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Abstract16

Bretherton et al. (2022, https://doi.org/10.1029/2021MS002794) demonstrated a suc-17

cessful approach for using machine learning (ML) to help a coarse-resolution global at-18

mosphere model with real geography (a ∼200 km version of NOAA’s FV3GFS) evolve19

more like a fine-resolution model. This study extends that work for application in mul-20

tiple climates and multi-year ML-corrected simulations. Here four fine-resolution (∼25 km)21

two-year reference simulations are run using FV3GFS with climatological sea surface tem-22

peratures perturbed uniformly by −4 K, 0 K, +4 K, and +8 K. A dataset of state-dependent23

corrective tendencies is then derived through nudging the ∼200 km model to the coars-24

ened state of the fine-resolution simulations in each climate. Along with the surface ra-25

diative fluxes, the nudging tendencies of temperature and specific humidity are machine-26

learned as functions of the column state. ML predictions for the fluxes and corrective27

tendencies are applied in 5.25 year ∼200 km resolution simulations in each climate, and28

improve the spatial pattern errors of land precipitation by 17 % to 30 % and land sur-29

face temperature by 20 % to 23 % across the four climates. The ML has a neutral im-30

pact on the pattern error of oceanic precipitation.31

Plain Language Summary32

Previous work demonstrated how to use machine learning to help a computation-33

ally efficient coarse-grid climate model behave like a more realistic, but expensive, fine-34

grid reference simulation that we could only afford to run for 40 days. The machine learn-35

ing was interpreted as correcting errors in the representation of uncertain small-scale cloud,36

precipitation, and turbulence processes on the model simulations. By using a fine-grid37

model with a grid spacing eight times as large as our previous reference that runs tens38

of times faster, we extend that approach to multi-year coarse-grid simulations of a range39

of climates, both warmer and colder than the present day. Different random starting guesses40

(‘seeds’) lead to slightly different machine learning corrections even with exactly the same41

training protocol. When applied interactively in one-year coarse-grid simulations, the42

machine learning corrections consistently improve the time-mean pattern of rainfall and43

surface temperature over land vs. fine-grid reference simulations in each of the climates44

we trained against. These machine learning models can be used successfully to enhance45

the accuracy of five-year simulations in all climates.46
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1 Introduction47

To make accurate and precise predictions of climate change, global climate mod-48

els (GCMs) should realistically include and resolve as many physical processes as pos-49

sible. However, computational power is an important constraint, so trade-offs must be50

considered, e. g. between grid spacing and subgrid parameterization. Current GCMs with51

grid spacings of 50 km or more can be affordably run for thousands of years, using phys-52

ical parameterizations for subgrid-scale processes such as cumulus convection and grav-53

ity wave drag. However, these parameterizations are a major source of uncertainty (Shepherd,54

2014), and as a result, even the same model, when run at finer resolution, might project55

different regional patterns of climate change (van der Wiel et al., 2016). Furthermore,56

spatial resolution trade-offs mean coarse-grid simulations often cannot represent impor-57

tant processes like rainfall as well as finer grid runs (e.g., Stevens et al., 2020; Caldwell58

et al., 2021).59

Through the use of machine learning (ML), it may be possible to improve afford-60

able coarse-grid model simulations by leveraging output from finer-grid runs. This has61

been demonstrated in idealized settings by Brenowitz and Bretherton (2019), Yuval and62

O’Gorman (2020), Yuval et al. (2021), and Yuval and O’Gorman (2021), and recently63

in a real-geography setting in Bretherton et al. (2022), hereafter referred to as “B22.”64

In Brenowitz and Bretherton (2019), Yuval and O’Gorman (2020), Yuval et al. (2021),65

and Yuval and O’Gorman (2021), ML models were trained using coarse-grained outputs66

of fine resolution reference runs to fully represent the apparent sources (Yanai et al., 1973)67

of temperature, specific humidity, or horizontal momentum of the coarse model, while68

in B22 corrections to the parameterized apparent sources were learned. In each of these69

studies, when run with these ML tendencies included, aspects of the coarse simulations70

behaved more like the coarsened fine resolution model.71

In this study we extend the corrective ML approach introduced in Watt-Meyer et72

al. (2021), hereafter “W21,” and B22, to multi-year simulations in multiple climates. Based73

on the output of coarse-grid simulations that were nudged to observational analysis or74

the coarsened state of a fine-grid model, W21 and B22 trained machine learning mod-75

els to predict corrections to the physical parameterization tendencies of a full-geography76

coarse-grid model in the present-day climate. When applied in otherwise free-running77

prognostic simulations, these corrections, among other things, brought the precipitation78
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climatology of the coarse model closer to that of observations or a fine-grid reference.79

We apply similarly obtained ML corrections in free-running prognostic simulations in80

multiple climates, and quantitatively evaluate their impact on improving selected climate81

metrics compared to baseline simulations without ML corrections. Biases are calculated82

with respect to the fine-grid reference simulations. Because this ML approach optimizes83

only the single timestep evolution versus the fine-grid reference simulations, it is not guar-84

anteed to yield stable simulations with smaller long term mean biases in all climates than85

for the baseline model.86

To keep the scope manageable, our simulations use specified sea-surface temper-87

ature (SST) distributions to which globally uniform offsets are added to generate colder88

and warmer climates. We use a ∼25 km grid version of our climate model as our fine-89

grid reference, and a ∼200 km grid version of the same model with the same set of pa-90

rameterizations serves as the coarse-grid model whose baseline (no-ML) simulations are91

to be improved using the ML. Eventually, like B22, we would like to use a global storm92

resolving model with a 3 km or finer horizontal grid as the reference model, but it is still93

too computationally expensive to make the multi-year simulations over multiple climates94

that would entail.95

To develop an effective multi-climate scheme, we build upon earlier findings that96

ML models perform best when making predictions within the bounds of their training97

data (O’Gorman & Dwyer, 2018; Rasp et al., 2018). New offline results suggest that it98

may be possible to develop ML parameterization (Beucler et al., 2021) or classification99

(Molina et al., 2021) schemes that generalize to climates outside their training range. How-100

ever, to minimize any changes to the method this work is based upon (B22), we choose101

to focus our offline and online tests on the range of climates present in our training data,102

since application of the methods of B22 in multiple climates is novel in and of itself.103

Our goal is to deploy ML that improves coarse resolution climate simulations of104

indefinite duration. Recently, an analogous study used the output of a present-climate105

superparameterized GCM to train deep neural nets to emulate the apparent sources of106

temperature and humidity generated by the cloud-resolving models running within each107

GCM grid column (Y. Han et al., 2020; Wang et al., 2021). With an extensive trial-and-108

error approach, they found an ML configuration that ran stably for five years with time-109

mean biases in temperature and precipitation relative to the superparameterized refer-110
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ence simulation that were comparable to a conventional GCM. Here, we also test the ap-111

proach using five-year ML-corrected runs – significantly longer than those attempted in112

W21 or B22 – to see how the method performs, not just on the current climate, but also113

with SSTs ranging from 4 K colder to 8 K warmer.114

Section 2 presents our simulation, training, ML, and evaluation methods. Section115

3 presents results for both offline and online skill across the selected range of climates.116

Section 4 presents a discussion and conclusions.117

2 Methods118

As in W21 and B22, the coarse model we aim to improve is a 79-level C48 (∼200 km)119

resolution version of NOAA’s FV3GFS (https://github.com/ai2cm/fv3gfs-fortran),120

a full-complexity atmosphere model typically used for numerical weather prediction (UFS121

Community, 2020). It is based on the FV3 dynamical core (Putman & Lin, 2007; Har-122

ris et al., 2021) and contains a configurable suite of physics parameterizations. The dy-123

namical core uses the same number of vertical remappings (1) per physics timestep and124

dynamical substeps per vertical remapping (6) as in W21 and B22. For this work, in terms125

of physical parameterizations, the model is configured to use the hybrid eddy-diffusivity126

mass flux turbulence scheme (J. Han et al., 2016), the GFDL microphysics (Zhou et al.,127

2019), the scale-aware mass flux shallow and deep convection schemes (J. Han & Pan,128

