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Key Points:

• New normal of “wet gets wetter and dry remains dry” in future city-scale
precipitation is revealed.

• The intensification of extreme precipitation can reach the maximum at
the “super” Clausius-Clapeyron (≥ +7% per K warming) rate.

• Extreme precipitation enhancement is attributed to the increased atmo-
spheric moisture and, importantly, the enhanced lifting force.

Abstract

Understanding the response of extreme precipitation (EP) at a city scale to
global warming is critical to protect a city from the risks of urban flooding
under climate change. Yet, current knowledge on this issue is limited. Here,
focusing on an urban agglomeration in the tropics, Singapore, we reveal that
future global warming enhances both frequency and intensity of EP, based on
simulations with a state-of-the-art convection-permitting regional climate model.
EP intensification can reach maximum “super” Clausius-Clapeyron (≥ +7% per
K warming) rate, consistently for both Representative Concentration Pathways
(RCPs) 8.5 and 4.5. The intensification is lower for moderate and light precipita-
tion, implying a situation of “wet gets wetter and dry remains dry”. EP enhance-
ment is attributed to the increased atmospheric moisture and, more importantly,
the enhanced lifting force, which directly strengthens the precipitation-making
processes.

Plain Language Summary

Understanding the response of extreme precipitation (EP) at a city scale to
global warming is critical to protect a city from the risks of urban flooding
under climate change. Here we show that future global warming will enhance
both frequency and intensity of EP, based on simulations with a state-of-the-art
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convection-permitting regional climate model for an urban agglomeration in the
tropics, Singapore. EP intensification can reach maximum “super” Clausius-
Clapeyron (≥ +7% per K warming) rate, but lower for moderate and light
precipitation, implying a “new normal” of “wet gets wetter and dry remains
dry”. EP enhancement is attributed to the increased atmospheric moisture and,
more importantly, the enhanced lifting force, which directly strengthens the
precipitation-making processes.

1 Introduction

Recent decades have witnessed an increased occurrence of natural disasters,
including floods associated with extreme precipitation (EP) in cities(“AR5 Cli-
mate Change 2014,” n.d.). Making cities safe, resilient, and sustainable is one
of United Nations Sustainable Development Goals 2030 (SDG2030, especially
Goal 11)(United Nations, 2015). Achieving this goal is a challenge because
cities are exposed to changing large-scale climatic feedbacks, and cities them-
selves are creating their microclimate. Such multiscale climatic forcing is causing
non-stationarity in the climate system, which results in an increasing trend of
unprecedented extreme weather and climate events that might occur in the fu-
ture (Diffenbaugh et al., 2017; Fischer et al., 2021). As a result, urban areas
that are designed based on historical hydroclimate conditions continue to be
exposed to higher risk due to climate impacts, especially urban floods. Indeed,
it is recognized that for some regions, precipitation extremes will become more
frequent, more widespread, and/or more intense during the 21st century, and
cities will be disproportionately at higher risk (Meyer et al., 2020).

A basis of framing the precipitation change due to climate warming is through
the classical Clausius-Clapeyron (CC) relation (Fowler et al., 2021; Lenderink &
van Meijgaard, 2009). The CC equation defines the saturation specific humidity
of the atmosphere as a function of temperature. Hence, specific humidity near
the Earth’s surface is anticipated to rise at a rate of approximately 7% per degree
warming (K-1). Several past studies have shown that both short- (< 1 day) and
long-duration (>1 day) precipitation extremes intensify at a rate consistent
with the increase in atmospheric moisture (~7% K−1)(Allan & Soden, 2008). In
some regions, however, the increase in short-duration extreme rainfall intensity
does not follow the expected CC relation (Fischer & Knutti, 2016; Guerreiro
et al., 2018; Rajczak & Schär, 2017; Scherrer et al., 2016; Westra et al., 2014),
there remains uncertainty regarding the response of short-duration precipitation
extremes to global warming (Berg et al., 2013; Deser et al., 2012; Lenderink &
Meijgaard, 2010; Lenderink & van Meijgaard, 2009; Panthou et al., 2014; Park
& Min, 2017; Shepherd, 2014).

