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Abstract 7 

Accurate numerical modeling of fracture propagation and deflection in porous media is important in the 8 

development of geo-resources. To this end, we propose a novel modeling framework to simulate 9 

nonplanar three-dimensional (3-D) fracture growth within poroelastic media, using an iteratively coupled 10 

approach based on time-/scale-dependent fracture stiffness. In this approach, the propagating fractures are 11 

explicitly tracked and fitted at each growth step using triangular elements that are independent of the 12 

matrix discretized by hexahedral grids. The finite volume/finite element method (FVFEM) is employed 13 

to solve the hydro-mechanical system, based on the embedded discrete fracture model (EDFM). The 14 

calculated pressure in fractures and the stress state of the host grid of the embedded fractures constitute 15 

the boundary conditions for the boundary element method (BEM). The BEM module, in turn, renders the 16 

evolving fracture stiffness and aperture for the FVFEM module. Finally, the total stresses and the fracture-17 

tip displacements are computed at the end of each time step to estimate the velocity and direction of newly 18 

created fractures ahead of the fracture tip. The proposed model is first validated against analytical 19 

solutions. Then, in three different examples, results are shown from the fracture’s footprint under layered 20 

stress conditions, simultaneous propagation of two nonplanar 3-D fractures, and the mechanical 21 

interaction of en échelon arrays. This work presents an efficient framework to simulate propagation of 22 

nonplanar fractures, and establishes the foundation to build an integrated simulator for fracture 23 

propagation, proppant transport, and production forecasting in unconventional formations. 24 
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Key Points: 1 

• A model for propagation of complex 3-D nonplanar fractures is proposed and verified 2 

• An iteratively coupled approach is proposed based on time-/scale-dependent fracture stiffness 3 

• Propagation of 3-D en échelon arrays is investigated under the stress shadowing effect 4 

1. Introduction 5 

Prediction of fracture propagation and deflection in geological materials is important to many subsurface 6 

engineering problems, such as hydraulic fracturing in oil/gas/geothermal reservoirs, disposal of high-level 7 

nuclear waste, geological sequestration of CO2, and underground storage of oil/gas/compressed air energy. 8 

The development of shale oil/gas formations with ultra-low permeability relies on massive hydraulic 9 

fracturing for creating fractures to enhance the formations permeability and connectivity. Hydraulic 10 

fracturing facilitates the extraction of heat energy from hot dry rock formations, in which the hydraulically 11 

created fractures serve as high-conductivity passages and significant sites for heat exchange to maintain 12 

a high flow rate at high temperatures [Li et al., 2019]. It is highly desirable to create extensive fracture 13 

networks in heat extraction in geo-resource formations [Cipolla et al., 2010; Izadi and Elsworth, 2014; Li 14 

and Zhang, 2018]. On the other end of the spectrum, underground storage projects require prevention of 15 

fracturing in the caprock, or at least a slowing down of fracture propagation for guaranteeing the integrity 16 

of the storage site from a long-term perspective. Knowledge regarding the scale, geometry, and 17 

complexity of hydraulically-created fractures is crucial in geo-resource and subsurface storage formations. 18 

A critical need exists to develop physics-based numerical models to predict fracture growth with multi-19 

scale, multi-dimensional, and multi-physics characteristics, to gain better insights into various complex 20 

phenomena [Paul et al., 2018]. 21 

A vast literature exists on modeling of fracture propagation in subsurface rock. The numerical methods 22 

include the Finite Element Method (FEM), the Boundary Element Method (BEM), and the Discrete 23 

Element Method (DEM). Traditional FEM may not properly simulate fracture growth because it may not 24 

describe fracture geometry, fracture aperture, and fluid pressure in the fractures. Many extensions of the 25 

FEM have been introduced to alleviate this deficiency. These include node-splitting FEM [Ji et al., 2009; 26 

Kim and Moridis, 2015], Generalized FEM (GFEM) [Duarte et al., 2001; Duarte et al., 2007; Gupta and 27 

Duarte, 2018; Gupta et al., 2012; Pereira et al., 2009], and eXtended FEM (XFEM) [Belytschko and 28 

Black, 1999; Gordeliy and Peirce, 2013; 2015; Moës et al., 1999; Mohammadnejad and Andrade, 2016]. 29 
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Node-splitting FEM follows the physical process of fracture opening when the effective stresses satisfy a 1 

tensile failure criterion [Kim and Moridis, 2015]. Because the fracture growth path must be aligned with 2 

the boundary of the pre-existing elements, there is a problem in simulating the growth of complex 3 

nonplanar 3-D fractures with fitted geometries. Both GFEM and XFEM are based on the partition of unity 4 

methods, in which enrichment functions are specifically designed for representing discontinuity 5 

displacements across the fracture surfaces and the singular stresses at the fracture tips. Most of these 6 

models have deficiency in describing fracture brunching and coalescing due to substantial inaccuracy in 7 

numerical implementations, and therefore are often limited to a simple fracture topology [Dittmann et al., 8 

2019]. Recently, Gupta and Duarte [2018] proposed an improved GFEM, featured as explicit fracture 9 

surface representations with adaptive mesh refinement. However, this model does not include the fluid 10 

leakoff from the fracture to the matrix. The model is constrained to predicting toughness-dominated and 11 

viscosity-dominated fracture growth. Other propagation regimes, such as storage-dominated, leakoff-12 

dominated, and the intermediate, are beyond this model’s capacity. The Phase-Field Method (PFM) [Lee 13 

et al., 2016; Miehe et al., 2015; Permann et al., 2016; Wick et al., 2016; Wilson and Landis, 2016] 14 

accommodates many complexities in the simulation of fracture propagation of fully 3-D in elastic, 15 

heterogeneous, and anisotropic rock mass based on multi-physics processes. It also processes 16 

shortcomings including use of regularization to make the transition from fracture to matrix smooth. This 17 

regularization requires high-resolution meshes in the vicinity of fractures [Lecampion et al., 2018]. The 18 

smearing nature of the PFM also creates challenges to reconstruct the fracture aperture and to accurately 19 

calculate the leakoff [Lecampion et al., 2018]. The PFM is based on decomposition of the stress tensor 20 

into tension and compression. The decomposition may also introduce strong nonlinearities in the 21 

numerical solution [Ambati et al., 2015]. 22 

In the BEM, the use of Green’s function, reduces the dimension of the problem through integration over 23 

the boundary. Besides, the BEM has higher accuracy in calculating the fracture aperture and stresses than 24 

the FEM and is applicable for predicting fracture propagation with complex topologies. These clear 25 

advantages have made the BEM popular in modeling fracture growth in 2-D [Cheng et al., 2020; Hou et 26 

al., 2016; Olson, 2004], planar 3-D [Tang et al., 2016; Zhang et al., 2017], nonplanar 2.5-D [Kresse et al., 27 

2013; Weng et al., 2011], and nonplanar 3-D geometries [Castonguay et al., 2013; Cherny et al., 2016; 28 

Kumar and Ghassemi, 2018; Shen and Shi, 2019; Tang et al., 2019; Thomas et al., 2020b]. In most of the 29 
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extant literature, fluid exchange between the matrix and the fracture and fluid flow in the matrix is either 1 

simplified or neglected via assuming an impermeable matrix or employing the 1-D leak-off model 2 

suggested by Carter [1957]. The leakoff can affect hydraulic fracturing, especially for waterless fracturing 3 

when the fracturing fluid has low viscosity [Li and Zhang, 2019]. Neglect of the seepage of fracturing 4 

fluid into the matrix would lead to large errors in prediction of fracture aperture, because the poroelastic 5 

effect (e.g., the backstress induced by matrix dilation) is removed from this system [Salimzadeh et al., 6 

2017]. The magnitude of the leakoff is proportional to the pressure difference between the matrix and the 7 

fracture. Using a simplified time-dependent leak-off model tends to produce unprecise modeling results 8 

[Salimzadeh et al., 2017]. Another broadly used method for fracture growth is the DEM, proposed by 9 

Cundall [1971]. The DEM is effective in predicting complicated mechanical behaviors, such as branching, 10 

merging, kinking, etc. Fracture propagation and fracture intersection during hydraulic fracturing have 11 

been investigated in [Damjanac and Cundall, 2016; Hamidi and Mortazavi, 2014; Nagel et al., 2013; 12 

Yoon et al., 2015] based on the DEM. The main challenge of the DEM is to calibrate/update the particles’ 13 

properties, e.g., grain size, shear and normal stiffnesses of the bond before/during the simulation. The 14 

fracture normal stiffness relies not only on the magnitude of the stress that is applied on the fracture, but 15 

also on the geometry and scale of the propagating fracture. If the updated normal stiffness is of low 16 

accuracy, a larger computational error would result in fracture aperture. The flow rate across the fracture 17 

is proportional to the fracture width to the third-power, i.e., 𝑞 ∝ −𝑤𝑓
3 𝑑𝑝 𝑑𝑥⁄ , according to Poiseuille’s 18 

law [Brown, 1987]. Modeling of fracture growth often requires a large number of particles to render 19 

acceptable accuracy, which may hinder its application to real field problems. 20 

In this work, a hybrid approach is presented to simulate fracturing that results in nonplanar 3-D fractures. 21 

Two independent grid systems are utilized to represent the fracture and the matrix. Hexahedral gridding 22 

is used for the fixed matrix throughout the simulation while the dynamic triangular grid system is used 23 

for tracking and fitting the extended fracture geometry. The fluid flow through the fracture and the fluid 24 

exchange between the fracture and the matrix is described by the embedded discrete fracture model 25 