2011), the Rapid Radiative Transfer Model for GCMs (Iacono et al., 2008), a gravity wave129

drag scheme (Alpert et al., 1988), a mountain blocking scheme (Lott & Miller, 1997),130

and the Noah land surface model (Ek et al., 2003).131

These are the same schemes as those used in W21, but there are two configuration132

differences. The first is that we reduce the physics timestep to 450 s, which is needed to133

stabilize runs in warmer climates. The second is that we configure the model to be run134

with some microphysical processes occurring in the vertical remapping loop of the dy-135

namical core in addition to in the physics. This is consistent with our fine-resolution sim-136

ulations. These are run with 7 vertical remappings per physics timestep, since frequent137

application of microphysical adjustments leads to a more accurate representation of pre-138

cipitation (Zhou et al., 2019). Although the coarse-resolution simulations use only one139

vertical remapping per physics timestep, configuring the microphysics in a consistent way140
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improves the climatology of precipitation and surface radiative fluxes in baseline runs141

relative to the fine-resolution reference runs.142

Our reference fine grid model is a C384 (∼25 km) version of FV3GFS. It uses the143

the same vertical levels, physics timestep, and physics configuration as the coarse-grid144

model, making the fine and coarse model versions identical except for their grid resolu-145

tion and dynamical substepping frequency, in this case 7 vertical remappings per physics146

timestep and 8 dynamical substeps per vertical remapping. Thus, the corrective ML is147

purely accounting for systematic effects of the additional spatial variability captured by148

the fine-grid simulation but not the coarse simulation. In a practical application, bet-149

ter results might be obtainable by combining corrective ML with tuning of the coarse-150

model namelist parameters, but we choose to forgo this step for simplicity and clarity151

of comparison. Our fine-grid reference model resolution differs from B22, who used a C3072152

(∼3 km) resolution simulation completed using the NOAA Geophysical Fluid Dynam-153

ics Laboratory’s SHiELD model (Harris et al., 2020). This choice made it computation-154

ally practical to produce years of training/testing data for multiple climates.155

Table 1 summarizes the configuration and duration of all the simulations we com-156

plete for this study. We describe these runs in more detail in the following subsections.157

2.1 Reference simulations158

To produce an ML scheme calibrated across the annual cycle in multiple climates,159

we need at least one full year of training data from a reference fine-grid simulation in160

each such climate. We include an additional independent year to validate the predictions161

of the ML models we train offline, and to compare with simulations where we apply the162

ML predictions online. Accordingly, we run two-year C384 (25 km grid) FV3GFS ref-163

erence simulations with climatological sea surface temperatures (SSTs) perturbed uni-164

formly by −4 K, 0 K (control climate), +4 K, and +8 K. From these two year reference165

simulations, every 15 minutes we output restart files and diagnostics containing the state166

of the model, which is coarse-grained online following the methodology described in B22167

to C48 resolution.168
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2.1.1 Control climate reference simulation169

The control-climate simulation is forced with historical SST and sea ice conditions.170

The SSTs are derived from the 1/12° resolution Real Time Global Sea Surface Temper-171

ature (RTGSST) dataset (Thiébaux et al., 2003), averaged into climatological monthly172

means across the period 1982 – 2012. For each simulation, SSTs are then interpolated173

in space and time to the model’s grid and the day of the year, repeating annually. The174

sea ice distribution is derived from 1982-2012 monthly means of the 0.5° resolution Cli-175

mate Forecast System Reanalysis (Saha et al., 2014). While it was initially intended that176

the sea ice distribution would vary with the annual cycle, instead, due to a configura-177

tion error, the sea ice distribution is held fixed to its August climatological pattern in178

both the reference fine-resolution and coarse-resolution simulations. Ideally the sea ice179

would be consistent with the annual cycle, but since this error occurs in both our ref-180

erence and coarse-resolution simulations, it should not have an impact on our conclu-181

sions regarding the ability of the ML to make a coarse-resolution simulation evolve more182

like a fine-resolution one.183

In the control climate, the climatological biases in precipitable water and precip-184

itation are substantially reduced with a ∼25 km grid vs. a ∼200 km grid. Figure 1 shows185

maps of these biases in annual-mean precipitable water and precipitation compared to186

1982 – 2012 averages for ERA5 reanalysis (Hersbach et al., 2019) and Global Precipi-187

tation Climatology Project (GPCP) (Adler et al., 2003) observations, the same years used188

to form the SST climatology used in our simulations. In both simulations, the spatial189

patterns of the precipitable water and precipitation biases are highly correlated, reflect-190

ing the strong observed relationship between the two fields (Bretherton et al., 2004). The191

finer grid results in smaller biases in mountainous terrain such as the Andes and Himalayas,192

as well as improved simulation of tropical rain belts, e.g., over northwest South Amer-193

ica and central Africa. Overall, by increasing the resolution, the global root mean square194

error (RMSE) in time-mean precipitable water is reduced by 48 % and that of precip-195

itation is reduced by 30 %. This motivates using the 25 km simulation as a reference across196

the control and perturbed climates.197
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(a)

~200 km FV3GFS
Global RMSE = 3.3 kg/m2

(b)

~25 km FV3GFS
Global RMSE = 1.7 kg/m2

(c)
Global RMSE = 2.1 mm/day

(d)
Global RMSE = 1.4 mm/day
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Figure 1. Top row: Time-mean precipitable water bias compared to ERA5 reanalysis for

the (a) ∼200 km baseline and (b) ∼25 km reference simulations in the control climate. Bottom

row: As in top row, but time-mean precipitation bias compared to GPCP observations. The time

means are taken over the five post-spinup years of the baseline simulation, the second year of the

reference simulation, and years 1982 – 2012 of the ERA5 reanalysis or GPCP observations.

2.1.2 Perturbed climate reference simulations198

For the perturbed-climate simulations, a uniform offset is added to the specified199

climatogical SST. We assume the prescribed climatological distribution of sea ice, de-200

fined as a fraction of area covered by sea ice in each grid cell, remains the same across201

all climates, a commonly-made but unrealistic simplification. An additional simplifica-202

tion we make is that we do not perturb the carbon dioxide concentration; instead it is203

prescribed to its present-day value in each simulation.204

To efficiently spin up the land surface and atmosphere to the perturbed-climate SSTs,205

we initialize all C384 runs—including the control climate case for consistency—using restart206

files from the end of year-long C48 simulations with the same SST perturbations (the207

“spin-up” simulation listed in Table 1). We upsample the restart files from C48 to C384208

resolution using the chgres cube tool developed at the NOAA Environmental Model-209

ing Center (EMC), included in the UFS UTILS GitHub repository (Gayno et al., 2020).210

The C48 spin-up simulations are started from initial conditions derived from the Global211

Forecasting System analysis (NCEI, 2020) for the date 2016-08-01 at 00Z, with SSTs per-212
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turbed uniformly depending on the climate. The coarse-grid spin-up and fine-grid ref-213

erence simulations are run on NOAA’s Gaea supercomputer using the pure Fortran ver-214

sion of FV3GFS maintained by our group linked to earlier.215

2.2 Baseline coarse-resolution simulations216

For comparison, we run 5.25 year baseline simulations with FV3GFS at C48 res-217

olution in each climate and discard the first three months as a pre-analysis spinup pe-218

riod. Each simulation is initialized using a coarsened set of restart files from the end of219

the first year of the fine resolution reference simulations and uses the same sea ice and220

climate-specific SST climatology. These no-ML baseline simulations provide a skill bench-221

mark for evaluating our ML-corrected simulations. The baseline and subsequently dis-222

cussed nudged and ML-corrected simulations are run with cloud computing resources223

within a Python-wrapped version (McGibbon et al., 2021) of the pure Fortran version224

of FV3GFS.225

2.3 Generating a training dataset226

To derive a training and testing dataset of corrective tendencies for the coarse model’s

temperature and specific humidity, we extend the nudging approach described in B22.

We run two-year C48 simulations with FV3GFS in which we nudge the temperature, spe-

cific humidity, zonal wind, meridional wind, and pressure thickness to the coarsened state

of the C384 reference runs, in each climate (the “nudged” simulations in Table 1). As

in B22, “nudging” is defined as the relaxation of a prognostic field in the model, an, to

its coarsened value in a reference fine-grid dataset, a, with a uniform timescale, τ , here

chosen to be 3 h. This involves adding a tendency of the form

∆Qa = −a
n − a
τ

(1)

to the governing equations of the nudged variables in the model, constraining the nudged227

coarse model fields to approximately track the reference.228

Ideally, this nudging approach smoothly changes the atmospheric state such that229

the tendencies due to physical parameterizations and dynamics respond smoothly on timescales230

much longer than the nudging timescale. However, in practice, this is often not the case,231

especially in the atmospheric boundary layer or around parameterized moist convection.232

That can lead to undesirable sensitivity of the nudging tendencies and the division of233
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work between parameterized physics and nudging to the somewhat arbitrarily chosen nudg-234

ing timescale (Kruse et al., 2022, submitted to JAMES).235

Also following B22, we prescribe the downward shortwave, net shortwave, and down-236

ward longwave radiative fluxes and precipitation rate seen by the land surface model from237

the coarsened fine resolution reference, as these have significant time-mean biases in our238

nudged coarse runs, and otherwise feed back to alter the temperature and specific hu-239

midity nudging tendencies.240

In the un-nudged baseline coarse-grid simulations, the net surface radiative flux into

the land surface in the coarse model, defined as:

