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Abstract 11 

 Lead (Pb) is a neurotoxicant that particularly harms young children. Urban environments are 12 

often plagued with elevated Pb in soils and dusts, posing a health exposure risk from inhalation and 13 

ingestion of these contaminated media. Thus, a better understanding of where to prioritize risk screening 14 

and intervention is paramount from a public health perspective. We have synthesized a large national 15 

dataset of Pb concentrations in household dusts from across the United States (U.S), part of a community 16 

science initiative called “DustSafe.” Using these results, we have developed a simplistic logistic 17 

regression model that correctly predicts whether Pb is elevated (> 80 ppm) or low (< 80 ppm) in 18 

household dusts 75% of the time. Additionally, our model estimated 18% false negatives for elevated Pb, 19 

displaying that there was a low probability of elevated Pb in homes being misclassified. Our model uses 20 

only variables of approximate housing age and whether there is peeling paint in the interior of the home, 21 

illustrating how a simple and successful Pb predictive model can be generated if researchers ask the right 22 

screening questions. Scanning electron microscopy supports a common presence of Pb paint in several 23 

dust samples with elevated bulk Pb concentrations, which explains the predictive power of housing age 24 

and peeling paint in the model. This model was also implemented into an interactive mobile app that aims 25 

to increase community-wide participation with Pb household screening. The app will hopefully provide 26 

greater awareness of Pb risks and a highly efficient way to begin mitigation. 27 

 28 

Plain Language Summary  29 

Community science has been gaining traction in many locales throughout the United States, 30 

particularly in the field of urban pollution. While this has helped with science education and informing 31 

communities of potential hazards and mitigation tools, little has been done to effectively assimilate this 32 

information in a useful way to help other people in communities. Thus, we utilized a large dataset of 33 

household dust samples provided via community scientists across the United States to build a simple 34 

predictive model that lets users know if their dust is likely to be high in a toxic metal, lead. Additionally, 35 

we built this model into an interactive mobile app that we plan to use as a recruitment tool for usage of 36 

lead screening kits. Ultimately, we plan to assess whether this mobile app improves user knowledge of 37 

household lead risks and increases participation from start to finish for free lead screening services.  38 

Key Points  39 
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• Community science sampling can provide national-level insight  40 

• Mobile apps can be utilized as a lead intervention tool  41 

• Elevated lead in house dust can be reasonably predicted with a simple model and two variables 42 

 43 

1. Introduction 44 

 Lead (Pb) is a naturally occurring heavy metal neurotoxicant that causes many deleterious effects 45 

in humans, even in small quantities (e.g., Assi et al., 2016; Dórea, 2019). It is a biologically non-essential 46 

element that is especially detrimental to young children (e.g., Koller et al., 2004). In the United States 47 

(U.S.), it has largely been phased out of products, most notably leaded gasoline and paint, but remains in 48 

many urban environments as a form of legacy pollution (e.g., Laidlaw et al., 2012). Thus, modern sources 49 

of Pb are primarily lead paint in older homes and soil/dusts that contain remnants of both leaded paint and 50 

gasoline. Ingestion and inhalation of paint, soil, and dust containing elevated levels of Pb still poses a 51 

health risk, particularly for children due to their increased hand-to-mouth behavior (e.g., Ko et al., 2007; 52 

Needleman, 2004; Stewart et al., 2014). 53 

 Household dust Pb concentrations and loadings have been shown to be strongly related to 54 

children’s blood Pb levels (BLLs) (e.g., Lanphear et al., 1996; Gulson and Taylor, 2017; Rhoads et al., 55 

1999). Thus, a better understanding of risk factors associated with Pb in household dusts can help predict 56 

what homes may have elevated Pb concentrations in dusts, and thus help mitigate Pb exposure and 57 

elevated BLLs in children. Predictive modeling of Pb in soil samples with variables such as race and 58 

house age has already been shown to be effective in predicting at-risk areas (Obeng-Gyasi et al., 2021), 59 

but this has not been attempted with household indoor dust Pb concentrations across a wide geographic 60 

area through community-provided samples. 61 

 Citizen/community science sampling of environmental media such as soil has been shown to not 62 

only aid as an educational tool to those collecting the samples, but also provides important scientific data 63 

of inorganic contaminants such as Pb and how they’re distributed throughout the environment (e.g., 64 