Several past studies have pointed out the impact of global warming on heavy
precipitation. However, studies exploring the future changes in EP at small
spatiotemporal scales, especially over cities are limited, due to limited data and
computational resources required for conducting city-scale relevant meteorolog-
ical simulations. Another reason relates to the large uncertainties involved in
our understanding of processes at the city scale, which can influence short-term
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precipitation. Such uncertainties include socio-economic forecasts, greenhouse
emission scenarios, global climate models (GCMs) errors, and lack of physical pa-
rameterization schemes representing complex urban thermodynamics processes.
At the city scale, the challenges are further compounded as the coarse reso-
lution of current GCMs makes it impossible to explicitly represent convection
processes and the interaction of mesoscale regimes, which are known to affect
rainfall processes(Prein et al., 2017). Thus, dynamical downscaling methods
are widely applied to partially overcome the scale issue by using kilometer-scale
climate models to capture the local effects but retain the atmospheric forcing
generated by GCMs. With this approach, mesoscale effects originating from
urban-rural heterogeneities, cities, land/sea boundaries, or topography are bet-
ter represented in the model. Nevertheless, uncertainties still exist and some-
times might be amplified, particularly in the precipitation process, which is very
nonlinear and sensitive to multiple, multiscale forcings (Kusaka et al., 2016).

The present study focuses on tropical cities which are particularly vulnerable.
They are home to 39 % of total urban dwellers globally (United Nations, 2018),
usually located in fast-growing economies. Characterized by rapid urbaniza-
tion and industrialization, they are likely more vulnerable to climate changes
than their counterparts in higher-latitude areas (World Bank, 2010). Impacts of
heavy rain and urban floods on socioeconomic well-being are particularly note-
worthy due to the propensity for tropical warm-rain processes including from
monsoons. As a result, there is a pressing need to understand better how EP
changes with climate change and anthropogenic global warming in tropical cities
to design for climate resilience properly.

Here, we assess the climatic response of EP at a city scale to global warming
using Singapore as an example. The primary question of interest is: how will
EP change in the future? More specifically, we address two research questions
regarding city-scale EP change: (i) does the local EP show a significant global
warming signal, and (ii) what atmospheric processes are responsible for even-
tual EP changes? We employ a state-of-the-art convection-permitting regional
climate model based on the Weather Research Forecasting (WRF) modeling
system, whose performance to simulate EP is verified against in-situ observed
and satellite-derived rainfall products. Using dynamical downscaling, future EP
climates until 2100 are simulated using Representative Concentration Pathways
(RCPs) 8.5 and 4.5, respectively.

2 Materials and Methods

2.1 Model configuration

A convection-permitting regional climate model, named Weather Research
and Forecast (W. C. Skamarock et al., 2008) (WRF), is used to simulate
current-time and future precipitation climates over the Singapore region. The
model is designed to have three nested domains with horizontal resolutions
of 30 x 30, 6 x 6, and 2 x 2 km for gradually inheriting the large-scale
atmospheric forcing while resolving the localized convective processes. The
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innermost domain, having the size of 154 x 154 grid cells, covers the Singa-
pore metropolitan area, the Southern Malaysia peninsula, and a part of the
Indonesian islands (Fig. S1). The physical schemes of WRF (shown in Table
1) are selected for their being widely used in regional climate simulations
(https://www2.mmm.ucar.edu/wrf/users/physics/phys_references.html). Note
that the cumulus parameterization scheme is applied for the outermost domain
only because fine resolutions of the inner domains allow them to resolve the
convection processes explicitly. For modeling the urban effect, the single-layer
urban canopy model (Kusaka et al., 2001; Kusaka & Kimura, 2004) is activated
within the Noah land surface modeling (Chen et al., 2011) framework. To
better representing the urban area, up-to-date urban land cover information
(Demuzere et al., 2021) is used and overlaid over the default USGS land
use database provided by WRF (Fig. S2). Urban parameters used in the
simulations are kept as default as provided by WRF.