Rnet
sfc = Sdown

sfc + Ldown
sfc − S

up
sfc − L

up
sfc (2)

has a mean bias between −10 W m−2 and −18 W m−2, depending on the climate. Here241

Ssfc is the downward or upward shortwave component of the radiative flux at the sur-242

face and Lsfc is the downward or upward longwave component of the radiative flux at243

the surface. This bias is primarily due to too much cloud and too little downward short-244

wave radiative flux at the surface compared to the fine-grid reference. It has the oppo-245

site sign to that found by B22, mainly due to our aforementioned inclusion of microphys-246

ical adjustment in the dynamical core remapping step, which increases simulated cloud247

formation over land. The coarse-model bias in downwelling surface radiative flux is a good248

target to correct via machine learning because it induces climatically important biases249

in the land surface skin temperature, hereafter referred to as “surface temperature,” and250

latent heat flux.251

As in B22, our machine learning targets from these simulations are the column-wise252

79-level vertical profiles of nudging tendencies time-averaged over 3 h intervals, with time253

labels at the interval centers, and the instantaneous downwelling surface radiative fluxes.254

In addition to outputting the targets as diagnostics, we output the features used by our255

ML. These are the instantaneous profiles of model temperature and specific humidity256

at the time the nudging tendencies are defined, as well as some scalar quantities, which257

are the surface geopotential (which can act in part as a continuous-valued proxy for dis-258

criminating land from ocean and sea ice), the cosine of the solar zenith angle (computed259

from the time of day, longitude, and latitude following Monteiro et al. (2018)), the land260

surface type (an integer-valued field which is zero in ocean grid cells, one in land grid261

cells, and two in sea ice grid cells), and the surface albedo.262
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2.4 Predicting the nudging tendencies263

Using the profiles of temperature and specific humidity, surface geopotential, and264

cosine of the solar zenith angle as inputs, we learn the column temperature and specific265

humidity nudging tendencies. B22 found that using ML correction of winds produces large266

mean state drifts in upper atmospheric temperature, so we choose not to do that here.267

In addition, B22 compared the use of a random forest or an ensemble of neural networks268

to predict the nudging tendencies, finding comparably skillful results. We choose to fo-269

cus on using neural networks, because they require less memory to store and are com-270

putationally efficient in a variety of hardware settings, including on GPUs (Yuval et al.,271

2021). In addition, the random seed used in their training—a parameter used in setting272

the initial weights of the model, and the order of the shuffling of the samples in a train-273

ing batch—introduces some variability in online performance for similar offline skill, al-274

lowing selection of an ML model to minimize climate bias.275

2.5 Predicting the surface radiative fluxes276

We make ML-based predictions for the radiative flux inputs to the land surface model.277

These inputs are the downward shortwave, net shortwave, and downward longwave ra-278

diative fluxes at the surface. For predicting the shortwave fluxes, B22 used the cosine279

of solar zenith angle as a proxy feature for top-of-atmosphere downward solar flux. This280

does not account for the 7% variation of insolation with time of year due to the eccen-281

tricity of the Earth’s orbit. That had negligible impact during the 40 d simulations of282

B22, but is relevant in our simulations which span the full annual cycle.283

Thus we use a slightly different ML approach for shortwave radiative fluxes than

in B22. It is based on the shortwave transmissivity of the atmospheric column, T , de-

fined as the ratio of the downward shortwave radiative flux incident on the surface (Sdown
sfc )

to the downward shortwave radiative flux at the top of the atmosphere (Sdown
toa ):

T =
Sdown
sfc

Sdown
toa

. (3)

If we train the ML model to predict T , we can then compute the downward and net (Snet
sfc)

shortwave radiative fluxes at the surface using FV3GFS’s values for the downward short-

wave radiative flux at the top of the atmosphere and the surface albedo (α):

Sdown
sfc = T Sdown

toa (4)

–12–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Snet
sfc = (1− α)Sdown

sfc . (5)

Explicitly computing the net shortwave radiative flux at the surface using the coarse model’s284

surface albedo provides a less biased prediction than forcing the ML to learn this rela-285

tionship, particularly over high-albedo regions like the Sahara and Arabian deserts or286

polar ice-covered regions.287

To predict the shortwave transmissivity and downward longwave radiative flux at288

the surface, we use a random forest with the column temperature, column specific hu-289

midity, surface geopotential, surface type (ocean, land, or sea ice), cosine of the solar zenith290

angle, and surface albedo as input features. When predicting the full values for all the291

surface radiative flux inputs to the land surface model, B22 demonstrated that a ran-292

dom forest (RF) and a neural network (NN) with outputs appropriately rectified to be293

greater than or equal to zero, performed comparably in terms of offline skill. We use a294

random forest because it automatically constrains the predicted transmissivity to be be-295

tween 0 and 1; with an appropriate activation function this constraint could also be ap-296

plied to a neural network.297

2.6 ML training298

When training the neural networks and random forests, we use data from the first299

year of the nudged simulations in all climates. We follow a similar time-sampling approach300

to that of W21, who also trained models across the annual cycle. We randomly select301

160 of the 2920 available times to sample both the annual and diurnal cycles to enable302

efficient training (early tests indicated that training on more data did not make a ma-303

terial difference when models were used online). These times are then separated into 16304

batches of 10 each. Within each batch, data from each of the times is loaded from each305

of the climates, forming a two-dimensional array with “sample” and “feature” dimen-306

sions. Since the machine learning problems are column-based, the sample dimension has307

a length corresponding with the total number of columns in the batch: (6 x 48 x 48 =308

13 824 columns per time) x (10 times per batch) x (4 climates) = 552 960 columns, while309

the length of the “feature” dimension depends on the inputs we are using for the model.310

This array is then randomly shuffled along the “sample” dimension. Since we train on311

a sequence of 16 batches, in total our models are trained on 16 x 552 960 = 8 847 360 sam-312

ples.313
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To train neural networks for the temperature and moisture nudging tendencies, the314

gradient is updated every 512 samples within each batch, and the full set of batches is315

repeatedly iterated over in 24 training epochs. We use the same implementation in keras316

(Chollet et al., 2015), and the same hyperparameters for the temperature and specific317

humidity nudging tendency network as in B22, i.e. a mean absolute error loss function,318

two hidden layers with a width of 128, a learning rate of 2× 10−3, and an L2 regular-319

ization penalty of 1× 10−4.320

Inputs and outputs of the neural networks are normalized or de-normalized follow-321

ing similar procedures to those in B22. Specifically, we normalize a scalar input or out-322

put x ∈ R (e.g. temperature at a single level, cosine of the solar zenith angle, etc.) with323

(x − x̄)(σ̄x + 10−7)−1, where x̄ and σ̄x are the sample mean and standard deviation.324

The ML then predicts a normalized value ỹ ∈ R, and y := ỹσ̄y + ȳ is the ML predic-325

tion in physical units. These may seem like standard methods for working with neural326

networks, but there are many small differences in this recipe across the ML parameter-327

ization literature, which, in our experience, can alter both offline and online performance.328

For reproducibility, the random seed for all elements of randomness during the train-329

ing process is a parameter in our training workflow. We train neural networks with four330

random seeds, labeled 0-3. These neural networks have similar offline skill, but produce331

different outcomes when applied online. This phenomenon was illustrated in a more ex-332

treme way in Wang et al. (2021), where they trained 50 ML models with comparable of-333

fline skill, but found only a small subset that could support stable long-term simulations.334

To train a random forest model to predict the shortwave transmissivity and down-335

ward longwave radiative flux at the surface, like B22, we use the scikit-learn (Pedregosa336

et al., 2011) implementation with a mean square error loss function and a maximum depth337

of 13. The ensemble consists of 16 trees where each tree is trained on a batch of 10 timesteps.338

Like in W21, no transformations are applied to the inputs of the RF, but similar to the339

case of the NNs in this study, the ML predicts a normalized value ỹ ∈ R and the pre-340

dictions are de-normalized to be placed in physical units, in the case of the RF using y :=341

ỹ
(
σ̄y + 10−12

)
+ȳ. While there is an element of randomness to training an RF, in pre-342

vious work we have found empirically that this does not have a significant impact on of-343

fline or online results.344
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For offline testing, for computational efficiency, we randomly select 90 times from345

the second year of the nudged simulations, and combine all the columns associated with346

those times into a testing dataset. These provide a set of samples that we can test our347

models against that is independent from the data the models were trained with. We com-348

pute offline skill both aggregated across all climates and separated into different climates349

to evaluate each model’s overall skill and to ensure that the models are indeed skillful350

in each of the climates we train on and not subtly optimizing for a specific climate.351

2.7 Input ablation and output tapering of vertically resolved fields352

For handling model inputs and outputs of the nudging tendency NN, we initially353

followed B22. For every vertically resolved input, like temperature, we provided its val-354

ues at all 79 vertical levels in the column, and for every vertically resolved output, like355

the temperature nudging tendency, we predicted its full target value at each vertical level.356