(EDFM). This technique allows leakoff in fully 3-D, circumventing the limitations in Carter’s model. 26 

Independent fracture representation allows nonplanar 3-D fracture propagation within the surrounding 27 

matrix with flexibility. The fracture aperture is accurately estimated through the BEM, with which an 28 

equivalent stress intensity factor ahead of the fracture is calculated to describe the fracture’s propagation 29 



 

5 

 

in a mixed mode (i.e., opening, shearing, and tearing). A new iteratively coupled approach is proposed to 1 

solve the problem of arbitrary 3-D fracture propagation in poroelastic media, in which the time-/scale-2 

dependent fracture stiffness is evaluated by the BEM via introducing a small perturbation to fluid pressure 3 

in the fracture. 4 

The structure of the rest of the paper is as follows. In Section 2, the governing equations to describe 5 

fracture propagation are derived. Numerical discretization is introduced in Section 3. Then, the solution 6 

strategy and fracture growth criteria are presented in Section 4, followed by validation examples to 7 

quantify the viability, accuracy, and applicability of the proposed model (i.e., Section 5). In Section 6, 8 

three numerical examples are designed and analyzed. Finally, a brief summary of this work is presented 9 

in Section 7. 10 

2. Governing Equations 11 

The major goal is to propose a modeling framework for propagation of nonplanar 3-D fractures in 12 

poroelastic media. In this framework, the porous medium domain Ω with boundary 𝜕Ω (Figure 1),  is 13 

assumed to be a homogeneous, isotropic, linear elastic material with infinitesimal strain; the fracture Γ 14 

that consists of positive and negative surfaces (i.e., Γ  Γ+ ∪ Γ− ), embedded into the porous medium 15 

domain Ω , is explicitly treated as an internal boundary subjected to a traction 𝑝𝑓𝒏𝑠  (i.e., Neumann 16 

boundary). Based on the poroelasticity theory [Coussy, 2004], we derive a set of expressions to describe 17 

the fracture propagation in poroelastic media, which includes fluid flow in the rock matrix and the 18 

fractures, mechanical deformation of the matrix and the fractures, and fluid-driven fracture propagation. 19 

 20 
Figure 1. Illustration of a 3-D deformable body Ω with an embedded nonplanar fracture Γ. 21 

2.1 Mechanical Deformation of the Rock Matrix 22 

At quasi-static conditions, the governing equation of geomechanical deformation of rock mass can be 23 

expressed as follows： 24 
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 𝜵 ∙ 𝝈 + 𝜌𝑏 = 𝟎 (1) 

where 𝝈 is the Cauchy total stress tensor; the symbol ‘∙’ denotes a single contraction of adjacent indices 1 

of two tensors;   is the gravity vector; ρ
b
=𝜙ρ

f
+ (1 − 𝜙)ρ

s
 is the bulk density; ρ

f
 is the fluid density; 2 

ρ
s
 is the solid density; and 𝜙 is the porosity. We employ the convention that tensile stress is positive. 3 

The effective stress for a saturated porous rock is defined as: 4 

 𝝈 = 𝑪𝒅𝒓 ∶ 𝜺 − 𝑏𝑝𝑚𝑰 (2) 

where 𝑏 = 1 − 𝐾 𝐾𝑠⁄  is the Biot coefficient; 𝐾 and 𝐾𝑠 are the drained bulk modulus and rock skeleton 5 

modulus, respectively; 𝑝𝑚 is the pore pressure in the matrix; 𝑰 is the rank-2 identity tensor; 𝑪𝒅𝒓 is the 6 

rank-4 drained elasticity tensor; the symbol ‘∶’ denotes a double contraction of adjacent indices of a tensor 7 

of rank two or higher; and 𝜺  is the linearized strain tensor under the assumption of infinitesimal 8 

transformation: 9 

 𝜺 =
1

2
(𝜵⨂𝒖+ 𝒖⨂𝜵) (3) 

where 𝒖 is the displacement vector; and the symbol ‘⨂’ denotes a juxtaposition of two vectors. Taking 10 

the embedded fracture into account (see Figure 1), one needs to add the surface tractions, induced by 11 

hydraulic loading and/or surface contact stress, 12 

 𝒕Γ = 𝑝𝑓𝒏𝑠 + 𝝈𝑡 ∙ 𝒏𝑠 (4) 

into the momentum balance equation, where 𝑝𝑓 is the fluid pressure in the fracture; 𝒏 is the outward 13 

unit normal vector of the fracture surface Γ; 𝝈𝑡 is the contact stress related to the closed rough fractures 14 

(𝝈𝑡 = 𝟎  for open fractures); and the subscripts    and 𝑁  are the fracture surface and the number of 15 

imbedded fractures, respectively. Submitting Eqs. (2) to (4) into Eq. (1), we may obtain a comprehensive 16 

momentum balance equation for a saturated rock system with embedded fractures: 17 

 

∭ [𝜵 ∙ (
1

2
𝑪𝒅𝒓 ∶ (𝜵⨂𝒖 + 𝒖⨂𝜵) − 𝑏𝑝𝑚𝑰) + 𝜌𝑏 ]𝑑𝛺

 

𝛺

−∑[∯ (𝑝𝑓𝒏𝑠 + 𝝈𝑡 ∙ 𝒏𝑠)𝑑 
 

Γ𝑖

]

𝑁

𝑖=1

= 𝟎 

 

(5) 

2.2 Fluid Flow in the Matrix 18 

Based on the concept of continuum representation, i.e., the fluid and solid occupy an overlapping space, 19 

the governing equation for mass balance of single-phase flow can be uniformly expressed as follows: 20 

 
𝑑𝑚

𝑑𝑡
+ 𝜵 ∙  + 𝑄𝐿 = 𝑄𝑠𝑚 (6) 
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where 𝑚 denotes the fluid mass; 𝑡 is the time; 𝑄𝐿 is the leak-off term; 𝑄𝑠𝑚 is a source term in the 1 

matrix; and    is the flux term. The constitutive relations for coupled single-phase flow and elastic 2 

geomechanics are written as [Coussy, 2004]: 3 

 𝛿𝑚 = 𝜌𝑓 (𝑏𝛿𝜖 +
𝛿𝑝𝑚
𝑀
) (7) 

 
1

𝑀
=
𝜙

𝐾𝑓
+
𝑏 − ϕ

𝐾𝑠
 (8) 

where 𝜖 = 𝜵 ∙ 𝒖  is the volumetric strain; 𝑀  is the Biot modulus; and 𝐾𝑓  is the fluid modulus. 4 

According to Darcy’s law, the fluid flux term may be expressed as: 5 

  = 𝜌𝑓𝒗𝑚 = −
𝜌𝑓

𝜇
𝒌𝑚 ∙ (𝜵𝑝𝑚 − 𝜌𝑓 ) (9) 

where 𝜇 is the fluid viscosity and 𝒌𝑚 is the absolute permeability tensor of the matrix. The leak-off term 6 

𝑄𝐿  is of great significance to fluid-driven fracture propagation since it represents the fluid exchange 7 

between the created fractures and the rock matrix, which may be given as: 8 

 𝑄𝐿 = −𝜌𝑓
𝑘𝑚
𝜇

𝜕(𝑝𝑓 − 𝑝𝑚)

𝜕𝒏𝑠
 (10) 

Submitting Eqs. (7) through (10) into Eq. (6), we obtain comprehensive mass balance equations for the 9 

matrix: 10 

 

∭ [𝜌𝑓 (𝑏
𝜕(𝜵 ∙ 𝒖)

𝜕𝑡
+
1

𝑀

𝜕𝑝𝑚
𝜕𝑡
)] 𝑑𝛺 +∭ [𝜵 ∙ (−

𝜌𝑓𝒌𝑚

𝜇
∙ (𝜵𝑝𝑚 − 𝜌𝑓 ))] 𝑑𝛺

 

𝛺

 

𝛺

−∯ (𝜌𝑓
𝑘𝑚
𝜇

𝜕(𝑝𝑓 − 𝑝𝑚)

𝜕𝒏𝒔
)𝑑 

 

𝛤

=∭𝑄𝑠𝑚𝑑𝛺
 

𝛺

 

(11) 

2.3 Fluid Flow through the Fractures 11 

The governing equations for fluid flow through the fractures are similar to those for fluid in the matrix. 12 

In our work we allow fractures to be deformable and assume that they are saturated with a compressible 13 

fluid. The mass balance equation in the fractures can be expressed as: 14 

 
𝜕(𝜌𝑓𝑤𝑓)

𝜕𝑡
+ 𝜵 ∙ (𝜌𝑓𝑤𝑓𝒗𝑓) − 𝑄𝐿 = 𝑄𝑠𝑓 (12) 

where 𝑤𝑓 is the fracture aperture; 𝑄𝑠𝑓 is a source term in the fracture; and 𝒗𝑓 is the average velocity 15 

of the fluid across a fracture, which may be written, based on cubic law, as: 16 

  𝒗𝑓 =
𝑤𝑓
2𝑰

12𝜇
∙ (𝛁𝑝𝑓 − ρ𝑓𝐠) (13) 

The accumulation term, associated with compressible fluid flow through ae deformable fracture, can be 17 

expressed as: 18 
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𝜕(𝜌𝑓𝑤𝑓)

𝜕𝑡
= 𝜌𝑓

𝜕𝑤𝑓

𝜕𝑡
+
𝑤𝑓𝜌𝑓

𝐾𝑓

𝜕𝑝𝑓

𝜕𝑡
 (14) 

The ∂𝑤𝑓 𝜕𝑡⁄  serves as a coupling term that links the poroelastic module and the fluid-driven fracture 1 

growth module together. To illustrate how these two modules are coupled, we define the fracture stiffness 2 

