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Abstract11

In a previous study, a new snapshot modeling concept for the archeomagnetic field was12

introduced (Mauerberger et al., 2020). By assuming a Gaussian process for the geomag-13

netic potential, a correlation based algorithm was presented, which incorporates a closed14

form spatial correlation function. This work extends the suggested modeling strategy15

to the temporal domain. A space-time correlation kernel is constructed from the tensor16

product of the closed form spatial correlation kernel with a squared exponential kernel17

in time. Dating uncertainties are incorporated into the modeling concept using a noisy18

input Gaussian process. All but one modeling hyperparameters are marginalized, to re-19

duce their influence on the outcome and to translate their variability to the posterior vari-20

ance. The resulting distribution incorporates uncertainties related to dating, measure-21

ment and modeling process. Results from application to archeomagnetic data show less22

variation in the dipole than comparable models, but are in general agreement with pre-23

vious findings.24

1 Introduction25

Existing models of the Earth’s magnetic field (EMF) for the past millennia show26

a variety of time-dependent features: The evolution of the South Atlantic Anomaly, the27

observed dipole decay in recent centuries and the movement of flux patches all take place28

on timescales of several hundred years (Hartmann & Pacca, 2009; Jackson & Finlay, 2015).29

To accurately describe and study these features, time resolved models are necessary. Usu-30

ally these models are inferred from two classes of data: Data from materials with ther-31

moremanent magnetisation, such as volcanic rocks, bricks or burnt clay fragments from32

archeologic sites, and data from marine or lacustrine sediments with embedded magnetic33

particles. In this paper we focus on the former class and loosely refer to it as archeomag-34

netic data. Existing models differ in the approach to global modeling, but are usually35

constructed using inversion for spherical harmonics (SH) coefficients, truncated at a cer-36

tain degree. Most models, such as Jackson et al. (2000), Korte et al. (2009) and Senft-37

leben (2019), implement spline interpolation in the temporal domain, while some alter-38

native approaches exist (C. G. Constable & Parker, 1988; Bouligand et al., 2005; Hel-39

lio et al., 2014; Hellio & Gillet, 2018).40

By regularizing the SH model in both space and time, global features can be ex-41

tracted from the sparse and clustered database. However, this way also local variations42

might be wrongly explained by the dynamics of the large scale coefficients. Regions of43

good data coverage may thus imprint a fast, well supported local dynamic into the dy-44

namic of global coefficients such as the di- and quadrupole. To avoid such variations in45

the low degrees, and to exploit the data to its fullest, we suggest a Bayesian modeling46

approach based on Gaussian processes (GPs), both in space and time. With this already47

in mind, we implemented a closed form covariance function for the spatial domain in a48

previous study (Mauerberger et al., 2020, hereafter referred to as MSKH20). The present49

work extends this study to the temporal domain. We again employ the closed form cor-50

relation kernel, introduced by Holschneider et al. (2016), and extend it to a space-time51

kernel using a squared exponential (SQE) kernel. Knowing that such a kernel is unphys-52

ical, we abstain from suggesting a new geomagnetic field model. Instead, the aim of this53

work is to show the potential of the proposed modeling approach and to lay out the mod-54

eling strategy and its implications in detail.55

The application of a spatio-temporal GP in a Bayesian framework includes the nat-56

ural availability of well quantified uncertainties via the posterior standard deviation. While57

early models (Jackson et al., 2000; C. G. Constable et al., 2000; Korte & Constable, 2003)58

do not provide uncertainty estimates, more recent field models use ensemble techniques59

to quantify (modeling related) errors (Korte et al., 2009; Licht et al., 2013; Hellio & Gillet,60

