can also occur as isolated, non-interacting grains in many meteorite groups. Here we study non-interacting tetrataenite to establish the grain size range over which it can retain magnetization that is stable over solar system history. We present the results of analytical calculations and micromagnetic modelling of isolated tetrataenite grains with various sizes and geometries. We find that tetrataenite forms a stable single domain state for grain lengths between ~10 and 160 nm dependent on its axial ratio. It also possesses a magnetization resistant to viscous remagnetization over the lifetime of the solar system at 293 K. At smaller grain sizes, tetrataenite is superparamagnetic while at larger grain sizes, tetrataenite’s lowest energy state is a lamellar two-domain state that is stable over Ga-scale timescales. Unlike many other ferromagnetic minerals, tetrataenite does not form a single-vortex domain state due to its large uniaxial anisotropy. Our results show that both single domain and two-domain tetrataenite carry extremely stable magnetization and therefore are promising for paleomagnetic studies.

Christopher Herd

and 15 more

The NASA Mars 2020 Perseverance rover mission will collect a suite of scientifically compelling samples for return to Earth. On the basis of orbital data, the Mars 2020 science team* identified two notional sample caches to study (1) the geology of Jezero crater, collected during the prime mission and (2) the ancient crust outside of Jezero crater, collected during a possible extended mission. Jezero crater geology consists of well-preserved, Early Hesperian to Late Noachian deltaic and lacustrine deposits sourced from a river system that drained Noachian terrain. The crater floor comprises at least two distinct units of sedimentary or volcanic origin whose relationship to the deltaic deposits is presently unclear. Remotely-sensed data reveal signatures of carbonate+olivine and clay minerals within crater floor and crater margin units. Samples from within Jezero that comprise the prime mission notional sample collection thus include: crater floor units; fine- and coarse-grained delta facies, the former with potential to preserve organic matter and/or biosignatures, the latter to possibly constrain the type and timing of sediment deposition; chemical sediments with the potential to preserve biosignatures; a sample of crater rim bedrock; and at least one sample of regolith. The region of southern Nili Planum, directly outside the western rim of Jezero crater, is geologically distinct from Jezero crater and contains diverse Early or even Pre-Noachian lithologies, that may contain records of early planetary differentiation, magnetism, paleoclimate and habitability. The notional sample collection from this region will include: layered and other basement rocks; megabreccias, which may represent blocks of (pre-)Noachian crust; basement-hosted hydrothermal fracture fill; olivine+carbonate rocks that are regionally significant and may be related to units within Jezero crater; and mafic cap unit rocks. The samples described are notional and may change with ongoing surface investigations. However, the samples we anticipate collecting align well with community priorities for Mars exploration, addressing geologic diversity, potential ancient biologic activity on Mars, planetary evolution, volatiles, and human health hazards. *Many other Mars 2020 team members were involved in this planning