2.2 Experimental design

We conducted three separate simulations using different climate scenarios while
keeping the same surface conditions (Table 2). The first simulation, i.e., the
baseline climate (BC), reproduces the current climate. Two sensitive simula-
tions, i.e., the future climate (FC), are aimed to dynamically downscale future
climate assumed global warming up the end of the 21st century following two
Representative Concentration Pathways (RCP) 8.5 and 4.5 (van Vuuren et al.,
2011). In detail, simulation BC is forced by ERA-Interim reanalysis data (Dee
et al., 2011) as initial and boundary conditions (IBCs) and run for November
2005 – 2014. November is selected because it falls into the inter-monsoon period
(between the Southwest and Northeast monsoon seasons) when the prevailing
wind is relatively weak, and the wet atmosphere is dominantly characterized by
localized thunderstorms, at times severe (Doan et al., 2021; Fong & Ng, 2012;
Simón-Moral et al., n.d.). Such atmospheric conditions are believed the most
suitable for this study.

On the other hand, the FC simulations are forced by IBCs created using the
pseudo-global warming (PGW) approach. PGW is a widely used dynamical
downscaling method for investigating the response of localized weather to the
global warming effect (Doan & Kusaka, 2018; Gutmann et al., 2018; Hibino et
al., 2018; Lauer et al., 2013; Pall et al., 2017; Rasmussen et al., 2011; Sato et
al., 2007; Schär et al., 1996). In PGW, RCMs are forced by “pseudo” future
atmospheric conditions, defined as present-time reanalysis data added by so-
called global warming increments (GWIs)(Doan & Kusaka, 2018). First, we
calculate GWIs as anomalies between the future and current climate (in terms
of monthly mean), provided by a GCM or ensemble of GCMs, for primary
atmospheric variables, i.e., surface and air temperature, geopotential, wind (two
components). GWIs are then re-gridded and added onto the reanalysis data of
interest to be handled by RCMs. Details of the technical procedure of PGW
as well as its advantages and disadvantages are well documented in previous
literatures (Doan & Kusaka, 2018; Rasmussen et al., 2011; Sato et al., 2007).
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A reason for selecting the PGW dynamical downscaling is because the method
can isolate the primary signal of the global warming effect. PGW literately
ignores the potential change in inter-annual and daily variabilities of the future
climate system 31(Lauer et al., 2013; Sato et al., 2007). This characteristic allows
us to focus exclusively on how warming background climate modifies extreme
precipitation. The secondary impacts of global warming, such as the impacts of
potential changes in weather variabilities, are intentionally not included in this
study.

In terms of technical details, GWIs in this study are calculated as anomalies
between the future and the reference climate data provided by CMIP5 GCMs
(Meehl et al., 2009; Taylor et al., 2012). The future climate is defined as Novem-
ber mean for 20 years 2080 – 2099; meanwhile, the reference climate is 2000
– 2019. Three atmospheric variables, i.e., air temperature, geopotential height,
and wind (two components) and one surface variable, i.e., surface temperature,
are used. Two emission scenarios, that is, RCP4.5 and RCP8.5, are selected for
the sake of covering inter-scenario uncertainty. To reduce the GCM-related bias,
the ensemble mean of multiple GCMs are used instead of a single GCM. In de-
tail, 36 GCMs for RCP8.5 and 30 GCMs for RCP4.5 are used for calculating the
mean. GWIs values are then re-gridded and added over 6-hourly ERA-Interim
reanalysis data to generate IBCs for WRF.