2018; Senftleben, 2019). Within the space-time correlation framework that we suggest,61
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uncertainties arising from the uneven data distribution, from inaccurate dating and from62

the modeling itself can be accounted for in a well defined, statistically sound manner (Ras-63

mussen & Williams, 2006; McHutchon & Rasmussen, 2011). The inversion scheme is em-64

bedded in a functional analytic frame of non-parametric modeling. The result is a dis-65

tribution over functions, in this case in both space and time. This distribution is char-66

acterized by a mean function, which gives the most likely field model, and a two-point67

covariance function, describing the variability of the field.68

This article is structured as follows: The rest of this section covers some basic in-69

troduction into magnetic field theory and GP inversion. We use those paragraphs mainly70

to introduce our notation. In Section 2 we discuss our prior assumptions, construct the71

correlation kernel and describe the full modeling algorithm. Section 3 contains a brief72

validation section, using synthetic data, as well as a case study to showcase the capa-73

bilities of our method. We conclude with a discussion in Section 4. The appendix pro-74

vides further insight into the mathematical footing of the introduced methods.75

1.1 Magnetic Field Theory76

Outside of the conducting core, the EMF B can be approximated by the gradient77

of the geomagnetic potential Φ (Backus et al., 1996):78

B = −∇Φ

Φ is a scalar potential, satisfying Laplace’s equation ∇2Φ = 0. Assuming the sources79

of the potential lie at some reference sphere with radius R, at locations x outside of this80

sphere |x| > R the field can be represented using spherical harmonics (SH)81

Φ(x) = R
∑
`

(
R
|x|

)`+1 ∑
−l≤m≤l

gm` (t)Y m` (x̂) . (1)

x̂ is the unit vector x/|x| and Y m` refers to the real valued and Schmidt semi-normalized82

SH of degree ` and order m with related Gauss coefficient gm` . Similar to MSKH20, we83

do not consider the Earth’s ellipticity. The dependence of gm` on a reference radius R84

is not explicitly expressed. The time dependence of the field is typically encoded in the85

Gauss coefficients gm` (t). We use upright letters x = (x, t) to distinguish space-time in-86

puts from purely spatial inputs. Often the Gauss coefficients are expressed in form of87

a spline model (Bloxham & Jackson, 1992)88

gm` (t) =
∑
n

gm`,nMn(t) , (2)

where Mn(t) are typically cubic B-spline basis functions and the model is defined by the89

set of Gauss coefficients {gm`,n} at knot times tn.90

The field vector components are given in a spherical coordinate system, consist-91

ing of north BN , east BE and down BZ components92

BN = −1

r

∂Φ

∂θ
, BE =

1

r sin(θ)

∂Φ

∂φ
, BZ = −∂Φ

∂r
, (3)

where θ, φ and r are colatitude, longitude and radius of a field location x.93

Paleomagnetic records of the EMF are provided as declination D, inclination I and94

intensity F , which relate to the field vector in a non-linear fashion:95

H : B →

DI
F

 =


arctan

(
BE
BN

)
arctan

(
BZ
FH

)√
B2
N +B2

E +B2
Z

 (4)

The horizontal intensity FH =
√
B2
N +B2

E is an auxiliary quantity. H is called obser-96

vation functional.97
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1.2 Gaussian Process regression98

In the eighties C. G. Constable and Parker (1988) already proposed using GPs to99

model the EMF. A GP is a stochastic process, characterized by a mean function B̄ and100

a covariance function KB101

B ∼ GP
(
B̄, KB

)
. (5)

Given observations o(y) of B at locations and times y = (y, s) with Gaussian measure-102

ment errors, characterized by a covariance matrix Σo, the posterior of B is again a GP.103

Its (conditional) mean and covariance functions read (Rasmussen & Williams, 2006)104

E[B(x)|O] =B̄(x) +KB(x,y)
(
KB(y,y) + Σo

)−1(
o(y)− B̄(y)

)
(6)

Cov[B(x),B(x′)|O] =KB(x,x′)−KB(x,y)
(
KB(y,y) + Σo

)−1
KB(y,x′) . (7)

x = (x, t) refers to location and time of interest. Note, that herein already a difference105

to previous GP based models is visible: The covariance function is defined both in space106

and time. While in principle the truncated spherical harmonics and the B-spline basis107

may also be used to construct a covariance function, the language and formalism of GP108

regression have so far only been applied to either temporal correlations (Gillet et al., 2013;109