𝐾𝑛 for the closed and open fractures, respectively, as: 3 

 𝐾𝑛 = {
𝜕𝜎𝑛

′ 𝜕𝑤𝑓⁄ , closed

𝜕𝑝𝑓 𝜕𝑤𝑓⁄ , open  
 (15) 

where 𝜎𝑛
′  is the normal effective stress. For closed fractures, the fracture stiffness is dependent on the 4 

normal effective stress and the asperity properties on the fracture surface (i.e., the joint-roughness 5 

coefficient (JRC), and the joint-compressive strength (JCS)). Under this circumstance, we explicitly 6 

update the fracture aperture change using the Bandis-Barton model as [Bandis et al., 1983]: 7 

 
𝜕𝑤𝑓

𝜕𝑡
= (

1

𝑣𝑚
−

𝐾𝑛𝑖
𝜕𝜎𝑛

′ 𝜕𝑡⁄
)
 1

 (16) 

 𝐾𝑛𝑖 = −7.15 + 1.75𝐽𝑅𝐶 +
𝐽𝐶𝑆

𝐽𝑅𝐶
 (17) 

 𝑣𝑚 = −0.1023 − 0.0074𝐽𝑅𝐶 + 0.4252(
𝐽𝐶𝑆

𝐽𝑅𝐶
)
 0.2510

 (18) 

where 𝐾𝑛𝑖 is the initial normal stiffness and 𝑣𝑚 is the allowed maximum closure. When the fracture is 8 

open, driven by high fluid pressure, its stiffness can be related to the fracture fluid pressure. The magnitude 9 

of the fracture opening may depend on the matrix deformation surrounding the fracture under hydraulic 10 

loading on the fracture surfaces, and that the displacement at an arbitrary point is closely related to 11 

hydraulic loading that is applied on another arbitrary point according to Kelvin’s solution [Sokolnikoff 12 

and Specht, 1956]. As a result, the stiffness of an open fracture is a function of fluid pressure within the 13 

fracture, mechanical properties of the matrix (i.e., Young’s modulus and Poisson’s ratio), and the geometry 14 

of the fracture (i.e., the fracture shape and size). Since an analytical solution for variable fracture stiffness 15 

𝐾𝑛 with multiple nonplanar 3-D fractures is not available, we resort to a numerical method, i.e., the three-16 

dimensional displacement discontinuity method (3-D DDM) [Crouch et al., 1983; Fan et al., 2020], which 17 

implicitly provides the stiffness. The DDM belongs to an indirect BEM that solves displacement 18 

discontinuities on the boundary with prescribed boundary stresses. Details of using 3-D DDM to obtain 19 

the fracture stiffness will be introduced in Section 4.2. Here, we only give here the fracture aperture 20 

change for open fractures for an implicit fracture stiffness with respect to the fluid pressure as: 21 

 
𝜕𝑤𝑓

𝜕𝑡
=
1

𝐾𝑛

𝜕𝑝𝑓

𝜕𝑡
 (19) 
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By submission of Eqs. (10), (13), (14), and (19) into Eq. (12), we derive the mass balance equation for 1 

the fracture as: 2 

 

∭ [𝜌𝑓 (
1

𝐾𝑛

𝜕𝑝𝑓

𝜕𝑡
+
𝑤𝑓

𝐾𝑓

𝜕𝑝𝑓

𝜕𝑡
)] 𝑑𝛺

 

𝛺𝛤

+∭ [𝜵 ∙ (−
𝜌𝑓𝑤𝑓

3𝑰

12𝜇
∙ (𝜵𝑝𝑓 − 𝜌 ))]𝑑𝛺

 

𝛺𝛤

+∯ (𝜌𝑓
𝑘𝑚
𝜇

𝜕(𝑝𝑓 − 𝑝𝑚)

𝜕𝒏𝒔
)𝑑 

 

𝛤

=∭ 𝑄𝑠𝑓𝑑𝛺
 

𝛺𝛤

 

(20) 

where ΩΓ is the space domain of the fracture. 3 

3. Spatial and Temporal Discretization 4 

In this work, we use the backward first-order method for time discretization and the fractured media is 5 

discretized as two independent computation domains, i.e., the matrix and the fractures. The matrix is 6 

divided into a finite number of non-overlapping hexahedral grids. The fracture is partitioned into a series 7 

of triangular grids to describe the nonplanar fracture geometry created in propagation. 8 

3.1 Discretization for the Poroelastic System 9 

By introducing interpolation functions for the pressures in the matrix and the fractures and displacement 10 

for the matrix, we write: 11 

 𝑝𝑚 = ∑ 𝜑𝑖

 𝑛𝑚,𝑒𝑙𝑒

𝑖=1

𝑝𝑖;   𝑝𝑓 = ∑ 𝜑𝑗

 𝑛𝑓,𝑒𝑙𝑒

𝑗=1

𝑝𝑗;  𝒖𝑚 = ∑ 𝜓𝑎

 𝑛𝑛𝑜𝑑𝑒

𝑎=1

𝒖𝑎 (21) 

where 𝑛𝑛𝑜𝑑𝑒 is the number of nodes of the matrix elements;  𝑛𝑚/𝑓,𝑒𝑙𝑒 is the number of elements of the 12 

rock matrix/fracture, respectively; 𝑝𝑚/𝑓 is the pore pressures of the matrix/fracture, repectively; and 𝒖𝑎 13 

is the displacement at the element nodes (vertices) of the matrix. The displacement interpolation functions 14 

ψ𝑎 are the usual finite element hat functions, which take a value of 1 at node a, and 0 at all other nodes. 15 

𝜑𝑖  is the pressure interpolation functions of the matrix/fracture. Note that the pressure interpolation 16 

functions are discontinuous functions that take the value of 1 at element 𝑖, and 0 at all the other elements. 17 

We employ the FVFEM to discretize the controlling equations via submitting the above test functions into 18 

Eqs. (5), (11), and (20), leading to their weak form. After manipulations, the governing equations are 19 

formatted as the required formulations of the Newton-Raphson iterating method, i.e., the residual form: 20 

 

[
 
 
 
 
𝑲𝑎𝑏           −(𝑳𝑖𝑎

𝑝𝑚𝒖𝑚)′ 𝟎

𝑳𝑖𝑏
𝑝𝑚𝒖𝑚 𝑬𝑖𝑗

𝑝𝑚𝑝𝑚 + 𝛥𝑡𝑷𝑖𝑗
𝑝𝑚𝑝𝑚 −(𝑺

𝑖𝑗

𝑝𝑓𝑝𝑚)
′

𝟎 𝑺
𝑖𝑗

𝑝𝑓𝑝𝑚 𝑮
𝑖𝑗

𝑝𝑓𝑝𝑓 + 𝛥𝑡𝑼
𝑖𝑗

𝑝𝑓𝑝𝑓
]
 
 
 
 

⏟                                
𝑱

𝑛 1,𝑘

[

𝛿𝒖𝑚
𝑛 1

𝛿𝒑𝑚
𝑛 1

𝛿𝒑𝑓
𝑛 1

]

⏟    
𝛿𝑿

𝑘

= −[

𝑹𝑚
𝑢,𝑛 1

𝑹𝑚
𝑝,𝑛 1

𝑹𝑓
𝑝,𝑛 1

]

⏟    
𝑹

𝑘

 (22) 

where 𝑱 is the Jacobian matrix; δ𝑿 is the change of the primary variable vector that may be updated as 21 
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𝑿𝑛 1 = 𝑿𝑛 + δ𝑿𝑛 1,𝑘 if convergence is reached; 𝑹 is the residual vector; 𝛥𝑡 is the time step size; the 1 

superscripts u, p,  𝑛 , and 𝑘  represent displacement, pressure, time step, and Newton iteration step, 2 

respectively; the subscripts 𝑖/𝑗 and 𝑎/𝑏 denote the element and node, respectively; the subscripts 𝑚 3 

and 𝑓 represent the matrix and the fracture, respectively; the symbol ()′ represents the matrix transpose; 4 

the matrices residing in the diagonal position represent the isolated effects of each physical process (i.e., 5 

mechanical deformation and fluid flow in the matrix and the fractures) in the multi-physics system, in 6 

which K is the stiffness matrix; 𝑬 and 𝑮 are the compressibility matrix associated with the pressure in 7 

the matrix/fracture, respectively; and 𝑷 and 𝑼 are the transmissibility matrix with respect to fluid flow 8 

through the matrix/fractures, respectively. These matrices take the following expressions: 9 

 𝑲𝒂𝒃 = ∫𝛺𝑖
(𝑩𝑎

𝒖𝑚)
𝑇
𝑫(𝑩𝑏

𝒖𝑚)𝑑𝛺 (23) 

 𝑬𝑖𝑗
𝑝𝑚𝑝𝑚 = ∫

𝛺𝑖
𝜑𝑖
𝑝𝑚 (

𝜌𝑓

𝑀
)𝜑𝑗

𝑝𝑚𝑑𝛺 (24) 