Filippelli et al., 2018; Ringwald et al., 2021; Taylor et al., 2021). Thus, we have utilized an ongoing 65 

community science project, “DustSafe (https://www.360dustanalysis.com/),” to analyze approximately 66 

434 household dust samples from across the United States (Fig. 1) to determine whether homes at risk for 67 

elevated dust Pb can be accurately predicted. While individual variables such as housing age and 68 

automobile traffic near homes have been shown to be correlated with indoor dust Pb concentrations (e.g., 69 

Meyer et al., 1999; Rasmussen et al., 2011), variables have not been collectively applied in a predictive 70 

model across multiple states and cities in the U.S. Additionally, we sought to utilize this predictive model 71 

as part of an interactive mobile app to encourage greater community engagement for household Pb 72 

screening, which can not only help individuals gain agency in possible Pb mitigation measures, but can 73 

also help policymakers and the community at large better understand where/how to focus household Pb 74 

intervention efforts. 75 

 76 

2. Methods 77 

2.1 “DustSafe” sampling 78 

Details of the household dust sampling are provided in Isley et al. (in review). Briefly, DustSafe 79 

was advertised as a program to thousands of households through social media, e-mail, etc. to gain 80 

community science participants. Project protocols were approved following ethical review at Indiana 81 
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University, USA (project #1810831960). Participants completed an online survey (Isley et al., in 82 

review—their SI Text 1) and collected vacuum cleaner dust in a polyethylene bag. Samples were 83 

collected from 2019 to present. Once samples were collected by researchers, they were sieved to 250 µm 84 

and analyzed for Pb, As, Cd, Cr, Cu, and Zn using X-ray fluorescence spectrometry (XRF). They were 85 

dry by virtue of the vacuum sampling and needed no desiccation. NIST 2702 was run periodically as an 86 

external standard on the XRF between dust samples, and the arithmetic mean (average) % error for Pb 87 

was 14.7% ± 8.6% (n = 9). 88 

Results were reported back to participants following data collection (Example for Pb in Fig. S1), and 89 

then plotted on the “Map My Environment” website (www.mapmyenvironment.com) with locations 90 

randomly double jittered within ~2 city blocks to protect privacy. 91 

2.2 Data filtering/building of logistic regression model 92 

The initial dataset (link to data provided in Supplementary Materials) of potentially relevant data 93 

for this analysis contained 434 samples with matching Pb data (greater than detection limit) from the 94 

United States (and three samples from Canada). After deducing the most important potential predictive 95 

variables of housing age, interior peeling, exterior peeling, and recent renovation through log-normalized 96 

Pb concentration comparative t-tests, ANOVA tests and our global dust data (Isley et al., in review—their 97 

Table 1), the data was further filtered down to 342 samples that contained Pb concentrations and 98 

questionnaire responses for the aforementioned independent variables. Because exact housing age is 99 

difficult to deduce for many respondents, particularly renters and those who may be surveyed in-person at 100 

future community Pb screening events, we classified housing age into categories of Pre-1940, 1940-1959, 101 

1960-1979, 1980-Present, and “Not Sure” so that this predictor variable may be more useful/applicable in 102 

future surveys. 103 

A logistic regression model was applied using independent potential predictor variables to predict 104 

whether an indoor housing dust sample was either ≥80 ppm Pb or <80 ppm Pb. This was used as a 105 

conservative cut-off based on California’s safe screening level for soils, because we didn’t collect indoor 106 

dust loading data and most other standards used in the U.S. for soil Pb are outdated and likely too high 107 

(e.g., the U.S. EPA’s 400 ppm residential soil standard; Gailey et al., 2020). Our model was run in 108 

RStudio using the “glm” function based on the general equation: 109 

log [
𝑝

1−𝑝
] = 𝑏0 + 𝑏1 ∗ 𝑥1 + 𝑏2 ∗ 𝑥2 … + 𝑏𝑛 ∗  𝑥𝑛                                                           (1) 110 

Where p is the probability of an event occurring, b0 is the intercept, bn is the regression beta coefficient, 111 

and xn is a given predictor variable. 112 

Each potential independent predictor variable (besides housing age) categorical response of “No,” 113 

“Yes,” and “Not Sure” were reclassified as numeric variables of 0, 1, and 2, respectively, for the model. 114 