Hellio & Gillet, 2018) or spatial correlations (S. Sanchez et al., 2016; Mauerberger et al.,110

2020).111

2 Modeling concept112

We propose a fully Bayesian modeling concept, embedded in a functional analytic113

setting. Therefore, GP based techniques are employed. One key ingredient to GP regres-114

sion is the a priori covariance function, also called the (correlation) kernel. In this sec-115

tion we formulate the covariance function we employ, based on our a priori assumptions.116

Additionally, we formulate the paleomagnetic data model and discuss approximations117

that are necessary to apply the GP regression scheme.118

2.1 Apriori process119

Translating the uninformative dipole prior from MSKH20 to a time-dynamic realm120

presents a challenge, as temporal correlations are send to zero together with the a priori121

precision and cannot easily be recovered in the posterior. Instead, the a priori mean func-122

tion of the EMF is assumed to be constant in time, with only axial dipole contribution:123

B̄(x) = −∇
(
γ0

1 · Y 0
1 (x̂) · R

3

|x|2
)

(8)

The strength γ0
1 of the a priori dipole is a free parameter, that will later be marginalized.124

We suggest building the space-time covariance using a sum of tensor products. The125

proposed closed form covariance function for the spatial correlations of the non-dipole126

part KΦ,S,ND includes all SH degrees. Holschneider et al. (2016) describe how to con-127

struct this kernel, and in MSKH20 we describe in detail how to adapt it for paleomag-128

netic applications. In Appendix A we wrap up this procedure. The strategy is to trans-129

late an idea about correlations amongst Gauss coefficients to the potential, using the SH130

representation. The field covariance function then follows from the gradient. Our main131

a priori assumption for the covariance is that at some reference sphere, close to where132

the core field is generated, the geomagnetic Gauss coefficients are uncorrelated. Assum-133

ing a flat spectrum at this reference sphere’s radius R, it is possible to derive a closed134

form for the potential covariance function. This closed form is called Legendre kernel and135

reads (Holschneider et al., 2016, Eq. 53)136

KL(x,x′) =
1√

1− 2b+ a2
, (9)
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where b = x · x′/R2 and a = |x||x′|/R2.137

Temporal correlations are incorporated by a tensor product of this spatial kernel138

with a squared exponential (SQE) kernel:139

KΦ,T(t, t′) = KSQE(t, t′) = exp

(
− (t− t′)2

τ2

)
(10)

τ is the correlation time. Similar to MSKH20, we split the kernel into dipole and non-140

dipole part, as the statistical properties of the dipole are known to differ from the higher141

field degrees (C. G. Constable & Parker, 1988). Each part is coupled to its own tempo-142

ral correlation kernel and thus has its own correlation time:143

KΦ(x,x′) =α2
DPKDP,S(x,x′) · exp

(
− (t− t′)2

τ2
DP

)
+ α2

NDKND,S(x,x′) · exp

(
− (t− t′)2

τ2
ND

) (11)

The index S stands for spatial and α• are the a priori variances of the dipole and non-144

dipole part. See Appendix A for the explicit forms and further details. The kernel im-145

plements a single, constant correlation time τND for all degrees ` ≥ 2. We are aware,146

that previous work indicates different behavior (Bouligand et al., 2016). However, im-147

plementing the SQE kernel as suggested is straightforward and sufficient for the concep-148

tual work we present here. The field’s covariance function reads149

KB(x,x′) = ∇x∇x′KΦ(x,x′) . (12)

2.2 Linearization150

Paleomagnetic observations are reported as declination, inclination and intensity.151

With measurement errors E, the data model reads152

o(x) = H
(
B(x, t)

)
+ E . (13)

Clearly, the relationship to the field vector is non-linear (Eq. 4). Handling non-linear trans-153

formations in the framework of GP regression is technically demanding and often ana-154

lytically impossible, as the transformed random variables are no longer Gaussian. While155

more sophisticated methods exist (e.g. Snelson et al., 2003), the standard approach is156

to linearize the observation functional by means of a Taylor approximation of 1st order.157