2.3 Rainfall data

In-situ measurement rainfall data used to evaluate the model’s performance
are from five manned weather stations, named Changi, Paya Lebar, Seletar,
Sembawang and Tengah (S-24, S-06, S-25, S-80, and S-23). These stations are
managed by the Meteorological Service Singapore (MSS). Rainfall values are
hourly totals (e.g., 01:00 LT rainfall is that backward accumulated between 00:01
and 01:00 LT). A quality check is conducted by comparing against both tipping
buckets and radar images (http://www.weather.gov.sg/learn_observations/).

Satellite precipitation product - CMORPH (CPC MORPHing technique)
(NCEP, 2021) is used to compare with the WRF-driven precipitation data.
CMORPH is useful because of its spatial coverage and can be used as com-
plementary to in-situ measurement to verify the WRF results. CMORPH
is global precipitation analysis at very high spatial and temporal resolution.
This technique uses precipitation estimates derived from low orbiter satellite
microwave observations exclusively and whose features are transported via
spatial propagation information obtained entirely from geostationary satellite
IR data. CMORPH has been bias corrected and reprocessed using the Climate
Prediction Center (CPC) Morphing Technique (MORPH) to form a global,
high resolution precipitation analysis. Data is reprocessed on a global grid
with 8 x 8 km spatial resolution with temporal resolution is 30 minutes from
January 1998–present.

3 Results

The performance of WRF on regional precipitation and its extremes is evaluated
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against both in-situ measurements and satellite-derived precipitation products
(CMORPH). The model agrees well with observations regarding the probabil-
ity distribution of hourly precipitation across almost all precipitation intensities
(Fig. 1a). The quantile-quantile (Q-Q) comparison provides a more specific com-
parison between the observed and modeled rainfall (Fig. 1b). Overall, the model
slightly underestimates measured precipitation, especially at very high quantiles.
NOAA’s satellite-derived NOAA CPC Morphing Technique (CMORPH) data
(Joyce et al., 2004) is used to expand ‘observed’ rainfall coverage. For direct
comparison, the WRF output is upscaled to the resolution of the satellite prod-
uct (to 8 x 8 km). The agreement between the model and CMORPH is relatively
less, with the model overestimating high precipitation quantiles (up to 80%) and
underestimating low quantiles (Fig. 1c, d). However, the overestimation of high
precipitation quantiles is expected because of the relatively coarse resolution of
the CMORPH product, which tends to smooth out fine-scale extreme precipi-
tation (NCEP, 2021). Considering this known absolute bias, the agreement in
the diurnal cycle and spatial variation of rainfall between WRF and CMORPH
is reasonable (Fig. S3). Precipitation occurs at night and early morning over
the Malacca Strait’s open water and develops late afternoon and evening over
the inland area.

“Rich get richer, and poor remains poor.”
The question related to the future change is investigated by examining the dif-
ference between simulations for baseline climate (BC) and future climate (FC)
(read Method for more details about simulation setting). Several interesting
features stand out. First, the comparison shows a notable increase in the sim-
ulated EP in the future, namely an increase in event frequency and enhanced
precipitation intensity (Fig. 2). Second, the characteristics of the changes are
different with different precipitation types, revealing a more significant increase
for heavy precipitation compared to lighter precipitation. For example, the oc-
currence probability of precipitation under 10 mm hr-1 is projected to increase
by 10% (under scenario RCP8.5). In contrast, for precipitation greater than
30 mm hr-1, the increase can reach 50% or greater (Fig. 2a lower panel). The
increasing trend is consistently seen for two RCP scenarios. However, the extent
of the change is different between RCPs, with lesser with RCP4.5 and higher
with RCP8.5. Interestingly, there is almost no inter-scenario difference for light
precipitation, which becomes more pronounced for heavier precipitation.