 𝑮
𝑖𝑗

𝑝𝑓𝑝𝑓 = ∫
𝛺𝑖
𝜑
𝑖

𝑝𝑓 (
𝜌𝑓

𝐾𝑛
+
𝜌𝑓𝑤𝑓

𝐾𝑓
)𝜑𝑗

𝑝𝑓𝑑𝛺 (25) 

where 𝑫  is the elasticity matrix, the inverse of the compliance matrix; and 𝑩  is the linearized strain 10 

operator. We adopt the embedded discrete fracture model (EDFM) to compute the inter-element flux for 11 

both fluid flow through the matrix and the fractures, including the conventional flux term 𝜵 ∙   and the 12 

leak-off term 𝑄𝐿. For the sake of brevity, here we omit the derivations related to EDFM, details of which 13 

are provided in [Li and Lee, 2008; Li et al., 2015; Xu et al., 2017; Yao et al., 2018]. In this technique, 14 

element pairs consist of physically neighboring connections (i.e., matrix-matrix connection (type Ⅰ)) and 15 

non-neighboring connections (NNCs) (i.e., matrix-fracture connection (type Ⅱ), the fracture-fracture 16 

connection of two intersecting fracture segments (type Ⅲ)), and the fracture-fracture connection 17 

belonging to a single fracture (type Ⅳ), as depicted in Figure 2. The leak-off term is related to the type Ⅱ 18 

connection. The inter-element flux of the fluid flow for the matrix, including the convection and leak-off 19 

terms, can be written as [Li et al., 2016]: 20 

 ∫𝜑𝑖(𝛻 ∙  )
 

𝛺

𝑑𝛺 −∯ 𝜑𝑖 (𝜌𝑓
𝑘𝑚
𝜇

𝜕(𝑝𝑓 − 𝑝𝑚)

𝜕𝒏𝒔
)𝑑 

 

𝛤

= −
𝜌𝑓

𝜇
∑∑𝑇𝑖𝑗,𝑚

𝑚

𝑛𝑓𝑐

𝑗=1

𝛷𝑚
𝑛 1 (26) 

where 𝑛𝑓𝑐 is the total number of contact surfaces between the target element and its connected elements; 21 

𝑇𝑖𝑗,𝑚 is the transmissibility coefficients for fluid flow; subscripts 𝑖 and 𝑗 denote the two main cells 22 

sharing the same flux interface; 𝑚 denotes one of the contributed grid blocks associated with the face 23 
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flux stencil; and 𝛷 = 𝜵𝑝 − 𝜌𝑓  is the potential. The same formulation can describe fluid flow in the 1 

fractures with minor modifications. The transmissibility coefficients 𝑇𝑖𝑗 for fluid flow with respect to 2 

four types of connections, as plotted in Figure 2, have the following expressions [Li et al., 2020]: 3 

 4 

Figure 2. Schematic of the extended EDFM with four types of connections in 2-D and 3-D views (after Li et al. 5 

[2020]). 6 

 Matrix-matrix connection 𝑇𝑖𝑗 (type Ⅰ) 7 

 𝑇𝑖𝑗 =
𝑇1𝑇2
𝑇2 + 𝑇2

;  𝑇𝑖 = (
𝒌𝑚 ⋅ 𝑨 ⋅ 𝒏

𝒅 ⋅ 𝒏
)
𝑖
, (𝑖 = 1, 2) (27) 

 Fracture-matrix connection 𝑇𝑓 𝑚 (type Ⅱ) 8 

 𝑇𝑓 𝑚 =
2𝒌𝑚 ⋅ 𝑨 ⋅ 𝒏

〈𝑑〉
; 〈𝑑〉 = 𝑉 1∫𝑥𝑛𝑑𝑉

 

𝑉

 (28) 

 Fracture-fracture connection of two intersecting fractures 𝑇𝑓 𝑓1 (type Ⅲ) 9 

 𝑇𝑓𝑖 𝑓𝑗,1 =
𝑇1𝑇2
𝑇1 + 𝑇2

;  𝑇𝑖 =
𝑘𝑓𝑖𝐴𝑖

𝑑𝑖
 , (𝑖 = 1, 2) (29) 

 Fracture-fracture connection of an individual fracture 𝑇𝑓 𝑓2 (type Ⅳ) 10 

 𝑇𝑓𝑖 𝑓𝑗,2 =
𝑇1𝑇2
𝑇1 + 𝑇2

;  𝑇𝑖 =
𝑘𝑓𝑖𝑤𝑓𝑖𝐿𝑖

𝑑𝑓𝑖
 , (𝑖 = 1, 2) (30) 

 𝑑𝑓1 =
∫ 𝑥𝑛𝑑𝑆1 + ∫ 𝑥𝑛𝑑𝑆2

 

𝑆2

 

𝑆1

𝑆1 + 𝑆2
;  𝑑𝑓2 =

∫ 𝑥𝑛𝑑𝑆3 + ∫ 𝑥𝑛𝑑𝑆4
 

𝑆4

 

𝑆3

𝑆3 + 𝑆4
 (31) 

where 𝒏 is the normal vector of the contact surface; 𝑨 is the contact area vector; 𝒅 is the distance 11 

vector pointing from the matrix grid center to the contact face center; 〈𝑑〉 is the average normal distance 12 

from the matrix to the fracture segment (see Figure 2), with the assumption that the pressure varies linearly 13 
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in the normal direction to each fracture; V is the volume of the matrix cell; dV is the volume infinitesimal 1 

of the matrix; 𝑥𝑛 is the distance from volume infinitesimal to the fracture plane (see Figure 2); 𝐿 is the 2 

length of the intersecting line of two fracture segments; 𝑘𝑓 and 𝑤𝑓 are the permeability and aperture of 3 

the fracture segment, respectively; 𝑑𝑓 is the weighted average normal distance from the centroid of the 4 

fracture segment to the intersection line; 𝐴 is the shared interface of these two segments; and 𝑑1 and 5 

𝑑2 are the distances from the centroids of segments 1 and 2 to the shared face, respectively. Original 6 

EDFM requires high-resolution background structure grids to match the geometry of nonplanar fractures, 7 

which tends to be computationally expensive [Zidane and Firoozabadi, 2020]. To make the EDFM 8 

applicable for nonplanar and even twisted fractures with relatively coarse matrix grids, we have extended 9 

the algorithm in two aspects. First, the fracture segment is allowed to be much smaller than the host grid 10 

to make a twisted fracture viable within a single background grid. Second, we use triangular grids to 11 

construct a real fracture geometry such that the nonplanar 3-D fracture can be readily described and 12 

modeled. The transmissibility matrix may be expressed as follows: 13 

 𝑷𝑖𝑗
𝑝𝑚𝑝𝑚 =

𝜕

𝜕𝑝𝑚
(−

ρ𝑓

𝜇
∑∑𝑇𝑖𝑗,𝑚

𝑚

𝑛𝑓𝑐

𝑗=1

Φ𝑚
𝑛 1) (32) 

 𝑼
𝑖𝑗

𝑝𝑓𝑝𝑓 =
𝜕

𝜕𝑝𝑓
(−

𝑤𝑓ρ𝑓

𝜇
∑∑𝑇𝑖𝑗,𝑚

𝑚

𝑛𝑓𝑐

𝑗=1

Φ𝑚
𝑛 1) (33) 

The non-diagonal matrix blocks are the so-called coupling matrix, which describe how one physical 14 

process affects the other one. As mentioned above, we temporarily decouple the mechanical effects of the 15 

fracture from the system. Therefore, the zero coupling matrix can be observed in the Jacobian matrix of 16 

Eq. (22). The non-zero coupling matrix may be written as: 17 

 𝑳𝑖𝑎
𝑝𝑚𝒖𝑚 = ∫

Ω𝑖
𝜑𝑖
𝑝𝑚𝑏(𝛻𝜓𝑎

𝒖𝑚)dΩ (34) 

 𝑺
𝑖𝑗

𝑝𝑚𝑝𝑓 = −∫
Ω𝑖
𝜑𝑖
𝑝𝑚 (

ρ𝑓𝑇𝑚𝑖 𝑓𝑗

𝜇
)𝜑𝑗

𝑝𝑓dΩ (35) 

3.2 Discretization of Nonplanar 3-D Fractures Allowing for Fracture Deformation 18 

In Section 3.1, the FVFEM is employed to compute the pore pressure in the matrix, the fluid pressure in 19 

the fractures, and the stress state of the matrix. The aperture change is then estimated by BEM with known 20 

stress boundary conditions rendered by FVFEM. A fracture is discretized into a set of triangular grids. 21 

With prescribed boundary stresses applied on fracture surfaces, the normal and shear displacements of 22 

these grids may be evaluated by solving the following equations in the local coordinate system: 23 
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[
 
 
 
 
 

⋮
𝜎𝑛,𝑙𝑜𝑐𝑓
𝑖

𝜏𝑠,𝑙𝑜𝑐𝑓
𝑖

𝜏𝑡,𝑙𝑜𝑐𝑓
𝑖

⋮ ]
 
 
 
 
 

=

[
 
 
 
 
 

⋮

∑{[

𝐶𝑛𝑛
𝑖𝑗

𝐶𝑛𝑠
𝑖𝑗

𝐶𝑛𝑡
𝑖𝑗

𝐶𝑠𝑛
𝑖𝑗

𝐶𝑠𝑠
𝑖𝑗

𝐶𝑠𝑡
𝑖𝑗

𝐶𝑡𝑛
𝑖𝑗

𝐶𝑡𝑠
𝑖𝑗

𝐶𝑡𝑡
𝑖𝑗

] [

𝐷𝑛
𝑗

𝐷𝑠
𝑗

𝐷𝑡
𝑗

]}

𝑁

𝑗=1

⋮ ]
 
 
 
 
 