For declination, inclination and intensity, the approximate, linear functionals read158

D ≈ D̃ +
1

F̃ 2
H

−B̃EB̃N
0

>B , (14)

I ≈ Ĩ +
1

F̃H

0
0
1

− B̃Z

F̃

B̃

F̃

>B , (15)

F ≈ B̃
>

F̃
B . (16)

Here, D̃, Ĩ, F̃ and B̃ indicate the point of expansion (POE). We implement this approx-159

imate transformation, to have a linear relation between the observations and the mod-160

eled quantity. Linear transformations preserve normality and thus the standard GP for-161

malism is applicable. The proxy data model reads162

o(x) ≈ Hlin.B(x, t) + E . (17)

Hlin. refers to the linearized observation functionals Eqs. 14-16.163
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Previous works implemented an axial dipole as POE (e.g. Hellio & Gillet, 2018).164

MSKH20 shows that the performance of inversion for the POE can be enhanced if we165

separate the data into two disjoint groups. One group consists of records with full vec-166

tor information (complete) and the other of records with at least one component miss-167

ing (incomplete). In a first step, only complete records are considered and the posterior168

distribution for these records is calculated. This first step posterior then serves as the169

prior and POE for the second step, where the remaining, incomplete records are treated.170

2.3 Measurement errors171

In order to apply the GP regression formalism (Eq. 5), the full data model has to172

be Gaussian. Therefore, linearizing the observation functional as described in the pre-173

vious section is not sufficient, but a normal proxy error model has to be constructed as174

well. Intensity records often provide the error as standard deviations of a normal dis-175

tribution, and thus linearizing the observation functional is sufficient for the intensities.176

Records of the archeomagnetic directions (declination and inclination) on the other hand177

are reported together with the 95% confidence cone (α95) of a von Mises-Fisher distri-178

bution. Thus for the archeomagnetic directions, we construct a Gaussian proxy, using179

(Suttie & Nilsson, 2019)180

σI =
57.3◦

140
α95 and σD =

1

cos oI
σI . (18)

Additionally, similar to MSKH20, we implement a scaling factor ε to compensate pos-181

sible false error estimates, and a residual term P with scaling factor ρ, to address mod-182

eling related errors (e.g. observational bias due to crustal field contributions). This way,183

the data model reads184

o(x) ≈ Hlin.

(
B(x, t) + ρP

)
+ εEprox. , (19)

where Eprox. are the approximate errors, constructed from Eq. 18.185

2.4 Dating uncertainties186

To a large amount, archeomagnetic specimen are dated using either radiocarbon187

dating or archeologic age estimation. Both methods suffer from uncertainties, as the for-188

mer depends on carbon models of the atmosphere and the latter on contextual knowl-189

edge. To incorporate these uncertainties, and to represent them in the resulting mod-190

els, previous studies mostly relied on sampling strategies (e.g. Korte et al., 2009; Hel-191

lio & Gillet, 2018; Senftleben, 2019). Hellio et al. (2014) used a normal error model for192

the dates, and applied Markov Chain Monte-Carlo (MCMC) methods to estimate the193

posterior distribution. We pursue a similar, hierarchical approach, but instead of MCMC194

methods, we perform analytic approximations. Summarizing the errors from the previ-195

ous section as ε for readability, the data model is196

o(x) ≈ Hlin.B(x, t) + ε . (20)

However, one does not know the precise time t at which the specimen received its mag-197

netization, but a corrupted date198

to = t+ et , where et ∼ N (0, σ2
t ) (21)

is a normal error. Plugging this into the data model gives199

o(x) = Hlin.B(x, to − et) + ε . (22)

This is known as the noisy input Gaussian process (NIGP) (McHutchon & Rasmussen,200

2011). Due to the random variable et appearing at the inputs of the GP B, this data201
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model is non-Gaussian again. To tackle it, McHutchon and Rasmussen (2011) suggest202

once more a linearization. This gives203

o(x) ≈ Hlin.