Housing age categories were reclassified as numeric variables of 0, 1, 2, 3, and 4 for the responses, 115 

“1980-Present,” “1960-1979,” “1940-1959,” “Pre-1940,” and “Not Sure,” respectively. 116 

Our most successful model contained the independent variables of housing age (p = 0.0002) and 117 

interior peeling paint (p = 0.008), which generated the following equation: 118 

𝑙𝑜𝑔 [
𝑝

1−𝑝
] = 2.1413 − 0. 4506 (𝐻𝑜𝑢𝑠𝑖𝑛𝑔) − 1.1535 (𝐼𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑃𝑎𝑖𝑛𝑡 𝑃𝑒𝑒𝑙𝑖𝑛𝑔)   (2) 119 

This was based on a random training set of 240 samples from our original 342 samples. We evaluated the 120 

model on a testing dataset of 102 samples from our original 342 samples. All input and output files are 121 

http://www.mapmyenvironment.com/
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freely available on GitHub (link provided in Supplementary Materials), as well as the logistic regression 122 

model R code. 123 

 124 

2.3 Mobile app development  125 

 An interactive online web application was developed to implement our predictive model in a 126 

simple and straightforward manner (link provided in Supplementary Materials). The application was built 127 

using the shiny, shinydashboard, shinydashboardPlus, and shinyjs packages in R (Attali, 2020; Chang et 128 

al., 2018; Chang and Borges Ribeiro, 2018; Granjon, 2021). Along with providing users with a 129 

straightforward interface for answering questions about house age and peeling paint and a custom risk 130 

assessment based on the embedded logistic predictive model, the application also provides users with 131 

direct links to our mapmyenvironment.com web portal, where they can register for free dust and soil Pb 132 

screening. Finally, the application offers background information about the current model version used to 133 

make the predictions, and offers direct links to model, data, and application code repositories. 134 

 135 

2.4 Scanning electron microscopy (SEM)  136 

 A subset of DustSafe household dust samples were prepared on aluminum samples stubs using 137 

carbon sticky tab substrates for analysis using a scanning electron microscope (SEM) and energy 138 

dispersive X-ray spectroscopy (EDS).  EDS lines used to identify Pb specifically include the Lα = 10.541 139 

keV (nominally M α = 2.342 keV, Mβ = 2.444 keV). All analyses were conducted at Indiana University-140 

Purdue University Indianapolis with a Zeiss EVO-10 SEM and Bruker XFlash6, 60 mm2 EDS detector. 141 

Backscatter electron (BSE) images were collected at a setting of 15 kV in variable pressure mode. 142 

Qualitative elemental composition data (EDS data) were collected at the same conditions. 143 

 144 

3. Results & Discussion 145 

3.1 Significant findings between Pb in dust and housing age, vacuum frequency, and peeling paint 146 

 Household dust Pb concentrations were significantly higher in homes where there was interior or 147 

exterior paint peeling (Fig. 2; Table 1), which is in line with recent global household Pb dust data from 148 

the same DustSafe project (Isley et al., in review). This suggests that leaded paint is still a significant 149 

contributor of Pb to dust in many homes. However, it does not exclude outside sources such as soil/street 150 

dust that may include Pb from leaded gasoline. For example, indoor dusts have been shown to contain 151 

significant Pb sources from outdoor sources such as soils, dust, and industrial pollution as well (e.g., 152 

Adgate et al., 1998; Kelepertzis et al., 2020). 153 

 Greater housing age has long been known to be associated with increased Pb concentrations in 154 

household dusts, such as in Canada and the U.S. (e.g., Rasmussen et al., 2011; Rasmussen et al., 2013; 155 

Spalinger et al., 2007). Our results support this, as a moderate positive correlation was seen between 156 

housing age and Pb concentration in our samples (Fig. 3A), with more recent housing age categories 157 

generally lower in dust Pb as well (Fig. 3B; Table 1). This is most likely due to older homes containing 158 

Pb-based paints that can contribute to dust samples, as Pb housing paint was outlawed in the U.S. in 1978 159 

and housing built before 1940 is the most likely to contain Pb paint (e.g., Levin et al., 2021). Furthermore, 160 

our global DustSafe dataset also observed a strong increase in Pb house dust concentration with home age 161 