, (𝑖, 𝑗 = 1,⋯ ,𝑁) (36) 

where 𝐶 is the influence coefficient; D is the displacement discontinuity; 𝜎 and 𝜏 are the normal and 1 

shear stresses, respectively; the superscripts 𝑖 and 𝑗 denote the numbering of the fracture segment grid; 2 

the subscripts 𝑛, s, and 𝑡 denote the directions of normal opening, strike-slip shear, and dip-slip shear, 3 

respectively; the subscript symbol ‘ 𝑙𝑜𝑐𝑓 ’ denotes a variable for the fracture segment in the local 4 

coordinate system; and 𝑁 is the total number of triangular fracture elements. Therefore, 𝐶𝑛𝑛
𝑖𝑗
 represents 5 

the influence coefficient that links the normal displacement at element 𝑗 to the normal displacement at 6 

element 𝑖 (cf. Figure 3a). The expressions for influence coefficients can be found in Fan et al. [2020], 7 

in which a mixed analytical and numerical approach is employed to solve the kernel functions for 8 

estimating the influence coefficient. It is found that this approach is 32% faster than that of the pure 9 

numerical method. The displacements for each element are defined in the element-local coordinate. As is 10 

illustrated in Figure 3b, one of the edges of the triangular element j is chosen as the x-axis (i.e., with the 11 

same direction of the 𝒙1 vector); and thus the z-axis (the 𝒙3 vector) can be defined by the cross product 12 

of the vector 𝒙1 and the edge vector 𝒙𝑚, and the y-axis (the 𝒙2 vector) is represented by the cross 13 

product of the vector 𝒙𝟑 and the vector 𝒙1. We then define the displacement discontinuities of the 𝑗-th 14 

fracture element in the local coordinate system as follows [Kuriyama and Mizuta, 1993]: 15 

 16 
Figure 3. Illustration of local and global coordinates of 3-D BEM based on triangular elements: (a) a pair of triangle 17 

elements in the global coordinate system selected to calculate influence coefficients; and (b) setup of the local 18 

coordinate system for element j. 19 
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 [

𝐷𝑛
𝑗

𝐷𝑠
𝑗

𝐷𝑡
𝑗

] = [

(𝑢𝑧)𝑧=0− − (𝑢𝑧)𝑧=0+

(𝑢𝑦)𝑦=0− − (𝑢𝑦)𝑦=0+

(𝑢𝑥)𝑥=0− − (𝑢𝑥)𝑥=0+

] (37) 

where u is the displacement; and the superscripts ‘−’ and ‘+’ denote values on the negative and positive 1 

side of the fracture, respectively. Note that the normal displacement discontinuity is equivalent to the 2 

fracture aperture, i.e., 𝑤𝑓 = 𝐷𝑛 = (𝑢𝑧)𝑧=0− − (𝑢𝑧)𝑧=0+. Based on the simulation results from (22), the 3 

boundary stress conditions associated with the 𝑖-th fracture element are expressed as: 4 

 [

𝜎𝑛,𝑙𝑜𝑐𝑓
𝑖

𝜏𝑠,𝑙𝑜𝑐𝑓
𝑖

𝜏𝑡,𝑙𝑜𝑐𝑓
𝑖

] = [

(𝑝𝑓
𝑖 − 𝑝𝑚

𝑙 ) + 𝜎𝑛,𝑙𝑜𝑐𝑚
𝑙

𝜏𝑠,𝑙𝑜𝑐𝑚
𝑙

𝜏𝑡,𝑙𝑜𝑐𝑚
𝑙

] (38) 

where 𝑝𝑓
𝑖  is the fluid pressure in the 𝑖-th fracture element; 𝑝𝑚

𝑙  is the pore pressure in the 𝑙-th matrix 5 

element, into which the 𝑖-th fracture element is embedded; and the subscript ‘𝑙𝑜𝑐𝑚’ denotes a variable 6 

with respect to the matrix in the local coordinate system. The stresses, on the fracture surface, can be 7 

calculated by transforming the stress tensor of the matrix block from the global coordinate system to the 8 

local one: 9 

 [𝜎𝑛,𝑙𝑜𝑐𝑚
𝑙    𝜏𝑠,𝑙𝑜𝑐𝑚

𝑙    𝜏𝑡,𝑙𝑜𝑐𝑚
𝑙  ]

′
= (𝑴𝑖[𝝈𝑖𝑗,𝑚

′ ]𝑴𝑖
′) ∙ 𝒏𝑠 (39) 

where 𝝈𝑖𝑗,𝑚
′  is the effective stress tensor of the matrix block, bounding the fracture element with the 10 

normal vector 𝒏𝑠; and 𝑴𝑖 is a transformation matrix that converts the stress from the global coordinate 11 

to the local coordinate of the 𝑖-th fracture element. 12 

4. Nonplanar 3-D Fracture Growth and Iteratively Coupled Solution 13 

4.1 Stress Intensity Factors and Fracture Growth 14 

Fracture growth in rock mass relies on the singular stress field in the vicinity of the fracture tip, which 15 

can be characterized by stress intensity factors (SIFs). Based on the theory of linear elastic fracture 16 

mechanics (LEFM), SIFs are estimated by fracture tip displacements or fracture tip stresses with three 17 

fundamental fracturing modes, i.e., tensile, in-plane shear, and anti-plane shear. Since the fracture tip 18 

displacements are determined by Eq. (36) using BEM at the end of each time step, we employ the 19 

displacement-based approach to extract SIFs as follows [Olson and Taleghani, 2009]: 20 

 𝐾I =
𝜉𝐷𝑛𝐸√𝜋

4(1 − 𝜈2)√2𝑟
; 𝐾II =

𝜉𝐷𝑠𝐸√𝜋

4(1 − 𝜈2)√2𝑟
; 𝐾III =

𝜉𝐷𝑡𝐸√𝜋

4(1 + 𝜈)√2𝑟
 (40) 

where 𝐸 is Young’s modulus; 𝜈 is Poisson’s ratio; 𝑟 is the distance from the centroid of the triangular 21 
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element to the fracture propagation front; and 𝜉 0.806 is an empirical constant, suggested by Olson and 1 

Taleghani [2009]. In this work, we use the maximum principal stress criterion, proposed by Schöllmann 2 

et al. [2002], to predict the nonplanar 3-D fracture propagation. This criterion shows that the fracture 3 

growth occurs when stress intensity factor 𝐾𝑒𝑞 reaches a critical value, i.e., the fracture toughness 𝐾𝐼𝐶: 4 

 

𝐾𝐼𝐶 ≥ 𝐾𝑒𝑞 =
1

2
cos (

𝛾0
2
){𝐾Icos

2 (
𝛾0
2
) −

3

2
𝐾IIsin(𝛾0)

+ √[𝐾Icos
2 (
𝛾0
2
) −

3

2
𝐾IIsin(𝛾0)]

2

+ 4𝐾III
2 } 

(41) 

where 𝛾0 is the fracture deflection angle under multiaxial loading. According to Schöllmann et al. [2002], 5 

the fracture propagation direction is perpendicular to the maximum principal stress (tensile stress is 6 

positive) 𝜎1
′, given by [Schöllmann et al., 2002]: 7 

 
𝜎1
′ =

𝜎𝛾 + 𝜎𝑧

2
+
1

2
√(𝜎𝛾 − 𝜎𝑧)

2
+ 4𝜏𝛾𝑧

2  
(42) 

The deflection angle yields: 8 

 ∂𝜎1
′

𝜕𝛾
│𝛾=𝛾0 = 0; 

∂2𝜎1
′

𝜕𝛾2
│𝛾=𝛾0 < 0 (43) 

Combining the tip-induced stresses and far-field stresses, the near-tip stress field is expressed as: 9 

 [

𝜎𝛾
𝜎𝑧
𝜏𝛾𝑧
] = [

𝜎𝛾
𝑟

𝜎𝑧
𝑟

𝜏𝛾𝑧
𝑟
] + [

𝜎𝛾
𝑡

𝜎𝑧
𝑡

𝜏𝛾𝑧
𝑡

] (44) 

where 𝜎𝛾, 𝜎𝑧, and 𝜏𝛾𝑧 are the local stress components in a cylindrical coordinate system at the fracture 10 

tip; and the superscripts r and t denote the remote and tip stress field, respectively. The remote stress can 11 

be extracted from the host matrix block of the fracture front element; and the expressions for the tip-12 

induced stresses are given in Schöllmann et al. [2002]. After solving the deflection angle 𝛾0 based on 13 

Eqs. (42) through (44), the equivalent SIF 𝐾𝑒𝑞  will be available for determining the magnitude of 14 

fracture advancement [Cherny et al., 2016]: 15 

 Δ𝐿 = 𝐿𝑚𝑎𝑥 (
𝐾𝑒𝑞
𝐾𝐼𝐶

)
𝑚

 (45) 

where 𝐿𝑚𝑎𝑥 is the fracture front advancement magnitude when the critical SIF 𝐾𝐼𝐶 occurs; and 𝑚 is 16 

the material constant (𝑚=1.0 used this work). 17 

4.2 Solution Strategy 18 

An iteratively coupled method is proposed to solve the above equation system associated with nonplanar 19 
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3-D fracture propagation in poroelastic media, as shown in Figure 4. In this approach, we first solve the 1 

pressure in the matrix and the fractures (i.e., 𝑝𝑚 and 𝑝𝑓), as well as the stress distribution (i.e., 𝜎𝑚
′ ) in 2 

the matrix, using FVFEM [Li et al., 2016]. The calculated pressure and the stress provide the boundary 3 

conditions of the BEM, with which we compute the fracture aperture, the fracture stiffness, and fracture-4 

induced stresses. Therefore, this solution scheme constitutes a two-way coupling approach (cf. Figure 4). 5 