In addition to the frequency, the changes in intensity are essential because of
their urban flood implications. An interesting trend is seen as the more sub-
stantial intensification is likely to happen at upper-quantile precipitations. For
example, with RCP8.5, precipitation of quantiles 0.95 and 0.99 are anticipated
to increase by 3.3 and 5.8 mm/hr from 18.9 and 33.4 mm/hr in the present cli-
mate, corresponding to the increasing rates of 17.4 and 17.6%, respectively, for
the land area. Also, the intensity change shows is RCP scenario dependent (Fig.
2a, d). The absolute increase of quantile 0.95 and 0.99 for RCP8.5 is roughly
double that for RCP4.5. Further, while it varies among land, sea, and city, the
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variation is relatively small compared to inter-scenario differences. Neverthe-
less, precipitation intensification is highest over water, followed by land area
and most minor changes over the city (Fig. 2d).

Assessing the precipitation changes taking the C-C and rainfall change relation
(~ 7% for 1K warming) as a reference can help provide insightful understanding
about the climatic response (Fowler et al., 2021). It is interesting to note that
despite variations in absolute values (Fig. 2d left panel), changes in rainfall
intensities are likely to converge regardless of the RCP scenario. The asymmet-
ric trend is seen among different quantiles (Fig. 2d right panel). The upper
quantiles show more remarkable changes in terms of the CC rate. Over the
sea, the change rate even reaches above 1.0, i.e., the “super” CC rate. Together
with the changes in precipitation frequency, a consistent finding emerges: the
heavier the current precipitation is, the more intense and frequent it will be in
the future. For less heavy rainfall, the changes are expected to be minor and
insignificant. This phenomenon is similar to resource redistribution of wealth in
the social stratification theory (Angle, 1986), i.e., with more “wealth” (moisture
supply), “the rich will get richer, and the poor remain poor”.

The increase in future precipitation generally and especially in extremes is at-
tributed to two possible factors if excluding the impacts of aerosol. The first is
an increase in atmospheric moisture (the “fuel” for convective potential). The
second is an enhanced vertical motion that lifts low-level moisture upward and
favors more vigorous convection and more precipitation. The change in the at-
mospheric moisture is analyzed by examining the differences in total precipitable
water between FC and BC (PW, Fig. 3). For example, FC RCP8.5 exhibits a
14 mm, or approximately 24%, increase compared to BC. A weaker increase is
noted under FC RCP4.5 as well. This trend is inline across sea, land, city, and
precipitation types, i.e., moderate and heavy.

On the other hand, the changes in convective available potential energy (CAPE)
and convective inhibition (CIN) vary among precipitation types and land covers.
CAPE indicates atmospheric instability and a necessary condition for generating
convections. In contrast, CIN indicates suppression of convection development,
which inhibits air parcels from rising from the surface to the level of free con-
vection. Not surprisingly, results revealed a noticeable increase in CAPE in the
future (up to 30 - 40 % with RCP8.5), indicating that a warmer atmosphere will
provide a more favorable environment for convection (CAPE, Fig. 3). However,
CIN also shows a positive trend, meaning that the “negative” force to suppress
convection development is also enhanced (CIN, Fig. 3). But the absolute value
of CIN is small to suppress convection. Instead, it helps to make convection
vigorous by delaying it until lifting force overcomes CIN (Emanuel, 1994; Stull,
2016). One interesting fact worthy to note is that higher CAPE and lower CIN
trends are seen for light precipitation (lower than quantile 0.5) compared to
extreme precipitation (higher than quantile 0.9, 0.99). This result is somewhat
counter-intuitive as if we expect that the atmosphere instability is a driven force
of precipitation over the region of interest. Results for lifting force, in terms of
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maximum vertical wind speed (W_max), provide a different insight. Overall,
W_max with light precipitation is very small compared to extreme precipita-
tion (W_max, Fig. 3). On the other hand, W_max during heavy and extreme
precipitation is very high (~ 3 m /s), and further increases in the future. This
result implies that the change in lifting force, but not CAPE, might play a more
critical role in the story of extreme precipitation. Indeed, the diurnal cycle of
rainfall for different thresholds (Fig. S4) shows a decrease in the frequency of
extreme precipitation over the land area, particularly in the afternoon despite
CAPE being highest.