(Isley et al., in review), suggesting that this is a common trend in many countries. 162 
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 Regular cleaning of homes and the surrounding environment, including measures such as 163 

vacuuming, have been shown to effectively lower BLLs in children (e.g., Laidlaw et al., 2017; Rhoads et 164 

al., 1999). We also found that those vacuuming more frequently than once a month contained 165 

significantly lower concentrations of Pb in their house dust compared to those vacuuming monthly or less 166 

(Fig. S2A). However, we did not see any significant differences in Pb house dust concentrations in 167 

subcategories where people performed more than monthly vacuuming (Fig. S2B), which corresponds to 168 

our general trends in global dust data where increased vacuuming frequency was not associated with Pb 169 

dust concentration at all (Isley et al., in review). Our findings suggest that households that hardly vacuum 170 

may be more likely to accumulate Pb-rich larger particles when they do finally vacuum and gather 171 

samples, such as Pb-paint chips, which would skew the bulk chemistry Pb concentration to higher values 172 

(since we didn’t measure loading rates). Households that more frequently vacuum may be less likely to 173 

sample larger, Pb-rich particles for their DustSafe sample submission.  174 

 175 

3.2 Predictive accuracy of logistic regression model 176 

Application of our logistic regression model on a “test” dataset of 102 samples from our original 177 

dataset reveals an overall prediction accuracy of 75% when using a probability threshold of 0.8 to 178 

determine “High” or “Low” Pb (Table 2). Importantly, only 4 samples out of 102 test samples (4%) were 179 

classified as “Low” Pb when they were actually a “High” Pb sample (Table 2). This implies that from an 180 

intervention standpoint our model contains few false negatives, and thus has excellent sensitivity (82%). 181 

 182 

3.3 Usefulness and “App”lication of model for household Pb screening 183 

  While more sophisticated models can be effective in predicting high risk exposure areas for Pb in 184 

soils or dusts (e.g., Obeng-Gyasi et al., 2021), we believe that from a public health intervention 185 

standpoint, sometimes a simpler model is better. Because only two independent variables with categorical 186 

responses were proven statistically significant in our model and yielded an effective prediction accuracy 187 

of 75%, we decided to incorporate our model into a mobile-based app to aid in household Pb screening 188 

recruitment efforts (Fig. 4). The goal is to help people understand whether there is an increased chance of 189 

elevated Pb in their home based on our model, then give them an opportunity to freely test their home so 190 

that they can gain agency in decision-making regarding Pb mitigation. Additionally, we sought to include 191 

decision variables of “Not sure” in our app/model, because this helps with realistic in-person usage of the 192 

app at community events, and many people taking the survey may be renters and unsure of home age. 193 

Furthermore, renters are often one of the more likely subgroups of people to contain elevated household 194 

Pb in soil or dust (e.g., Masri et al., 2020). Within our model, approximately 28 individuals or 8% were 195 

uncertain of their exact home age (Fig. S3). Moving forward, it would be useful to include home 196 

ownership in our DustSafe surveys, to understand whether this is correlated to uncertainty in home age 197 

and the predictive power this has for elevated dust Pb.   198 

 Because our mobile app screening questions are simple, straightforward, and contain only 199 

categorical multiple-choice responses, we envision that its usage will be highly effective as a quick 200 

screening tool that many in-person events (i.e., community events, schools) can implement to help people 201 

know if Pb exposure is a hazard they should be concerned about. Furthermore, because our dataset is 202 

based on national-scale data, the mobile app can be utilized in many different locations, further aiding in 203 

its “app”licability and versatility as a Pb screening recruitment tool. 204 
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 205 

3.4 Evidence of Pb-paint in dust samples 206 

 Through SEM work on several household dust samples that contained elevated bulk Pb 207 

concentrations, we were able to identify numerous examples of particles consistent in composition and 208 

morphology to Pb paint, ranging from ~10 µm in diameter to >100 µm in diameter (Fig. 5). Our Pb paint 209 

chips were similar to Pb paint analyzed by SEM in Hunt (2016), including several Pb-carbonate paints 210 

and the presence of Zn in the paint (Fig. 5). Additionally, the Mg-Al-Si EDS peaks in several paint 211 

samples (i.e., Figs. S6, S7, S8) are consistent with montmorillonite, an additive commonly used in Pb-212 

based paint as organo-clays to aid in the suspension of the pigments. This helps explain why the predictor 213 