(
B(x, to)− e>t ∂tB(x, t)|to

)
+ ε . (23)

The first term is normal and the second term allows for easy construction of a moment204

matching proxy. With this modifications, Eq. 23 can be used for GP regression in the205

usual way. Since the error et is centered, the a priori mean is not affected by the dating206

uncertainties. However, the covariance gets an additional term207

Σtt′ ◦ ∂t∂t′KB(x,x′)|to . (24)

Here Σtt′ is the dating error covariance matrix and ◦ is the Hadamard product, i.e. el-208

ement wise multiplication along the t direction. To this end, KB(x,x′) is considered as209

a matrix consisting of 3×3 blocks. The effect of the NIGP model is thus the inclusion210

of dating errors as contributions to the data covariance, similar to measurement errors.211

The translation is realized by weighing the dating uncertainties by the second order time212

derivative of the kernel.213

In Figure 1 we present a comparison of the proposed NIGP strategy to the stan-214

dard GP inversion and inference via MCMC. Data was generated from a one dimensional215

SQE kernel and assigned large input uncertainties and small errors, to mimic the situ-216

ation of large dating uncertainties. The standard GP regression shows the typical con-217

strictions at the input points, while the NIGP shows a larger standard deviation, espe-218

cially at the input points. We believe that an MCMC approach gives a better estimate219

of the actual posterior, though in a realistic setting this is computationally unfeasible.220

However, as can be seen from the bottom panel of Figure 1, the NIGP gives a reason-221

able proxy to the MCMC result at immensely reduced computational cost.222

2.5 Hyperparameters223

The model we constructed throughout this section consists of several parameters,224

which are a priori unknown. Most obvious are the a priori dipole strength γ0
1 , the vari-225

ances αDP and αND and the correlation times τDP and τND. Additionally, there are the226

two scalings, ε and ρ, for the measurement errors and the residual, respectively. The least227

obvious is the kernel’s reference radius R. R basically controls the slope of the prior power228

spectrum. As suggested in our MSKH20 (Fig. 2), we take R = 2800km, which gives229

a slope similar to the IGRF power spectra (Thébault et al., 2015). The other parame-230

ters are marginalized, so that the outcome of the modeling procedure is a compound dis-231

tribution232

p(B|o) =

∫
p(B|o, η) · p(η|o) dη. (25)

Here η is the set of hyperparameters {γ0
1 , αDP, αND, τDP, τND, ε, ρ} and p(η|o) is the233

marginal posterior. See Appendix B for further details.234

The compound distribution is no longer Gaussian and includes modeling uncertain-235

ties, resulting from the a priori lack of knowledge about the hyperparameters, but does236

not depend on these parameters. This distribution is the central result of the suggested237

modeling strategy. It includes a most probable field model, the mean of the distribution,238

as well as uncertainty estimates, resulting both from modeling and measurement pro-239

cess. Similar distributions can be obtained for other quantities of interest, such as the240

Gauss coefficients. To actually evaluate these expressions, numerical approximations have241

to be employed, as described in the following section. The integral is approximated by242

a sum, which results in a Gaussian mixture distribution. Moments for this mixture are243

easily obtained.244
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NIGP MCMC data

Figure 1. Comparison of the noisy input Gaussian process (NIGP) approach to standard GP

inversion (top) and inference using MCMC (bottom) for artificial data in arbitrary units. The

NIGP approach translates uncertainties in the inputs to uncertainties in the posterior, in stark

contrast to the standard GP regression, which shows the typical constrictions at the inputs. From

the bottom panel one can see, that the NIGP gives a reasonable proxy to the MCMC posterior,

which we believe to be a good estimate for the actual posterior. For this small dataset, the run-

time for the MCMC was 43s, in distinction to 0.3ms for the NIGP. This factor of roughly 104

makes using MCMC infeasible for the later steps of our proposed modeling procedure.