4 Discussions and conclusions

This study presents the first results of future changes in extreme precipitation in
a coastal, tropical urban agglomeration, Singapore, up to 2100, based on simula-
tion results with the convection-permitting WRF model. It is clear that future
global warming substantially enhances the frequency and intensity of extreme
hourly precipitation at a city scale, primarily because the warmer atmosphere
holds more moisture, the “fuel” of precipitation. More interestingly, the en-
hancement is not uniform among precipitation at different intensities, given the
same increasing rate of atmospheric water vapor. The more extreme precipita-
tion is intensified further in the future warming environment. Notably, inten-
sified rate of very extreme one (greater than quantile 0.99) can reach “supper”
Clausius-Clapeyron rate (greater than +7% per K). In contrast, the intensifi-
cation of moderate and light precipitation (lower than quantile 0.5) is lower
and close to zero Clausius-Clapeyron rate. This situation, metaphorically, can
be expressed as “rich becomes richer and poor remains poor”, given the same
“wealth” (i.e., the same increased amount of atmospheric moisture). The result
is significant for urban planners. The asymmetric nature of the future enhance-
ment of precipitation has to be considered in mitigating more severe urban flash
flooding caused by increased. This is especially important for coastal cities over
the low-latitude tropical area, where sea-level rise, another impact of global
warming, is known to be more serious (Spada et al., 2013).

Several uncertainties remain in this study. First, as we isolate the primary
thermodynamic signal of global warming by employing the PGW approach for
dynamical downscaling, it means that we ignore secondary signals such as po-
tential changes in inter-annual variabilities or changes in large-scale weather
patterns which could influence the extreme precipitation climate. However,
comprehensively including global warming impacts in the sense of direct dy-
namical downscaling could blur the first signal of global warming on localized
precipitation, making it difficult to derive a clear conclusion. We also do not dis-
cuss the model’s physical-scheme-related uncertainty and those related to future
changes in urban surface conditions or the impact of aerosols. Several sensitiv-
ity experiments with a different physical scheme and urban settings show that
the discrepancy existing among these model settings does not affect this study’s
main conclusions. In this sense, though in this study we found that the signal
from the city is likely different from those from the land and sea, this finding
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fell into some uncertainty. Thus, how the urban effect on localized precipitation
will change (increase/decrease) as the atmosphere becomes warmer, still open,
and worthy to be answered in a future comprehensive assessment.
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Figure 1. WRF performance against in-situ measurement and
satellite-derived precipitation product. (a) Probability density
function (PDF) of WRF simulations and in-situ measurements at six
weather stations (see inset of b) run by the Meteorological Service
Singapore. Results are averages across all stations of modelled (cor-
responding to the grid of the in-situ location) and observed hourly
data in November for ten years 2005 – 2014. (b) Quantile-quantile
(Q-Q) plot for WRF and in-situ measurement data. (c) PDF of WRF
simulations and satellite-derived precipitation CMORPH analysis.
Left panel is the average PDF of all grid cells in the domain of
interest (inset map in d). WRF rainfall values are upscaled to match
the spatial resolution of CMORPH data (approximately 8 x 8 km).
Right panels show PDFs for different surface covers, i.e., sea, land,
city, respectively. (d) Q-Q plot for WRF and CMORPH rainfall.
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Uncertainty ranges shown in all panels indicate annual variability,
i.e., the range between percentile 25 and 75 of annual values (10
years).

Figure 2. Extreme precipitation becomes more frequent and intense
with global warming. (a) Probability density functions (PDFs) of
baseline climate (BC) and future climate (FC) (upper sub-panel) and
anomaly of FC relative to BC in percent (lower sub-panel). PDFs
are whole-domain averages calculated from hourly precipitation (Pr)
data for each grid cell. Quantile-quantile plot (b) for BC and FC
for different land covers. Land area is defined as non-sea and non-
urban areas in the domain of interest. Like PDFs, quantile values are
the average of individual grid cell values. (c) PDFs of area-averaged
temperature for three scenarios (BC and two FCs) for the entire
domain, sea, land and city. (d) the FC-BC difference for sea, land, and
city (upper subpanel); the FC-BC difference after Clausius-Clapeyron
(CC) scaling (assuming a humidity increase of 7% per K warming.
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Uncertainty ranges shown in all panels indicate annual variability, i.e.,
the range between percentile 25 and 75 of annual values (10 years).