Such models worked reasonably well in 40 d simulations, but were prone to cause online357

drift and/or crashes in simulations longer than a few months, due to problematic behav-358

ior of the ML in the uppermost 25 model levels.359

As an example, the left panels in Figure 2 illustrate the time series of temperature360

and ML-predicted heating rate at a representative column in a five-year simulation us-361

ing an ML configuration similar to that used in B22. A high-amplitude wave-like pat-362

tern in temperature develops in the upper model levels for the first year of the run, driven363

by ML-predicted heating. As the temperature near the tropopause starts to drift cold,364

this signal disappears. However, once the temperature sinks below the training range,365

indicated by the purple regions in Figure 2c, the ML-predicted heating rate spikes in mag-366

nitude, leading to further temperature drift, even near the surface and in the mid-troposphere.367

Past authors have encountered similar problems when including upper-atmospheric368

inputs in column-based machine-learning parameterizations. Coarsening in space and369

time creates simultaneous correlations between inputs (e. g. high upper-tropospheric hu-370

midity) and outputs (e.g. strong mid-tropospheric latent heating) that the ML unphys-371

ically encodes into causal predictions. Brenowitz and Bretherton (2019) showed that the372

ML-predicted precipitation was spuriously sensitive to stratospheric moisture offline. They373

stabilized online runs by excluding (ablating) that input. Brenowitz et al. (2020) fur-374

ther found analytically that upper atmospheric temperature and moisture inputs can de-375
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Figure 2. Time series of temperature, ML-predicted heating rate, and flag denoting whether

the temperature is inside or outside the range of temperatures in the training data, at a single

column in a control-climate ML-corrected simulation without input ablation or output tapering

(left) and a control-climate ML-corrected simulation with input ablation and output tapering

(right). The grey dashed line in panel (e) indicates the 25th level from the top, the level at which

ablation and tapering begins.
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velop unstable feedbacks with gravity-wave modes. Ablation is also used implicitly—even376

if not emphasized—by other related works, e.g., O’Gorman and Dwyer (2018); Yuval et377

al. (2021). Together with empirical experimentation, this motivated us to ablate the in-378

puts from the uppermost top 25 model levels.379

We also see large predicted corrective temperature tendencies in the uppermost at-

mospheric levels, illustrated by Figure 2b. Parameterized physical processes provide only

weak thermal damping in this region. Thus these corrective tendencies may derive from

the training data, but they get amplified and distorted by dynamical feedbacks, doing

more harm than good. A natural solution is to reduce the magnitude of the predicted

tendencies our ML models, so the weak damping provided by the model physics adequately

stabilizes the system. We do this by multiplying the target corrective tendencies by a

tapering factor that exponentially decreases from 1 down to near zero in the top 25 model

levels:

f(k) =


e

k−25
5 k < 25

1 k ≥ 25,

(6)

where k is the integer-valued model level index, following FV3GFS’s internal convention380

that k = 0 corresponds to the level closest to the model top, and k = 78 corresponds381

to the level closest to the surface. This tapering factor decreases by a multiple of e ev-382

ery five levels above level 25, reducing to e−5 ≈ 0.007 in the uppermost level. (Yuval383

& O’Gorman, 2020) did something similar in that they omitted using ML to predict the384

radiative heating rate in vertical levels above 11.8 km.385

The combination of ablating inputs and tapering outputs in this fashion results in386

ML models that reliably lead to stable and non-drifting ML-corrected simulations (for387

comparison see the column time series plots in Figure 2d-f). However, a more careful ab-388

lation study would be useful to determine whether input ablation and output tapering389

are both necessary, or whether doing just one or the other could have a similar effect.390

2.8 ML-corrected online simulations391

While we test our machine learning models offline using independent test data, the392

most important test comes in using them to correct the temperature and specific humid-393

ity tendencies and surface radiative fluxes during each timestep in free-running FV3GFS394

simulations. To do this, we run a suite of simulations in each of the four climates using395
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four ML configurations, one for each of the neural networks trained with the four ran-396

dom seeds, keeping the surface radiative flux model the same across all configurations.397

This is a total of 16 ML-corrected simulations. In these runs, as in B22, the ML predic-398

tions of the tendency corrections and radiative flux overrides are integrated into the time399

loop of the model using a Python-wrapped version of FV3GFS (McGibbon et al., 2021)400

that we run (along with the full ML workflow) on Google Cloud. To assess the config-401

urations’ performance before running longer simulations, we run each ML-corrected sim-402

ulation for 1.25 years, and extend the simulations of the best-performing configuration403

to 5.25 years to generate five full post-spinup years of statistics. This is an analogous ap-404

proach to that of Wang et al. (2021), though we tried far fewer candidate configurations.405

2.9 Evaluation of skill406

To determine how the ML corrections impact the quality of coarse-grid simulations,407

we compute error metrics for the climate statistics of the ML-corrected runs using the408

fine-grid runs as a reference, and compare these to the same error metrics computed us-409

ing the baseline runs. To allow the baseline and ML-corrected coarse-grid simulations410

to sufficiently diverge from their initial conditions, which are derived from the fine-grid411

reference simulations, we begin our analysis after a three month spin-up period. Start-412

ing in month four, we partition each coarse simulation into as many complete non-overlapping413

twelve-month periods as possible. Each such period serves as an approximately indepen-414

dent sample year of coarse-model climate statistics; initial ML-corrected runs therefore415

have one year of climatological data, while baseline runs have five. Regardless of the year416

in the coarse runs, error metrics are always computed relative to the second year of the417

corresponding fine-resolution run in each climate. This is appropriate since the sea ice418

and SST lower boundary conditions for the fine and coarse runs follow the same repeat-419

ing annual cycle for all years. Qualitatively our results are not sensitive to this choice.420

We have computed the error metrics with respect to the first years of the fine-resolution421

simulations in each climate and find them to be similar to those we report here.422

We focus on a limited set of societally relevant and climatically important metrics423

that we hope will be improved by the corrective ML:424

1. The root mean square error (RMSE) of the time mean spatial pattern of precip-425

itation.426
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2. The time and spatial mean bias of the precipitation rate over land.427

3. The RMSE of the diurnal cycle of precipitation over land with the mean bias re-428

moved.429

4. The RMSE of the time mean spatial pattern of the surface temperature over land.430

5. The time and spatial mean bias of the net radiative flux into the land surface.431

Precipitation is affected by ML-predicted atmosphere drying. Surface temperature is af-432

fected by ML surface radiative flux predictions and near-surface temperature tendency433

corrections. The net radiative flux into the land surface depends on ML-predicted val-434

ues for the net shortwave and downward longwave radiative fluxes at the surface. We435

will also document the vertical structure of zonal mean biases of temperature, specific436

humidity, and the mass streamfunction.437

3 Results438

3.1 Biases in the nudged simulations439

The primary goal of the machine learning is to bring the weather variability and440

the resulting climate statistics of coarse resolution simulations closer to those of fine res-441

olution runs. Accordingly, our “truth” dataset – i.e. the dataset that we will compute442

our biases against – consists of the second year of output of the ∼25 km simulations in443

each of the climates, coarsened to ∼200 km resolution. The ML can only be as good for444

this purpose as its training methodology, which is based on the nudging tendencies di-445

agnosed from the nudged runs. As B22 noted, that methodology is a compromise be-446

tween keeping the coarse model state as close as possible to the fine-grid reference state,447

while also evolving smoothly in a dynamically balanced way with a minimum of small-448

scale vertical velocity transients. While most aspects of the nudged simulations, such as449

temperature and humidity fields, remain close to the coarsened fine-grid reference data450

on which it is based, there are important aspects of the nudged simulations, notably time-451

mean precipitation, that prove more sensitive to this methodology. That is, the nudged452

training dataset does not have the same statistics as does the reference, potentially build-453

ing biases into the ML training even if the ML itself were perfect.454

With this in mind, in this section we will present some biases of the nudged and455

baseline runs related to the metrics described in Section 2.9 for comparison with results456

of the ML-corrected runs presented later. For each metric, we are hoping that the nudged457
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run bias is much smaller that the baseline run bias, so that the ML has a chance to cor-458

rect most of the baseline bias despite possible shortcomings of the training approach.459

3.1.1 Precipitation460

Precipitation in the nudged and ML-corrected simulations is computed as a budget-

implied precipitation rate. This is a concept discussed in W21 and B22 and is an esti-

mate of the precipitation rate that takes into account contributions from the model physics

as well as the specific humidity nudging or ML-predicted tendency in the column. In the

context of nudged runs it is computed following

Pnudged = P p − 〈∆Qq〉 , (7)

where P p is the precipitation rate predicted by the model physics, and ∆Qq is the nudg-

ing tendency of specific humidity, with the angle brackets denoting a mass-weighted ver-

tical integral. In ML-corrected runs we take the additional step of rectifying this quan-

tity such that it is always greater than or equal to zero:

PML−corrected = max (0, P p − 〈∆Qq〉) . (8)

We do this differently in the nudged and ML-corrected simulations because high-frequency461

fluctuations in the nudging tendencies can rectify into a large high bias in implied pre-462

cipitation. In addition we do not need this precipitation estimate to be positive in the463

nudged run, in which it is not used to force the land surface model. The rectification bias464

is unavoidable but much less important in ML-corrected prognostic runs (less than 0.05 mm d−1
465

in all simulated climates) since the ML correction is less prone to such fluctuations.466

Figure 3a shows a time-mean map of precipitation biases in the nudged run with467

respect to the fine resolution run. They are reassuringly small over most of the oceans.468

A dipole pattern in the vicinity of the Intertropical Convergence Zone (ITCZ) over the469

Eastern Pacific suggests a slight southward shift of the ITCZ in the nudged run com-470

pared to the fine resolution run, while over the Atlantic a tripole pattern is present sug-471

gesting a slight widening of the ITCZ. There are larger grid-scale biases over land, with472

regional dry biases over sub-Saharan Africa and the Rocky Mountains. These land bi-473

ases contribute to a land root mean square error (RMSE) of 1.4 mm d−1 in the control474

climate.475
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Bias patterns are similar in the other climates, increasing in magnitude and grid-476

scale noisiness with increased SST (the RMSE metrics for the nudged runs in each of the477

climates are plotted for reference in Figure 9c and d as blue dots). The mean precipi-478

tation rate over land has only a slight negative bias in all climates, with values around479

−0.2 mm d−1, much smaller than that for the baseline model, which has values around480

−0.8 mm d−1, mainly due to dry biases over tropical South America and Africa (Figure 3b).481

This suggests that our specific humidity nudging and radiative flux prescription has the482

desired effect of creating a training dataset with biases versus the reference simulation483

that are much smaller than those of the baseline model.484

The mean diurnal cycle of precipitation over land regions between 60°S and 60°N485

as a function of local solar time is plotted in Figure 3c. The latitudinal limits are im-486

posed to make a fair comparison with the spatial extent of available observations, which487

are derived from year 2016 of the Integrated Multi-SatellitE Retrievals for GPM (IMERG)488

(Huffman et al., 2019). The black curve shows the control-climate ∼25 km reference, which489

peaks around 14:30 local solar time, about two hours earlier and with a slightly lower490

amplitude than the IMERG observations, the dashed black curve. The orange curve shows491

the baseline run, which has a peak at a similar time to the ∼25 km run, but too low an492

amplitude, a common problem in coarse resolution climate models (Christopoulos & Schnei-493

der, 2021). In the nudged run, the amplitude of the afternoon peak is improved, but the494

budget-inferred precipitation rate decreases too sharply in the evening and is too large495

in the late morning hours; in a qualitative sense, however, this is more in line with the496

behavior of the fine-resolution reference simulation than the baseline. This bias is qual-497

itatively similar in analogous nudged runs in the other climates, and will be discussed498

further in Section 3.6.1.499

Overall, this analysis suggests that ML that seeks to learn the nudging tendencies500

and surface radiative fluxes has potential to make improvements to the precipitation cli-501

matology.502

3.1.2 Surface temperature503

Nudging greatly reduces surface temperature bias over land. The time-mean sur-504

face temperature bias in the second year of the control climate nudged run is shown in505

Figure 3d. Since the SSTs are prescribed, the bias in surface temperature over ocean is506
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Figure 3. Time-mean precipitation bias in the control climate nudged (a) and baseline (b)

simulations, diurnal cycle of precipitation over land with the mean removed in the reference,

nudged, and baseline simulations, as well as IMERG observations (c), and time-mean surface

temperature bias in the nudged (d) and baseline (e) simulations. Biases are computed as coarse-

grid run statistics minus fine-grid run statistics.

trivially zero. Over land, the surface temperature is influenced by the net radiative flux507

into the surface, which is largely prescribed in our nudging procedure, but also depends508

on the partitioning between latent and sensible heat fluxes by the land surface model,509

which can differ between the nudged coarse and reference fine simulations. The biases510

are generally much smaller than those of the baseline simulation (Figure 3e), which has511

predominantly warm biases in the tropics and mid-latitudes and cold biases in the po-512

lar regions. The spatial pattern and amplitude of the surface temperature biases in the513

nudged and baseline runs are similar across climates. As with land precipitation, this514

suggests that if corrective ML can retain the bias reduction in the nudged training data,515

ML correction could reduce the land surface temperature biases of the baseline run.516

3.2 Nudging tendencies517

Despite using reference simulations with different configurations, both in terms of518

spatial resolution and some physical parameterizations, and different time periods, the519

time-mean nudging tendencies that emerge from the nudged simulations are similar to520

those shown in B22. Figure 4a and Figure 4c show the mean column-integrated heat-521
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ing, 〈∆QT 〉, and moistening, 〈∆Qq〉 over the test dataset in the control climate. In these522

spatial plots, as in B22, we can see that the nudging tendencies are largely associated523

with making up for missing precipitation and latent heating in the nudged coarse sim-524

ulation; the column-integrated temperature nudging tendency is generally positive, and525

largest in regions of greatest column-integrated drying. The panels in the right column526

of Figure 4 show the global-mean vertical profile of the nudging tendencies in each cli-527

mate.528

The magnitudes of the nudging tendencies increase with warmer SSTs. In a column-529

integrated sense, for both temperature and specific humidity, this increase is approxi-530

mately at a rate of 3 % K−1 to 5 % K−1 increase in SST, somewhat less than the rate of531

increase of the column-integrated parameterized temperature and specific humidity physics532

tendencies (5 % to 6 %), or the ∼7 % K−1 Clausius-Clapeyron scaling for water vapor with533

warming (Held & Soden, 2006). The spatial patterns of the column-integrated nudging534

tendencies do not differ significantly with climate (not shown). While we do not predict535

them in this work, for reference the mean horizontal wind nudging tendencies are plot-536

ted in Figure S1, which have a similar spatial pattern to those in B22, but a slightly weaker537

magnitude.538

3.3 Offline skill in predicting the nudging tendencies539

In individual samples, the nudging tendencies are noisy. Figures 5a and c show the540

target temperature and specific humidity tendencies for a representative evening in Au-541

gust in the control climate of the test dataset for a vertical cross section along 0°E. These542

tendencies and predictions are illustrative of their character in other climates and at other543

times. The nudging tendencies are typically largest near the top of the boundary layer,544

and in regions of deep convection. The seed 2 neural network makes a prediction that545

is smoother than the targets for both ∆QT (Figure 5b) and ∆Qq (Figure 5d). The other546

NNs make qualitatively similar predictions. Because of the noisiness of the target ten-547

dencies, it is difficult for the neural networks to capture all of their variance.548

Figure 6 shows the coefficient of determination (R2) for the temperature and spe-549

cific humidity nudging tendencies computed offline across the 90 times of the test dataset550

in all climates binned by latitude and pressure. For the temperature nudging tendency,551

skill is highest in the tropical boundary layer and upper troposphere, where values reach552
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Figure 4. Column-integrated temperature (a) and specific humidity (c) nudging tendencies

in the control climate, averaged over the test dataset, and global mean vertical profiles of the

temperature (b) and specific humidity (d) nudging tendencies averaged over the test data in each

climate. In each case the tapering of the tendencies in the upper 25 model levels described in

Section 2.7 has been applied. The x-axis scale is the same for panels (b) and (d) despite repre-

senting different units.
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Figure 5. Samples of the target and offline-predicted nudging tendencies at 2018-08-07

20:30:00 along 0°E in the control climate. (a) and (c) are the target temperature and specific

humidity tendencies, respectively, and (b) and (d) are the predicted temperature and specific

humidity tendencies using the neural network trained with seed 2, respectively. For plotting

purposes only, all fields are interpolated to surfaces of constant pressure after being computed.