variables of housing age and interior peeling paint were so significant—many household dust samples 214 

with elevated concentrations of Pb likely have the Pb predominantly sourced from house paint. However, 215 

this does not mean that Pb in house dusts is exclusively from house paint, or that other metals are from 216 

exclusively indoor sources. As mentioned earlier, outdoor sources of pollutants can enter homes, such as 217 

through dust brought indoors (e.g., Adgate et al., 1998; Kelepertzis et al., 2020). For example, we found 218 

clear examples of technogenic Fe-oxide spherules, likely a byproduct of anthropogenic combustion, in 219 

house dust samples (Fig. S4). These particles likely came from an outdoor source, such as vehicle exhaust 220 

or industrial combustion, as they are similar to Fe-rich spherical particles commonly found in industrial 221 

areas from high temperature formation processes (e.g., Dietrich et al., 2019; Gaberšek and Gosar, 2021; 222 

Miler and Gosar, 2013; Teran et al., 2020). Furthermore, we found one sample that contains EDS spectra 223 

consistent with PbCrO4, or Pb-chromate paint (Fig. 5A), which could have come from yellow-paint inside 224 

the home, but may have also been brought in from outdoors where Pb-chromate is often used in traffic 225 

paint (e.g., O’Shea et al., 2021). 226 

 227 

3.5 Future goals and directions 228 

 We based our initial model on predominantly U.S. house dust samples, because of statistically 229 

significant differences in bulk metal composition of dusts between other countries (Isley et al., in review) 230 

and there are likely other confounding factors between countries that affect Pb in dusts (i.e., different 231 

regulation of Pb paints and Pb gasoline). However, as more data is collected and as we gain a better 232 

understanding of what variables predominantly influence Pb in house dust, our model can be applied to 233 

additional countries and refined within the U.S. to more accurately differentiate what homes likely 234 

contain elevated Pb. A specific area for refinement of the model may lie in spatial data, such as relating 235 

zip codes of samples with socioeconomic (i.e., % poverty, racial distribution) and public health data (i.e., 236 

blood lead levels) within those zip codes, which may add to the predictive power of our model. 237 

Additionally, this type of simplistic predictive model usage in a mobile app as an intervention 238 

tool can be applied beyond Pb in household dusts, such as other contaminants of concern in homes like 239 

arsenic (As) or radon (Rn). Lastly, community science sampling endeavors should continue to grow, as 240 

they are not only a great opportunity for direct household contamination intervention, but also contribute 241 

to a greater general understanding of important issues such as Pb pollution and what areas community 242 

remediation should be focused in. Scientific information from the public is one of the easiest ways to 243 

help the public in pollution remediation, as we have shown with our basic Pb dust logistic regression 244 

model and mobile app. 245 

 We plan to conduct a follow-up study on the effectiveness of this type of simple intervention in 246 

engaging participants to have full-cycle involvement, going from initial completion of app input to 247 
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submittal of samples to opening results once generated. Ample examples of citizen science exist with 248 

various ways that the engagement does, or does not, provide real, tangible benefits to participants (e.g., 249 

Hayhow et al., 2021), but they are typically poorly assessed. We hypothesize that this simple app 250 

engagement will generate greater “engage to completion” metrics because of simplicity of message. We 251 

will also develop a back-end follow-up survey once the sample results are generated and returned to users 252 

to determine what, if any, impacts the data had on participant’s behavior, including any mitigation steps 253 

that they took in response to results. 254 

 255 

4. Conclusions 256 

A simple logistic regression model based on real-world samples proved to be effective at identifying 257 

homes at risk for higher Pb in household dusts across the United States. Application of the model on a test 258 

dataset of 102 samples revealed a 75% classification accuracy of either “high” or “low” Pb in household 259 

dust, with the cutoff based on 80 ppm Pb. This illustrates how community science gathered data can 260 

provide valuable insight into primary predictor variables for elevated Pb. Additionally, we showed how 261 

simplistic, yet effective Pb predictive models can be incorporated into interactive mobile apps such as a 262 