Figure 3. Change in atmospheric variables associated with precip-
itation. Shown are from top to bottom precipitable water (PW),
convective available potential energy (CAPE), convective inhibition
(CIN), and maximum vertical velocity (W_max) for three different
land covers (left to right) and for three precipitation types, i.e., below
quantile 0.5, above quantile 0.9, and 0.99. Values are area averages
for the respective land covers. Different bar color indicates values of
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BC, FC RCP8.5, and RCP4.5, respectively. BC is baseline climate
(i.e., November 2005 – 2014), FC is future climate defined as 2080
– 2099. Uncertainty ranges shown in all panels indicate annual vari-
ability, i.e., the range between percentile 25 and 75 of annual values
(10 years).

Table 1. Model configuration and physical scheme settings.

Domain 01 Domain 02 Domain 03
Grid spacing 30.0 km 6.0 km 2.0 km
Number of grids 120 x 120 206 x 206 154 x 154
Number of vertical layers 35 layers
Microphysics scheme WRF single–moment 6–class scheme(Hong, 2006)
Shortwave radiation Dudhia Shortwave scheme(Dudhia, 1989)
Longwave radiation RRTM Longwave scheme(Mlawer et al., 1997)
Boundary layer scheme Yonsei university scheme(Hong et al., 2006)
Land surface scheme Noah land-surface model (Mukul Tewari et al., 2004)
Urban canopy model Single-layer urban canopy model (Kusaka et al., 2001)
Cumulus Kain–Fritsch scheme (Kain, 2004) (Domain 01 only)

Table 2. List of initial and boundary conditions used for simulations.

Experiments Description Initial & boundary conditions
BC Baseline Climate ERA Interim, Novembers 2005 – 2014
FC RCP8.5 Future climate up to 2080 – 2099 with scenario RCP8.5 CMIP5 RCP8.5 ensemble means (36 GCMs) GWI (2080 – 2099 minus 2000 – 2019) + ERA Interim, Novembers 2005 – 2014
FC RCP4.5 Future climate up to 2080 – 2099 with scenario RCP8.5 CMIP5 RCP8.5 ensemble means (30 GCMs) GWI (2080 – 2099 minus 2000 – 2019) + ERA Interim, Novembers 2005 – 2014
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Figure S1. Domain configuration. Outermost, middle and innermost
domains D1, D2, and D3 have a spatial resolution of 30 x 30, 6 x 6,
and 2 x 2 km, respectively. D1 includes Singapore, Malaysia, parts of
Indonesia, Thailand, and Vietnam. D2 covers the Malay Peninsula,
parts of Sumatra. D3 is centered over Singapore and the southern
part of the Malay Peninsula.
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Figure S2. Surface conditions of inner most domain centered on Sin-
gapore. (a) map of topography height and (b) land cover with 2 x 2
km resolution.
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Figure S3. Distribution of rainfall over the Singapore region com-
pared between WRF and CMORPH data. 3-hourly accumulated
rainfall, averaged over November for ten years 2005 – 2014. Spa-
tial resolution of data is unified to that of CMORPH data which is
about 8 x 8 km.
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Figure S4. Timing of rainfall for different land covers, rain types and
warming scenarios. A single peak is seen over water, but double peaks
are present over land, with the early morning peak considered as a
results of rainfall propagation from the ocean. Uncertainty ranges
shown in all panels indicate annual variability, i.e., the range between
percentile 25 and 75 of annual values (10 years).
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