0.2 – 0.3, and decreases as one moves poleward. For the specific humidity nudging ten-553

dency, skill is most concentrated in the tropical boundary layer where similar to the skill554

for the temperature nudging tendencies, R2 maximizes around 0.25. If one were to make555

a plot aggregating data over all atmospheric columns instead of binning by latitude, the556

result would look similar to that of the “TquvR-NN” curve in Figures 5a and b of B22,557

but would be slightly smoother in the vertical and generally have lower values, here peak-558

ing around 0.2 while in B22 values peak around 0.3. In Figure 6 the skill is aggregated559

across all climates, but if one were to look at the skill in any one climate, it would look560

qualitatively similar, though skill in predicting either the temperature or specific humid-561

ity nudging tendency in the upper troposphere tends to be higher in the cooler climates.562

3.4 Offline skill in predicting the radiative fluxes563

The random forest trained to predict the surface radiative fluxes is quite accurate564

when evaluated offline. When evaluated globally at each of the 90 times in the test dataset,565

depending on the climate, the root mean square error of the time-mean pattern glob-566
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Figure 6. Coefficient of determination as a function of latitude and pressure for the offline

prediction of the temperature (a) and specific humidity (b) nudging tendencies across the 90

times of the test dataset in all four climates. The values here are for the neural network trained

with seed 2, but the plots look qualitatively similar with neural networks trained with other

seeds.

ally is between 4 W m−2 to 5 W m−2 for the downward longwave radiative flux, 10 W m−2
567

to 12 W m−2 for the downward shortwave radiative flux, and 9 W m−2 to 11 W m−2 for568

the net shortwave radiative flux. For the control climate, the statistics broken down into569

land and ocean/sea-ice regions can be found in the panel titles of Figure 7.570

Figure 7 shows the time mean spatial pattern of the offline prediction bias for each571

surface radiative flux component in the control climate. In the spatial mean, these are572

reassuringly small. Because downwelling clear-sky radiation is a smooth function of at-573

mospheric temperature and humidity profiles (and solar zenith angle for shortwave ra-574

diation) we interpret these biases as due to the RF not fully learning the radiative ef-575

fects of clouds in the fine-grid reference run. More cloud leads to less daytime downwelling576

shortwave and somewhat more downwelling longwave radiation. This bias is prominent577

over stratocumulus regions in the subtropical oceans in Figure 7b and 7c and (to a lesser578

extent) Figure 7a. Since SST is specified, surface radiative biases over ocean regions do579

not feed back on our simulations, so this is not an immediate concern. Similar weaker580

but broad-scale biases are seen over the Southern Ocean and (more importantly) a land581

region, Siberia. These suggest the fine-grid reference supports more cloud in these re-582

gions than radiatively accounted for by the ML scheme. The reverse bias, only weaker,583
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Figure 7. Time mean bias in the offline prediction of the downward longwave radiative flux

at the surface (a), downward shortwave radiative flux at the surface (b), and net shortwave radi-

ation flux at the surface (c) in the control climate in the test dataset. Comma-separated spatial

mean bias and spatial RMSE statistics for the time-mean pattern over land and ocean/sea-ice are

reported in the panel titles with units of W m−2.

is seen in the subtropical oceanic shallow cumulus regimes. We interpret this as the ML584

overpredicting cloud-induced surface shortwave and longwave radiative effects. The strong585

radiative biases over the Himalayas may also involve the RF inadequately accounting for586

the effects of extreme surface elevation on clear-sky surface radiation.587

Through the surface albedo, downward shortwave (Figure 7b) and net shortwave588

radiation (Figure 7c) are directly correlated (Equation 5). In most regions, the learned589

biases in net shortwave radiation correlate tightly with biases in downward shortwave590

radiation, as physically expected. An exception is over the Sahara and Arabian deserts,591

where we underpredict time-mean net shortwave radiation. In these regions we gener-592

ally see a mild positive bias in downward shortwave radiative flux, which suggests a slight593

mismatch between the surface albedo in the coarse and fine-resolution simulations in these594

regions. Such a mismatch might result from how we coarsen different properties of the595

land surface that factor into its surface albedo.596

3.5 Results of initial ML-corrected simulations597

The strongest test for the machine learning approach is to see whether it improves598

the simulation of climate when used online. As discussed in Section 2.8, we start by briefly599

analyzing the results of 1.25 year simulations in each climate using neural networks trained600

with four different random seeds. Figure 8 shows “swarmplots” (Waskom, 2021) of the601
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Figure 8. The annual mean bias in land precipitation (a) and land surface temperature (b)

in individual post-spinup years of the baseline (yellow dots) and first post-spinup year of ML-

corrected simulations with neural networks trained with different random seeds (colored dots) in

each climate.

land-mean bias in precipitation rate and surface temperature in the five post-spinup years602

of each baseline simulation in climate compared to the same biases during each of the603

post-spinup years of the 1.25 year ML-corrected simulations with each random seed. With604

the ablation and tapering approach described in Section 2.7, all of the NNs led to sta-605

ble non-drifting 1.25 year simulations in each climate, so no NNs are immediately dis-606

qualified from being selected for extended runs.607

Figure 8a shows that land precipitation bias is generally not sensitive to the ran-608

dom seed used to train the neural network. All ML-corrected simulations in all climates609

exhibit an improvement over the baseline simulations, which all have a large negative610

land-mean precipitation bias.611

Land surface temperature bias, shown in Figure 8b, on the other hand, is sensitive612

to the random seed of the neural network. While the baseline simulations generally have613

only a small net land surface temperature bias, some ML-corrected simulations, e.g. the614

seed 1 simulations in the +4 K and +8 K climates, exhibit large negative biases of over615

1 K in magnitude. It is notable that in this case the ordering of the land bias by NN ran-616

dom seed tends to be similar across climates, suggesting that characteristics of the NNs617

when applied in one climate tend to be consistent with those characteristics when ap-618

plied in another climate. The seed 1 NN leads to the most negative surface temperature619

biases, followed by seed 3, seed 2, and finally seed 0. The differences in surface temper-620
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ature biases between the different ML-corrected runs can largely by attributed to dif-621

ferences in the low-level heating rate predictions in the polar regions (not shown).622

We do a five-year simulation using the seed that leads to the smallest biases. We623

start by eliminating seed 1, which leads to the largest negative temperature biases of all624

the seeds tried. Next, we eliminate seed 0, which while it appears does the best in re-625

ducing temperature errors both near the surface and higher in the atmosphere, does the626

worst in terms of specific humidity errors, leading to large positive biases in the trop-627

ics in all climates. This leaves seeds 2 and 3 which lead to similar results. Ultimately we628

focus on the results of 5.25 year simulations with seed 2, since it leads to slightly less bi-629

ased surface temperatures than seed 3. Five-year simulations with seed 3 performed com-630

parably well (not shown).631

3.6 Results of multi-year ML-corrected simulations632

In this section we will more comprehensively present the results of 5.25 year sim-633

ulations completed with the seed 2 neural network. Table 2 summarizes our primary met-634

rics for the baseline and seed-2 simulations. Ideally the corrective ML would improve these635

quantities without harming other aspects of the simulations; we now discuss them one636

by one.637

3.6.1 Precipitation rate638

Figure 9 illustrates the character of the annual-mean precipitation errors in the nudged,639

baseline, and ML-corrected coarse-resolution simulations. Recall that precipitation is com-640

puted following Equations 7 and 8 described earlier. The maps show the annual mean641

precipitation bias patterns in the control climate baseline and ML-corrected runs. These642

are averaged over the five post-spinup years of the runs. The swarmplots on the right643

treat individual years as individual samples, meaning that there are five datapoints per644

climate for the baseline and ML-corrected cases, and one datapoint per climate in the645

nudged run case. The precipitation rate in the baseline simulation is predicted purely646

by the model physics, P p.647

The precipitation bias pattern in the baseline run (Figure 9a) features large dry648

biases over land in the deep tropics, particularly in South America, a large wet bias over649

the Western Pacific Warm Pool, and an eastward shift in the South Pacific Convergence650
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Zone (SPCZ), indicated by the dipole pattern in precipitation bias in the southwest Pa-651

cific. Each of these biases is substantially corrected or (over the Western Pacific Warm652

Pool) slightly overcorrected, by the ML (Figure 9b). However, new precipitation biases653

emerge in the Indian Ocean off the east coast of central Africa and in the Bay of Ben-654

gal. The spatial pattern of the biases is similar in the other climates in the baseline con-655

figuration, though the error magnitude somewhat increases in mid-latitude ocean regions656

(not shown). Something similar can be said for the ML-corrected cases.657

Figure 9c shows that the land root mean square error of the annual mean spatial658

pattern of precipitation is improved over the baseline in every year of the ML-corrected659

simulations in each climate. This improvement is on average between 17 % to 30 % de-660

pending on the climate (shown in last column of Table 2). Surprisingly, the RMSE over661

land of the implied precipitation in the nudged runs worsens faster as the SSTs warm662

than that of the baseline or ML-corrected runs, eventually becoming larger than in the663

baseline run in the +8 K climate. This is because as the climate warms, grid-scale noise664

in the column integrated drying tendency due to nudging over land (Fig. 3d) increases;665

however, broad-scale precipitation biases remain small in the nudging runs for all four666

climates. The ML correction learned from the humidity nudging tendencies smooths out667

the grid-scale noise when making predictions, allowing it to reduce this pattern error in668

the +8 K climate.669

Figure 9d shows that the ML-corrected simulation almost eliminates the 0.7 mm/d670

land time-mean dry bias of the baseline simulation in all climates. As in B22, we attribute671

this primarily to the ML surface radiation correction.672

Figure 9e depicts the RMSE of the annual mean spatial pattern of precipitation673

computed over ocean and sea ice. Unlike over land, the error magnitudes increase as the674

SSTs warm. The RMSEs of the baseline and ML-corrected runs are not robustly differ-675

ent (Table 2), indicating that the ML does not help or hurt ocean/sea-ice precipitation676

estimates. Over the oceans, the precipitation biases of the nudged runs are smaller and677

less affected by grid-scale noise than over land, and their precipitation pattern RMSE678

remains much smaller than for the baseline or ML-corrected simulations. In other words,679

despite the cleaner improved precipitation signal over ocean/sea ice in the nudged runs,680

we have a more challenging time improving the precipitation climatology over that re-681

gion with ML.682
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Figure 9. Time-mean spatial pattern of the precipitation bias in the baseline (a) and ML-

corrected seed 2 (b) control climate simulations. Land root mean square error (RMSE) in the

time-mean spatial pattern of the precipitation rate during each year of baseline (orange dots),

and ML-corrected seed 2 (green dots), and nudged (blue dots) simulations in each climate (c).