The former renders the mechanical boundary conditions for the latter, and the latter, in turn, provides the 6 

fracture aperture and fracture stiffness that are significant parameters for the former to close the mass 7 

balance equation associated with the fracture element. 8 

 9 
Figure 4. Schematic of the iteratively coupled approach for the fracture propagation problem. 10 

Figure 5 summarizes the implementation in C++ of the solution of the nonplanar 3-D fracture propagation 11 

problem, considering fluid flow in the matrix and the fracture, and the fluid exchange between them. 12 

Initialization of the model comprises two steps: the first step utilizes the prescribed hydraulic/mechanical 13 

boundary conditions and the initial pressure condition to initialize the poroelastic model; in the second 14 

step, the fracture aperture and the fracture permeability could be initialized, using the calculated pressure 15 

in the matrix/fracture and the stress in the matrix of the first step. After initialization, we proceed to the 16 

iteratively coupled algorithm (ref. Figure 4), in which coupling parameters between the FVFEM and BEM 17 

modules are mapped to each other at the Newton-iteration level. 18 
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 1 

Figure 5. Flow chart for solving the propagation of nonplanar 3-D fractures in poroelastic media. 2 

As mentioned in Section 2.3, the aperture change 𝜕𝑤𝑓 𝜕𝑡⁄  provides an essential step in coupling. For 3 

closed fractures, we adopt Eq. (16) to explicitly update the fracture stiffness and fracture aperture. For 4 

open fractures, the BEM is utilized to solve them via Eqs. (36) through (38). Based on the definition of 5 

the derivative, the fracture stiffness is expressed as follows: 6 

 𝐾𝑛 = 𝑙𝑖𝑚
𝛿𝑝𝑓→0

(
𝛿𝑝𝑓

𝛿𝑤𝑓
) (46) 

After solving the FVFEM module to obtain the fluid pressure 𝑝𝑓 and the stress 𝝈𝑚
′  during an iteration 7 

step, the BEM module is then employed to compute the fracture aperture 𝑤𝑓. A small fluid pressure 8 

Initialize the problem of 3D 
fracture propagation in 

poroelastic media

Initial guess 𝑿0
(𝑝𝑚0, 𝑝𝑓0, 𝑤𝑓0) 

Linearize PDEs using Newton-
Raphson method (assemble stiffness 

matrix, flow matrix, and coupling 
matrix) according to Eqs. 22-35

Solve poroelastic problem by 
FVFEM (Eq. 22)

Convergence?

Update variables
(𝒖, 𝑝, 𝜙, 𝑘,𝑤𝑓, 𝐾𝑛)

and cutback

NO

YES

Iterative step
k=k+1

Upd  e    i  les

𝑿0
  1 = 𝑿0

 + δ𝑿  1, 

Estimate fracture apertures 
and the fracture stiffness 
using BEM (Eqs. 36-39)

𝝈 , 𝑝𝑚, 𝑝𝑓

Calculate the equivalent 
SIF by Eqs. 40 and 41

Propagation?

YES

Determine the fracture 
deflection angle and the 

magnitude of the fracture 
advancement

NO

Add new fracture elements 
at the fracture front

𝑡  𝑡𝑚𝑎𝑥?
NO

YES

Update connection list 
and the transmissibility 

using EDFM

Update time step

Time step
𝑡𝑛 = 𝑡𝑛 +  𝑡

Time step
n=n+1

Update fluid 
properties

Terminate

𝑝𝑚, 𝑝𝑓

𝛾0,  𝐿



 

18 

 

perturbation 𝛿𝑝𝑓 (e.g., 100 Pa used in this model) is introduced to the system to yield another fracture 1 

aperture 𝑤𝑓
′ . The fracture stiffness for the current iteration step is then obtained: 2 

 𝐾𝑛 =
𝛿𝑝𝑓

𝑤𝑓
′ −𝑤𝑓

 (47) 

The known fracture aperture and fracture stiffness allow us to proceed to the next iteration step until the 3 

convergence criterion is satisfied: 4 

 ‖𝑿𝑛 1,𝑘 − 𝑿𝑛‖

‖𝑿𝑛 1,𝑘‖
< 𝜀𝐻𝑀;  

‖𝒘𝑓
𝑛 1,𝑘 −𝒘𝑓

𝑛‖

‖𝒘𝑓
𝑛 1,𝑘‖

< 𝜀𝑤𝑓  (48) 

where 𝜀𝐻𝑀 = 0.01 and 𝜀𝑤𝑓 = 0.01 are the specified tolerances for the FVFEM module and the BEM 5 

module, respectively; and the symbol ‘‖∙‖’ denotes the operator for root mean square. If the convergence 6 

conditions are satisfied, the variables should be updated, 𝑿0
  1 = 𝑿0

 + 𝛿𝑿  1, 𝑘, as the initial guess of 7 

the next time step and the simulation time should also be updated. The updated fracture apertures will 8 

assist to estimate three fundamental SIFs (Eq. (40)) and the equivalent SIF (Eq. (41)) of the fracture front 9 

element. If the maximum equivalent SIF falls within a specified range [Gupta and Duarte, 2018]: 10 

 𝐾𝑒𝑞
𝑚𝑎𝑥 = 𝑚𝑎𝑥 {𝐾𝑒𝑞

1 ,⋯ , 𝐾𝑒𝑞
𝑖 , ⋯ , 𝐾𝑒𝑞

𝑁  } ∈ [(1 − 𝜃)𝐾𝐼𝐶 , (1 + 𝜃)𝐾𝐼𝐶] 
(49) 

where 𝜃 is a model constant (𝜃 = 0.05 used in this work). The fracture is allowed to propagate with the 11 

magnitude Δ𝐿𝑖  which is estimated by Eq. (45) and the deflection angle 𝛾0
𝑖   is given by finding the 12 

maximum principal stress based on Eqs. (42) through (44). A ring-shaped fracture front, composed of a 13 

series of triangular elements, is added to the fracture. These newly generated elements are marked as 14 

fracture tips, which are used for estimating the maximum equivalent SIF of the subsequent propagation 15 

step. Moreover, the EDFM algorithm [Li et al., 2015; Yao et al., 2018] is employed to search for additional 16 

connections related to these new fracture elements. Accordingly, the connection list and the 17 

transmissibilities that are used for constructing the Jacobian matrix should be updated for the next time 18 

step. On the other hand, if the 𝐾𝑒𝑞
𝑚𝑎𝑥 does not fall into the specified range, we then need to adjust the 19 

time step for better convergent performance. 20 

5. Validation of the Hybrid Model 21 

5.1 Horizontal Penny-Shaped Fracture Growth: Verification Example 1 22 

Savitski and Detournay [2002] derived an asymptotic expression for penny-shaped fracture propagation 23 

in impermeable media with the assumptions of an incompressible fluid, linear elastic rock, and no fluid 24 
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lag at the fracture tip. In this approach, a dimensionless viscosity is defined to distinguish the viscosity-1 

dominated from the toughness-dominated propagation regimes [Savitski and Detournay, 2002]: 2 

 
𝑀𝜇 = 𝜇

′ (
𝑄0
3𝐸′

13

𝐾′13𝑡2
)

1/5

 
(50) 

where 𝑄0 is the injection rate; 𝐸
′ = 𝐸 (1 − 𝜈2)⁄  is the plane-strain elastic modulus; 𝑡 is the injection 3 

time; and two material parameters 𝜇′ = 12𝜇 and 𝐾′ = 4√2 𝜋⁄ 𝐾𝐼𝐶. For 𝑀𝜇 ≫ 1, most of the energy, 4 

provided by the hydraulic fluid, is dissipated in viscous fluid flow (i.e., viscosity-dominated); 𝑀𝜇 ≪ 1 5 

is an indication that the creation of a new fracture surface requires most of the energy (i.e., toughness-6 

dominated). In this example validation, we inject a fluid of viscosity 𝜇 1.0 cP at a constant rate 𝑄0 0.01 7 

m3/s at the center of a penny-shaped fracture with an initial radius 𝑅0 1.0 m. The rock toughness, Young’s 8 

modulus, and Poisson’s ratio are 𝐾𝐼𝐶=1.0 MPa/√𝑚, 𝐸=38.8 GPa, and 𝜈=0.15, respectively. 9 

Eq. (50) shows that 𝑀𝜇  is time-dependent and decreases with time. At 𝑡=1.0 s, the dimensionless 10 

viscosity 𝑀𝜇= 0.0825 ≪ 1 , which demonstrates that when 𝑡 ≥1.0 s the asymptotic solution for the 11 

toughness-dominated regime could serve as a good benchmark. The allowed growth advancement for 12 

each propagation step is 𝐿𝑚𝑎𝑥 1.0 m. The total injection time is 124 s, during which the radial fracture 13 

experiences 43 propagation steps and its radius is extended to R 41.8 m. The created fracture has a 14 

maximum aperture 𝑤𝑓 0.84 mm at the center location, as shown in Figure 6a. Panels 6b through 6d in 15 

Figure 6 show that the numerical results are very close to the analytical solutions for the fracture radius, 16 

the fracture aperture at the injection point, and the net pressure (fluid pressure minus the remote stress). 17 

The predictions by the proposed model in planar fracture growth are in agreement with the analytical 18 

solutions. To examine predictions of nonplanar 3-D fracture propagation, we present an inclined radial 19 

fracture growth problem as follows. 20 
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 1 

Figure 6. Numerical results and analytical solution for the penny-shaped fracture growth problem: (a) numerical 2 

result of the fracture aperture distribution after 43 propagation steps (at 124 s); (b) history plots of fracture aperture 3 

at the injection point; (c) history plot of the fracture radius; and (d) net pressure profile at the injection point. 4 