Pb screening recruitment tool. Collectively, we hope that modeling efforts such as these and engagement 263 

with local communities will aid in Pb exposure prevention and remediation, so that no child grows up 264 

with an unnecessarily high risk of Pb exposure. 265 

 266 

Acknowledgements 267 

The authors are deeply thankful to the households that supplied dust samples for this work and 268 

the lab techs who helped process samples. The MapMyEnvironment program and the related DustSafe 269 

sampling effort are partially supported by National Science Foundation Grant ICER-1701132 to G.M.F. 270 

and the Environmental Resilience Institute, funded by Indiana University’s Prepared for Environmental 271 

Change Grand Challenge Initiative. Partial support for this work was provided by NSF-EAR-PF Award 272 

#2052589 to M.D. Special thanks to Miguel Cruz for help with SEM instrumentation, Leah Wood and 273 

Angela Herrmann for input on mobile app development, and Michael O’Shea with input on SEM image 274 

interpretation. 275 

Open Research 276 

All data and source code used in this manuscript are freely available on GitHub 277 

(https://github.com/dietrimj/Community-Science-Pb-Prediction). 278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

https://github.com/dietrimj/Community-Science-Pb-Prediction


8 

 

Tables: 286 

Table 1: Summary statistics of household dust Pb concentrations (mg/kg) 287 

    Mean Std Dev Median Max Min (n) 

Total Pb 99 239 32 2328 3 434 

Exterior Paint 
Peeling 

Yes 131 179 41 815 4 48 

No 94 248 30 2328 3 272 

Not Sure 40 46 28 205 5 23 

Interior Paint 
Peeling 

Yes 142 175 81 729 7 40 

No 91 240 30 2328 4 302 

Not Sure 35 N/A 35 35 35 1 

Housing Age 

Pre-1940 228 306 134 1665 7 54 

1940-
1959 121 221 53 1304 10 33 

1960-
1979 78 193 32 1377 6 52 

1980-
Present 44 113 24 1205 3 178 

Not Sure 114 319 32 2328 5 117 

 288 

Table 2: Confusion matrix output of logistic regression model from test dataset (n = 102) 289 

 Actual High Pb Actual Low Pb 

Predicted High Pb 18 21 

Predicted Low Pb 4 59 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 

 302 
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Figures:  303 

 304 

 305 

Figure 1 Samples with Pb (and other heavy metal) results reported back to households from the "DustSafe" project in the U.S. 

and Canada (samples also taken from Hawaii).  
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 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

  333 Figure 2  Embedded boxplots within violin plots for both interior (A) and exterior peeling paint (B) questionnaire responses. 

The boxes represent the interquartile range (IQR) of 25th-75th percentiles of data, the horizontal line is the median, and the 

whiskers represent 1.5 times the IQR. Two-sample paired t-test results between yes/no responses are also provided. The y-

axes are transformed on a log10 scale, and the dashed red lines represent California’s safe screening soil Pb level of 80 ppm. 

A 

B 
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 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

Figure 3 (A) Scatterplot between approximate housing ages and log10 Pb concentrations with the Pearson correlation 

coefficient and associated p-value provided, as well as a linear regression line in blue with the shaded 95% confidence interval. 

(B) Embedded boxplots within violin plots for housing age categories used in the predictive model. The boxes represent the 

interquartile range (IQR) of 25th-75th percentiles of data, the horizontal line is the median (which is connected between housing 

age categories with a black line), and the whiskers represent 1.5 times the IQR. An analysis of variance (ANOVA) test 

associated p-value between all housing age categories is provided. The y-axis is transformed on a log10 scale, and the dashed 

red line represents California’s safe screening soil Pb level of 80 ppm. 

A 

B 
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 360 

 361 

 362 

 363 

Figure 4 Screenshots from the beginning of the interactive Pb household dust screening app 

(https://iupui-earth-science.shinyapps.io/IUPUI-LeadRiskApp/). 

https://iupui-earth-science.shinyapps.io/IUPUI-LeadRiskApp/
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 364 

Figure 5 SEM images of particles resembling Pb paint, surrounded by other particulates in various high Pb DustSafe 

household dust samples (corresponding EDS spectra provided in Supplementary Materials; Figs. S5-S10). Pb paint particles 

are evident by very high contrast of electron backscatter detection—more so than surrounding particles because of the high 

atomic number of Pb. Most Pb-bearing particles are angular or jagged, with clear flaky particles on their surface. 

Sample AA0375 

Sample AA0190 

A B 

C D 

E Sample AA0254 F 
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