Panels (d) and (e) are structured similarly, but depict the mean bias over land and the RMSE

over ocean/sea-ice, respectively.
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Figure 10. Diurnal cycle of precipitation over land in the ∼25 km reference (black curve),

∼200 km baseline (orange curve), ∼200 km nudged (blue curve), and ∼200 km ML-corrected

(green curve) simulations in each climate, with the overall time-and-land mean removed. While

the observations are not shown in these plots, for consistency, as in Figure 3c, the diurnal cycle is

computed over land regions where the latitude is between 60°S and 60°N. The values in the lower

left corner of each panel represent the root mean square error relative to the fine-resolution curve

for the baseline, nudged, and ML-corrected simulations respectively.

.

Figure 10 shows the diurnal cycle of precipitation in the fine-grid, baseline, nudged,683

and seed 2 ML-corrected simulations in each climate. For each model configuration, the684

mean precipitation rate over land stays relatively constant across climates. However, the685

amplitude of the diurnal cycle over land in the reference simulation is largest in the cold-686

est climate (−4 K) and absent in the warmest (+8 K). The baseline runs capture this687

trend but with much-reduced amplitude in all climates. The nudged and seed 2 ML-corrected688

runs capture some, but not all, of this amplitude decrease with warming SSTs. Due to689

the amplitude overestimation, if we compute an RMSE of the diurnal cycle of land pre-690

cipitation vs. the 25 km reference simulations, we find that the ML-corrected simulations691

do slightly worse than the baseline ones; however they closely match the nudged simu-692

lations used to train the ML. Thus these diurnal cycle errors derive mainly from the nudg-693

ing approach, not lack of ML skill.694

3.6.2 Surface temperature695

Surface temperature over land, which is an emergent property of the simulations696

not directly modified by our ML, is robustly improved in the seed 2 ML corrected run697

(the prescribed sea surface temperatures are trivially bias-free). Figure 11 shows the time-698

mean bias in surface temperature in the baseline and seed 2 ML-corrected runs in the699
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Figure 11. As in Figure 9 (excluding ocean/sea-ice RMSE), for the time-mean spatial pattern

of the surface temperature bias.

control climate. The baseline run (Figure 11a) has 2 K to 5 K warm biases over much700

of the tropics and mid-latitudes, and cold biases in the polar regions that intensify pole-701

ward to as much as −7.5 K. Like the baseline precipitation biases, the baseline land sur-702

face temperature biases have a similar spatial pattern and RMSEs in the other climates,703

though the positive bias over tropical land regions in the baseline begins to become more704

over-corrected in the +4 K and +8 K ML-corrected simulations.705

Figures 11c and d summarize the RMSE and mean bias of surface temperature over706

land in each year of the baseline and ML-corrected simulations versus the reference fine707

grid simulation in each climate. In all four climates, surface temperature RMSE over land708

is improved over the baseline by the seed 2 ML-corrected runs by 20 % to 23 %; as in the709

land precipitation RMSE case, this result is robust across years (Table 2).710

Positive mean biases in the tropics and mid-latitudes offset negative mean biases711

in the polar regions in the baseline simulations to result in largely unbiased baseline sim-712

ulations in each climate. In the ML-corrected runs, there is more variability depending713
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Figure 12. As in Figure 11, for the time-mean spatial pattern of the net surface radiative flux

bias.

on the climate. In the −4 K and control climates, the land-mean surface temperature714

bias is near zero; however, in the +4 K and +8 K climates, cool biases over tropical land715

regions drive an overall negative land surface temperature bias.716

3.6.3 Net surface radiative flux717

As mentioned in Section 2.3, we use ML to correct the downwelling radiative fluxes718

used to force the underlying surface. Figures 12a and b compare the time mean bias in719

net surface radiative flux in the control climate in the baseline and seed 2 ML-corrected720

run. The baseline model has large negative biases in the baseline over tropical land re-721

gions, contributing to RMSEs over land of over 20 W m−2 in all climates. In the ML-corrected722
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runs this RMSE is cut by 30 % to 51 % (Figure 12c and Table 2), and the mean nega-723

tive bias is greatly reduced (Figure 12d), indicating that the strong offline skill of the724

ML surface radiative flux model over land, illustrated in Section 3.4, translates well into725

online simulations. The large offline bias in downward shortwave radiation in the ocean726

stratocumulus regions noted in Section 3.4 persists in online simulations, and moderate727

negative biases in net surface shortwave radiation emerge online throughout the non-stratocumulus728

ocean regions. These biases would be of concern if we coupled the ML-corrected atmo-729

sphere model to a dynamical ocean model, but they have no impact on our prescribed-730

SST simulations.731

3.6.4 Temperature, specific humidity, and circulation biases732

While we predict tendency corrections to the temperature and specific humidity733

at each level of the atmosphere in ML-corrected runs, these predictions do not necessar-734

ily improve the zonal mean climatological biases in these fields over those in the base-735

line simulations.736

Figures 13a and b show the zonal mean temperature biases in the baseline and seed737

2 ML-corrected simulations in the control climate. The baseline simulation has a roughly738

1 K warm bias in the boundary layer in all but the polar regions, where there is a larger739

cold bias. and has a mid-tropospheric cold bias of about 1 K at all latitudes. The largest740

temperature bias is a vertical dipole pattern of magnitude 2–3 K in the polar stratosphere.741

In the ML-corrected simulation, the bias is reduced near the surface but is more severe742

in the polar mid-troposphere. Above 200 hPa, we are intentionally tapering the correc-743

tive tendencies, so we might expect the ML-corrected simulation to have similar tem-744

perature biases as the baseline. However, large warm biases develop, locally exceeding745

5 K. These may be associated with circulation changes induced by ML predictions lower746

in the atmosphere.747

Specific humidity biases are shown in Figures 13 c and d). ML again helps reduce748

biases of the baseline model in some regions but not others. The baseline model has neg-749

ative specific humidity biases around −0.2 g kg−1 near the surface in the polar regions,750

positive biases in the mid-latitude troposphere around 0.3 g kg−1, negative biases in the751

deep tropics between −0.1 g kg−1 to −0.4 g kg−1. The ML-corrected run reduces the sur-752

face bias near the South Pole as well as the mid-latitude positive mid-tropospheric bi-753
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Figure 13. Time and zonal mean biases of temperature, specific humidity, and the mass

streamfunction in the baseline (top row) and ML-corrected seed 2 simulations (bottom row) rel-

ative to the fine resolution reference in the control climate (filled contours). The line contours

represent the reference values of the fields in the fine-resolution reference dataset, with contour

intervals shown in the column titles. Panels (f) and (h) in the third column show the zonal mean

bias in precipitation for the baseline and seed 2 ML-corrected simulations, respectively.
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ases, but introduces a dipole bias pattern in the tropics, anomalously moist just south754

of the equator and anomalously dry just north by up to ±5 g kg−1.755

The humidity biases in the ML-corrected simulation are consistent with a change756

in the zonal mean overturning simulation. Figure 13g shows the bias in the zonal mean757

mass streamfunction for the ML-corrected case. It depicts a southward shift in the up-758

ward branch of the overturning circulation, also evident as a dipole bias in zonal mean759

precipitation (Figure 13h). Figure 9b suggests the precipitation bias is mainly coming760

from the West Pacific/Bay of Bengal region and off the east coast of Africa. The zonal761

mean precipitation biases in the baseline simulation (Figure 13f), though comparable in762

magnitude to those in the ML-corrected run, cannot be so easily explained by the rel-763

atively small and unfeatured biases in the streamfunction (Figure 13e).764

4 Discussion and Conclusion765

In this study we extended the approach described in B22 to train ML models for766

application in multiple climates and around the annual cycle. The ML adds state-dependent767

corrections to the temperature and specific humidity tendencies, and predicts surface ra-768

diative fluxes, to optimally correct single timestep tendencies of the coarse model (in-769

cluding land-atmosphere interaction) to match those of a fine-grid reference simulation.770