Verification Example 1. 5 

5.2 Inclined Penny-Shaped Fracture Growth: Verification Example 2 6 

For nonplanar 3-D fracture propagation, there are no available analytical solutions for benchmarking. The 7 

exact solution of SIFs for the onset of an inclined fracture growth under uniaxial tensile stress is presented 8 

in [Kassir and Sih, 1975]: 9 

 

𝐾𝐼 = 2𝜎𝑧 cos
2𝛼 √𝑅 𝜋⁄  

𝐾𝐼𝐼 =
2

2 − 𝜈
𝜎𝑧 sin2𝛼 cos𝜔 √𝑅 𝜋⁄  

𝐾𝐼𝐼𝐼 =
2(1 − 𝜈)

2 − 𝜈
 𝜎𝑧 sin2𝛼 sin𝜔 √𝑅 𝜋⁄  

(51) 

where 𝛼 is the fracture dip angle; 𝜔 is an angular coordinate on the fracture plane as shown in Figure 10 

7a; and 𝜎𝑧 is the remote stress along the z-axis. This solution has been widely used in the literature 11 

[Cherny et al., 2016; Krysl and Belytschko, 1999; Shi and Shen, 2018; Tang et al., 2019; Thomas et al., 12 

(a) (b)

(c) (d)
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2017] to validate nonplanar fracture propagation. In our validation, we apply a remote tensile stress 1 

𝜎𝑧 2.5 MPa on the upper and lower boundaries of the target domain, as depicted in Figure 7a. The rock 2 

toughness and Poisson’s ratio are 𝐾𝐼𝐶=1.0 MPa/√𝑚 and 𝜈=0.25, respectively. Figure 7b shows good 3 

agreement between the numerical results and the analytical solutions for the first propagation step. We 4 

simulate the subsequent propagation steps, as shown in Figure 8, in which we observe that the inclined 5 

fracture gradually rotates into the direction perpendicular to the maximum principal stress (tensile is 6 

positive). Similar modeling results have been reported by Krysl and Belytschko [1999], Gupta and Duarte 7 

[2014], Cherny et al. [2016], Shi and Shen [2018], and Thomas et al. [2020a], which further confirms the 8 

reliability of the proposed model. 9 

 10 

Figure 7. Inclined penny-shaped fracture growth problem: (a) schematic of an inclined penny-shaped fracture with 11 

a dip angle of 𝛼 30° and an initial radius of R 9.1 m; and (b) simulation results (circle) and the analytical solutions 12 

(solid line) of scaled stress intensity factors for three different propagation modes: Verification Example 2. 13 

 14 

Figure 8. Simulation results of geometries of the propagating nonplanar fracture at various advancement steps in 15 

side view and 3-D view: Verification Example 2. 16 
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6. Numerical Results 1 

6.1 Example 1: Planar Fracture’s Propagation in Three Stress Layers 2 

Fluid-driven fracture propagation in multilayer formations is of great interest in the petroleum/geothermal 3 

industry. Related scientific/engineering issues include the fracture growth rate, the fracture’s footprint, 4 

and the fracture aperture distribution. For underground storage projects, e.g., carbon dioxide sequestration, 5 

a vertically propagating hydraulic fracture should be either contained in the reservoir rock or allowed to 6 

extend a limited height into the caprock, improving injectivity and guaranteeing the integrity of the 7 

caprock in the long-term, as well [Fu et al., 2017]. Development of unconventional resources necessitates 8 

hydraulic fracturing treatments in the reservoirs to enhance the permeability, and thus the productivity. 9 

Fracturing engineers anticipate that the created fractures are constrained in target formations for 10 

improving the effectiveness of fracturing treatments. Fisher and Warpinski [2012] reported several 11 

fracture-containment mechanisms, such as material-property contrast (e.g., fracture toughness and 12 

Young’s modulus), weak interface (e.g., bedding plane, faults, fractures, and veins), permeability contrast, 13 

fluid-pressure gradient, and in-situ stress contrast. In this example, we investigate planar fracture’s 14 

propagation under vairous in-situ stress contrasts. 15 

Figure 9a portrays a three-layer formation with distinct principal stresses, 𝜎1
ℎ, 𝜎2

ℎ, and 𝜎3
ℎ, with the same 16 

Young’s modulus 𝐸 20 GPa, and Poisson’s ratio 𝜈 0.25. Other relevant data are: injection rate 𝑄0 0.01 17 

m3/s; fluid viscosity 𝜇 10 mPa∙s; fracture toughness 𝐾𝐼𝑐 1.0 MPa√𝑚; matrix permeability 10 2 mD; 18 

and maximum front advancement 𝐿𝑚𝑎𝑥  1.0 m. Three cases associated with the stress condition are 19 

designed as [Dontsov and Peirce, 2017]: 20 

 Case 1: 𝜎1
ℎ = 7.75 MPa, 𝜎2

ℎ = 7.0 MPa, and 𝜎3
ℎ = 7.75 MPa. 21 

 Case 2: 𝜎1
ℎ = 7.75 MPa, 𝜎2

ℎ = 7.0 MPa, and 𝜎3
ℎ = 7.25 MPa. 22 

 Case 3: 𝜎1
ℎ = 7.25 MPa, 𝜎2

ℎ = 7.0 MPa, and 𝜎3
ℎ = 6.5 MPa. 23 

Panels 9b through 9d in Figure 9 show the simulation results to 560 s, corresponding to symmetric stress 24 

barriers (Case 1), asymmetric stress barriers (Case 2), and monotonous stress (Case 3), respectively. 25 

Symmetric fracture geometry is induced in Case 1, while asymmetric fracture footprints are observed in 26 

Cases 2 and 3. The fracture propagates more extensively and possesses a larger width within the layer 27 

with a lower minimum principal stress, which demonstrates that the stress affects the fracture growth rate, 28 

so as the fracture geometry. As shown in Figure 10, the ring-shaped fracture front is characterized as 29 
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various magnitudes at different locations for the 28th growth step, which indicates the growth rate at the 1 

fracture tip. For example, the light blue stripe in Figure 10, related to Case 3, displays that a minimum 2 

advancement of 𝐿 0.17 m is observed in layer #1. The magnitude of the advancement gradually increases 3 

from the minimum to 𝐿 0.42 in layer #2, and then to the maximum 𝐿 1.0 m in layer #3. The reason 4 

behind these results is the stress-controlled displacement discontinuity at different locations. A higher 5 

stress would cause a larger displacement discontinuity, which results in a larger advancement at the 6 

fracture tip according to Eqs. (40) and (45). 7 

 8 

Figure 9. Planar fractures with different footprints and aperture distributions, induced by various layered stress 9 

conditions, after 28 propagation steps (at 560 s): (a) schematic of layered stress condition; (b) symmetric stress 10 

barriers; Case 1 (c) asymmetric stress barriers; Case 2, and (d) monotonous stress, Case 3. Note that the injection 11 

point is located at (x, z)~(75 m, 70 m), i.e., the center of the radial fracture (the red circle) with an initial radius of 12 

5.0 m, and that the white dots in panels (b) through (d) denote the injection points: Example 1. 13 

𝜎1
ℎ

 
𝑅0=5.0 m

𝜎2
ℎ

𝜎3
ℎ

𝐸, 𝜈

(c) (d)

(a) (b)

Layer #1

Layer #2

Layer #3

𝐸, 𝜈

𝐸, 𝜈



 

24 

 

 1 

Figure 10. Ring-shaped fracture fronts after 28 propagation steps (at 560 s) for various layered stress conditions: 2 

Example 1. 3 

6.2 Example 2: Propagation from Two-Parallel Fractures under Stress Anisotropy 4 

In Example 2, we investigate nonplanar 3-D fracture propagation, induced by the stress shadowing effect. 5 

It is assumed that two parallel fractures with an initial radius of 5.0 m and a distance of 5.0 m, connected 6 

by a vertical well, reside in a stratum with a thickness of 30 m, as depicted in Figure 11. The stratum is 7 

located at a relatively shallow depth (i.e., 300 m) such that the vertical stress is the minimum compressive 8 

stress, which belongs to a reverse-fault environment (i.e., 𝑆𝑉 = 7.5 MP   𝑆ℎ = 8.5 MP < 𝑆𝐻 =9 

12.5 MP  ). The domain has a dimension of 100 m  100 m  30 m , which is discretized into 10 

30  30  10 = 9000 identical matrix blocks. Other parameters are listed in Table 1. 11 

Table 1 12 

Various parameters: Example 2. 13 

Initial radial fracture

Fracture growth direction

Ring-shaped fracture front 

(symmetric stress barriers)

Ring-shaped fracture front 

(asymmetric stress barriers)

Ring-shaped fracture front 

(monotonous stress)

Interface between layers

Parameters Value Unit 

Injection rate 𝑄 0.02 m3/s 

Matrix permeability 𝑘𝑚 0.1 mD 

Fluid density 1000 kg/m3 

Fluid viscosity 𝜇 1.0 mPa∙s 

Fluid compressibility 1/𝐾𝑓 5.0  10 10 1/Pa 

Biot coefficient b 0.85 - 

Initial fluid pressure 𝑝𝑓/𝑚 4.0 MPa 

Porosity  𝜙 0.25 - 

Young’s modulus 𝐸 20.0 GPa 

Poisson’s ratio  𝜈  0.2 - 

Fracture toughness 𝐾𝐼𝑐  1.5 MPa√𝑚 

Maximum advancement 𝐿𝑚𝑎𝑥 1.0 m 
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 1 

Figure 11. Illustration of the physical model for two parallel fractures (red circles) linked by a single vertical well: 2 