Although this method does not guarantee good longer-term skill, we showed that with771

ablation and tapering of ML inputs and outputs in the uppermost 25 model levels, we772

were able to obtain robustly stable ML-corrected simulations. The annual mean climate773

biases in ML-corrected runs depend somewhat on the random seeds used to initialize the774

neural networks before training. However, each of the four NNs we tested online improve775

the land RMSE of the annual mean spatial pattern of precipitation, and three out of the776

four improve the surface temperature climate.777

We presented five-year prognostic simulations with the seed 2 NN, selected because778

they had the smallest overall surface temperature and humidity biases over the first sim-779

ulated year across the four climates. Depending on the climate, ML improved the land780

RMSE of precipitation by 17 – 30%, and the land RMSE of surface temperature by 20781

– 23%. The ML corrections also improved the amplitude of the diurnal cycle of precip-782

itation over land in the −4 K and control climates, but slightly exaggerated it in the +4 K783

and +8 K climates. In contrast to the land-surface-level metrics, ML tendency correc-784
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tions generally did not improve the precipitation or net surface radiative flux RMSE over785

ocean/sea-ice, or the zonal mean bias pattern of temperature or specific humidity, and786

through dynamical feedbacks actually introduced errors into the zonal mean overturn-787

ing circulation. Although not shown here, we also performed 5-year simulations with seed788

3 NN with comparable results.789

While we obtain robust improvements in precipitation and surface temperature over790

the baseline in the ML-corrected runs in the individual climates, the differences between791

simulated climates are generally not significantly improved or worsened (not shown). A792

better ML correction which made larger improvements in the individual climates would793

be more likely to translate to improvements in the difference between climates.794

While encouraging, the relative improvements in precipitation RMSE are not as795

large as the 25–30% obtained by B22. Our baseline 200 km simulation in the control cli-796

mate has a much lower RMSE versus the fine-grid reference, 1.6 mm d−1 globally com-797

pared with 3.7 mm d−1 in B22, making it more difficult to improve upon. Three contrib-798

utors to the improved baseline skill were: first, using the same microphysics configura-799

tion (including saturation adjustment within the dynamical core) as in the reference model,800

second, using a coarser resolution “fine” resolution target model (∼25 km resolution ver-801

sus ∼3 km resolution), which we assess skill against, and third, computing an RMSE for802

the time-mean over the full annual cycle rather than a single 40 d period.803

There are still substantial differences in the surface downwelling radiation predicted804

by the physical parameterizations of the baseline and reference models; these differences805

can feed back on the land surface. As in B22, overriding the physical parameterization’s806

predictions of these fluxes with the ML’s greatly reduces surface radiation bias in prog-807

nostic runs, and helps to remove land-mean precipitation biases and significantly reduce808

land surface temperature biases.809

Future work on a number of aspects of the problem might improve on these results;810

three are discussed more below. First, as mentioned in B22, it would be beneficial to find811

a way to re-introduce ML corrections of the horizontal wind tendencies. This currently812

is an inconsistency in our approach; when producing the training data we nudge the hor-813

izontal winds, but we only train models to predict the temperature and specific humid-814

ity nudging tendencies, because we found in B22 (and verified in the setting of the present815

study) that the nudging-trained approach for predicting wind tendency corrections leads816
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to large temperature biases through circulation feedbacks. If we can find a way to re-817

introduce these in a way that does not lead to these large temperature biases, it might818

reduce the circulation biases noted in this study.819

Second, a corrective approach similar to the way we handle temperature and mois-820

ture might improve the skill of the ML for predicting the downwelling radiative fluxes.821

We currently attribute the fine-coarse surface radiation differences mainly to cloud dif-822

ferences. If the coarse-grid clouds are more skillful predictors of the fine-grid clouds than823

are the column temperature and humidity profiles, then a corrective approach might add824

skill. Figure 12 of the present study (and a similar figure in B22) suggests this might hold825

in the subtropical marine stratocumulus regions. This might enable skill improvements826

over the baseline in predicting the net surface radiative flux over ocean, which the cur-827

rent approach does not achieve (Table 2). This would become important if this ML ap-828

proach were used as part of an ocean-coupled model.829

Third, we showed that an NN trained with one random seed systematically pro-830

duced different climate biases compared to networks trained with other seeds across all831

climates. It would be useful to develop a more systematic way of optimizing the ML mod-832

els to not only reduce single timestep errors, but also reduce errors in climate statistics.833

For instance, Balogh et al. (2022) used a targeted set of online simulations to tune em-834

bedded parameters within an ML model to optimize climate-like statistics in an ideal-835

ized model problem.836

In future work it could also be interesting to address questions related to how well837

this existing ML approach might apply to an interpolation-type problem, e.g. correct-838

ing a coarse-resolution simulation in a +2 K climate, or potentially modify the approach839

such that it could be applied in an extrapolation context, e.g. in a climate not within840

the bounds of the training data, something explored at least in an offline context on a841

different ML problem in Beucler et al. (2021). We also acknowledge that despite its suc-842

cess, the nudging method for generating an ML target has fundamental limitations when843

and where physical processes are adjusting to changing conditions faster than the nudg-844

ing timescale (Kruse et al., 2022, submitted to JAMES) and will need to be improved845

upon. One manifestation documented here was a distorted diurnal cycle of precipitation846

over land.847
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In conclusion, the results presented here are an important step toward applying cor-848

rective ML through coarse-graining in a model with realistic topography across the full849

annual cycle, and in multiple different climates. Substantial further improvements should850

be achievable using the best possible reference models, ML methodologies and training851

approaches.852
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. . . Thépaut, J.-N. (2019). ERA5 monthly averaged data on single levels from940

1979 to present. Copernicus Climate Change Service (C3S) Climate Data941

Store (CDS).942

Huffman, G. J., Stocker, E. F., Bolvin, D. T., Nelkin, E. J., & Tan, J. (2019). GPM943

IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06.944

–43–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

doi: 10.5067/GPM/IMERG/3B-HH/06945

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., &946

Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases: Cal-947

culations with the AER radiative transfer models. Journal of Geophysical948

Research: Atmospheres, 113 (D13). doi: 10.1029/2008JD009944949

Kruse, C. G., Bacmeister, J. T., Zarzycki, C. M., Larson, V. E., & Thayer-950

Calder, K. (2022, December). Do Nudging Tendencies Depend on951

the Nudging Timescale Chosen in Atmospheric Models? [Preprint].952

http://www.essoar.org/doi/10.1002/essoar.10510369.1. Earth and Space953

Science Open Archive. doi: 10.1002/essoar.10510369.1954

Lott, F., & Miller, M. J. (1997). A new subgrid-scale orographic drag parametriza-955

tion: Its formulation and testing. Quarterly Journal of the Royal Meteorologi-956

cal Society , 123 (537), 101–127. doi: 10.1002/qj.49712353704957

McGibbon, J., Brenowitz, N. D., Cheeseman, M., Clark, S. K., Dahm, J. P. S.,958

Davis, E. C., . . . Fuhrer, O. (2021, July). Fv3gfs-wrapper: A Python wrapper959

of the FV3GFS atmospheric model. Geoscientific Model Development , 14 (7),960

4401–4409. doi: 10.5194/gmd-14-4401-2021961

Molina, M. J., Gagne, D. J., & Prein, A. F. (2021). A Benchmark to Test Gen-962

eralization Capabilities of Deep Learning Methods to Classify Severe Con-963

vective Storms in a Changing Climate. Earth and Space Science, 8 (9),964

e2020EA001490. doi: 10.1029/2020EA001490965

Monteiro, J. M., McGibbon, J., & Caballero, R. (2018, September). Sympl (v. 0.4.0)966

and climt (v. 0.15.3) – towards a flexible framework for building model hier-967

archies in Python. Geoscientific Model Development , 11 (9), 3781–3794. doi:968

10.5194/gmd-11-3781-2018969

NCEI. (2020, August). Global Forecast System. http://www.ncei.noaa.gov/products/weather-970

climate-models/global-forecast.971

O’Gorman, P. A., & Dwyer, J. G. (2018). Using Machine Learning to Parameterize972

Moist Convection: Potential for Modeling of Climate, Climate Change, and973

Extreme Events. Journal of Advances in Modeling Earth Systems, 10 (10),974

2548–2563. doi: 10.1029/2018MS001351975

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .976
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