Example 2. 3 

 4 
Figure 12. Geometries of the propagating nonplanar fractures at various advancement steps in side 3-D view: step 5 

0 (0 s), step 5 (105 s), step 10 (257 s), step 15 (430), step 20 (655 s), and step 25 (930 s): Example 2. 6 
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growth steps/times are plotted in Figure 12. One can observe from these simulation results that the two 1 

fractures propagate apart from each other seeking a path with the least resistance, and that the difference 2 

of growth rate at fracture tips of different locations leads to asymmetric geometries. Figure 13 depicts the 3 

sampled points for extracting the stress distribution and the fracture-induced stress change along the z-4 

axis. The stress experiences a decrease in the regions ahead of the fracture front, but a significant increase 5 

in the vicinity of the fracture along its normal direction; this is the major reason why we set densely 6 

sampled points in the vicinity of the fracture and the fracture front, as shown in panels (A) and (B) of 7 

Figure 13. This strategy has an advantage in reducing the computation time for stress extraction by BEM 8 

over evenly collecting the sampled points, especially in 3-D. Figure 14 shows the fracture aperture 9 

distribution after 25 growth steps (at 930 s). This figure conveys three points: the first is that two 10 

competing fractures simultaneously propagate with a very close growth rate at their symmetric locations; 11 

the second is that, for each of the fractures, different growth rates from the stress difference, as analyzed 12 

in Section 6., result in an asymmetric geometry (comparison of Figure 14b and Figure 14c); and the final 13 

point is that the stress interaction (cf. Figure 13) tends to change the local stress state, as well as the 14 

propagation direction, resulting in a nonplanar fracture. Figure 15 shows the effect of matrix gridding 15 

after 25 growth steps in four different gridding sets. There is no appreciable difference in the fracture 16 

geometry, fracture size, and fracture deflection. There is a slight difference in the fracture aperture 17 

distribution, i.e., at higher matrix grid resolution the fracture aperture is smaller. A coarser matrix grid in 18 

the vicinity of the fracture would underestimate the magnitude of the leakoff, which causes a higher net 19 

pressure and a larger fracture aperture as well. 20 
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 1 

Figure 13. (A) and (B) are the sampled points for stress plots, and (a) and (b) are corresponding contours of stress 2 

variation, induced by the fracture, along the z-axis (the direction of original maximum principal stress): Example 2. 3 

 4 
Figure 14. Geometries of the propagating nonplanar fractures and corresponding apertures after 25 advancement 5 

steps in 3-D side view: Example 2. 6 
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 1 

Figure 15. Fracture aperture distributions under various matrix grid resolutions: (a) 5  5  3  grids; (b) 2 

10  10  5 grids; (c) 30  30  10 grids; and (d) 90  90  30 grids. Example 2. 3 

6.3 Example 3: Propagation in Multiple En 𝐄́chelon Fractures 4 

En échelon fractures are commonly observed in geology, induced by a mechanical interaction between 5 

their near-tip stress fields [Schultz, 2019]. Figure 16 shows the multiscale feature of en échelon fractures, 6 

ranging from several centimeters (e.g., linked joint arrays, see panels b and c in Figure 16) to a few 7 

kilometers (e.g., overlapping en échelon faults, see Figure 16a). In this section, we will explore the 8 

simultaneous growth of multiple en échelon fractures with even spacing, driven by inner fluid pressure. 9 

As depicted in Figure 17, four radial fractures are evenly distributed in the domain with a dimension of 10 

70 m  60 m  30 m, which is divided into 29  29  14 = 11774 identical matrix blocks. All of the 11 

fractures have the same geometric parameters, including fracture radius R=5.0 m, perpendicular spacing 12 

S=5.0 m, an overlap of inner tips D=4.0 m, and distance between fracture midpoints L=14.0 m. We 13 

assume that the fracturing is driven by the same fluid as used in Example 2 with a constant rate of Q=0.01 14 

m3/s. In-situ stress conditions and mechanical rock and fluid properties are the same as in Example 2. 15 

(a)
(b)

(c) (d)
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 1 

Figure 16. En échelon fractures: (a) mixed mode I-II curving pattern for overlapping en échelon fractures in 2 

sandstone, Oil Mountain, Wyoming [Olson et al., 2009]; (b) joint traces mapped on bedding surface of Dakota 3 

Sandstone [Olson and Pollard, 1989]; and (c) a linked en échelon pair of joints [Schultz, 2019]: Example 3. 4 

 5 

Figure 17. Illustration of the physical model for en échelon fractures’ growth, driven by inner fluid pressure: 6 

Example 3. 7 
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 1 
Figure 18. Geometries and aperture distributions of the propagating nonplanar fractures at different advancement 2 

steps in various views: Example 3. 3 

Figure 18 shows the evolution of en échelon arrays at various propagation steps. Initially, each pair of the 4 

parallel, noncollinear fractures grow to approach each other (i.e., D>0), and all of the fractures exhibit a 5 

uniform growth rate. After two propagation steps (approximately 24 s), the tips become aligned, i.e., the 6 

overlap of inner tips is near zero. The mechanical interaction also becomes increasingly intense. The side 7 

views in Figure 18 display that the fractures grow past each other into an overlapped configuration, which 8 

is qualitatively similar to the results based on mapped data of joint traces (cf. Figure 16b). In subsequent 9 

growth steps, the fractures further grow toward each other and present roll-over configurations around the 10 

interacted fracture tips, as shown in the last panel of the side view in Figure 18 (also see Figure 16a and 11 

Figure 16c). The top view and 3-D view in Figure 18 show that the fracture growth is impeded after 12 

fractures’ overlap since the magnitude of the front advancement sharply decreases within the overlapped 13 

region. On the other hand, the growth along the y-direction is enhanced and preferential propagation 14 

outward of the outer fractures can be observed. Enhancement or impediment of the growth ahead of an 15 

individual fracture front leads to asymmetric fracture geometry. Figure 19 shows the mechanical 16 

interaction among the en échelon arrays, in which the schematic diagrams for the sequential growth of en 17 
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échelon arrays into underlapped, neutral, and overlapped configuration are slightly modified from Schultz 1 

[2019]. We present the stress contours corresponding to each case when the fractures are about to 2 

propagate. Results indicate that fracture-induced stresses alter the magnitude and the direction of the 3 

principal stress significantly, e.g., the increase or decrease of the stress along the z-axis is up to 10 MPa 4 

near the fractures. For the underlap configuration, the mechanical interaction between fractures is 5 

negligible such that the en échelon arrays propagate in pure mode Ⅰ without change of direction. However, 6 

for neutral and overlapped cases, the stress shadowing effect will lead to a redistribution of the stress, 7 

resulting in fracture reorientation.  8 

 9 

Figure 19. Sequential growth of en échelon fractures into underlapped, neutral, and overlapped configurations: the 10 

left panels are the schematic diagrams (after Schultz [2019]) and the right panels correspond to the stress contours 11 

along the z-direction after 0 step, 2 steps, and 10 steps, respectively: Example 3. 12 

7. Summary 13 

This paper describes a novel modeling framework for nonplanar 3-D fracture growth in poroelastic porous 14 

media, based on a hybrid numerical method. We validate the proposed model against asymptotic solutions 15 

for penny-shaped fracture propagation. To verify the simulation of nonplanar fracture propagation, 16 
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numerical results are compared with the analytical solution of SIFs for an inclined radial fracture. 1 

Subsequently, we perform three numerical examples to explore planar and nonplanar fracture propagation. 2 

In Example 2, which covers planar fracture growth through three stress layers, the significance of stress 3 

contrast is confirmed for fracture containment. In examples 1 and 3, we explore the stress shadowing 4 

effect that causes redistribution of the stress field, leading to nonplanar 3-D fracture geometries. In 5 

Example 3, we find that the predicted configurations of en échelon arrays are consistent with the mapped 6 

data and the observed geological phenomena. 7 

In this framework, the time-dependent fracture footprint is explicitly tracked by triangular grids, based on 8 

the BEM and the EDFM. The BEM is adopted to estimate the fracture aperture, fracture-induced stresses, 9 

as well as the fracture stiffness, and the EDFM is used to calculate fluid flow through the fractures and 10 

the fluid exchange between the matrix and the fracture. Our treatment possesses several distinct 11 

advantages. First, there is no need to refine the matrix grid for representing the fracture geometry, which 12 

often poses challenges to gridding and code development. Second, the leakoff is considered in fully 3-D, 13 

circumventing the limitations related to Carter’s model. Third, all of the parameters for the fracture are 14 

physics-based, including the fracture geometry, fracture aperture, and the fluid pressure, such that the 15 

model can be readily extended to proppant transport and placement and the development of 16 

hydrocarbon/geothermal energy. To the best of our knowledge, we propose for the first time an iteratively 17 

coupled approach that is well-suited for fracture propagation simulation. This solution strategy makes the 18 

upscaling of coupled fluid flow, geomechanics, and fracture propagation viable because the 3-D BEM 19 

could render pressure-stress-scale-dependent fracture permeability and stiffness for flow and 20 

geomechanics. 21 

Three are many important aspects that deserve further research in our future work. The model can be 22 

extended to account for preexisting natural fractures via incorporating 3-D crossing criteria between the 23 

natural and hydraulic fractures, and adjusting the grid system to describe the fracture intersection and 24 

merging (e.g., Li and Zhang [2019]; Shi and Shen [2018]). Another important topic, associated with the 25 

proposed model, is to integrate the proppant transport in complex fracture networks. Besides, the 26 

upscaling of geomechanics and fluid flow in fractured porous media is of high interest to hydrologists and 27 

petroleum engineers. Our future work will focus on how to utilize the 3-D BEM to form an effective 28 

homogenized technique from hydraulic and mechanical perspectives. 29 
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