3 Application245

In this section we demonstrate the potential of the suggested modeling scheme, by246

first applying it to synthetic test data and finally conducting a case study based on ac-247

tual archeomagnetic records. The major task to this end is the implementation of the248

covariance matrices from the kernel, the linearization and the two step strategy. As this249

process is described in detail in MSKH20, we outsource it to Appendix B. However, two250

points are to be discussed here. One is the explicit second derivative of the temporal ker-251

nel, appearing in Eq. 24. In this study the correlation kernels for dipole and non-dipole252

contributions are each considered tensor product kernels such that the temporal and spa-253

tial parts can be separated. Thus the time derivative only affects the SQE-part. For this254

simple kernel, the derivative is straightforward to calculate and reads255

∂t∂t′KSQE(t, t′) =

(
2

τ2
− 4

τ4
(t− t′)2

)
·KSQE(t, t′) . (26)

When using a more realistic kernel, especially one with different correlation times for dif-256

ferent degrees `, calculating this derivatives analytically may pose a challenge, so that257

numerical methods have to be employed. This is one reason why in this conceptual study258

we chose the SQE kernel over a more realistic one e.g. the one proposed by Gillet et al.259

(2013).260

The second point is the marginalization integral in Eq. 25. As the proposed model261

contains seven parameters and as the data is incorporated all at once, instead of in bins262

as in MSKH20, the brute-force parameter space exploration and integration suggested263

in MSKH20 are now computationally unfeasible. This is due to the cost for fixed point264
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[arb.]
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.]
Figure 2. Illustration of the CCD integration in two dimensions. Integration over the actual

distribution (grey in the background) is performed by calculating the MAP (white) and con-

structing a proxy multivariate Gaussian (orange), using the inverse Hessian at the MAP. The

dots indicate the integration points. The black dots are called star points and are placed along

the transformed main axis (the arrows). The grey points are added to the CCD to better capture

the covariance structure. In higher dimensions they are not symmetric. See also Rue et al. (2009,

Sec. 6.5) and S. M. Sanchez and Sanchez (2005).

integration growing exponentially with the number of dimensions and the high cost of265

matrix inversion (O(n3
Data)).266

Instead, we perform numerical integration similar to the strategy suggested by Rue267

et al. (2009, Sec. 6.5). The idea is to center the integration around the maximum a posteriori268

probability estimator (MAP). Collocation points are added according to central com-269

posite design (CCD) (S. M. Sanchez & Sanchez, 2005), in order to capture the bulk of270

the uncertainties in the hyperparameters (see Figure 2). In seven dimensions, the inte-271

gration is approximated by a sum over 79 collocation points. To find the MAP, we use272

the LIPO-TR global optimization algorithm (King, 2009, 2017). The parameters are as-273

signed box priors, as is required by most global optimization algorithms. We choose as274

upper and lower bonds for the hyperparameters275

−10000 µT ≤ γ0
1 ≤ −1 µT 1 µT ≤ α• ≤ 10000 µT

10 % ≤ ε ≤ 350 % 10 yrs. ≤ τ• ≤ 10000 yrs.

0.2 µT ≤ ρ ≤ 10 µT

Within the box, all parameters except for ε are additionally assigned Jeffrey’s priors, for276

scale independence inside of said box.277

p(γ0
1) ∝ 1

γ0
1

, p(α•) ∝
1

α•
, p(τ•) ∝

1

τ•
and p(ρ) ∝ 1

ρ
, (27)

where • stands for DP and ND. The poles induced by Jeffery’s priors do not cause trou-278

ble, as the box constraints are far enough from zero. By numerically approximating the279

integral in Eq. 25, the compound distribution is approximated by a Gaussian mixture.280

Details can again be found in Appendix B.281

3.1 Synthetic Tests282

To validate the proposed algorithm, we test it on synthetic data. As inputs we choose283

dates and locations from the archeomagnetic and volcanic data in GEOMAGIA v3.3 (Brown284
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et al., 2015) for the interval from 800 to 2000. At these locations we generate data from285

the ARCH10k.1 model (C. Constable et al., 2016) and corrupt it by artificial noise. For286

the directions we use a von Mises-Fisher distribution. Intensities are corrupted by gamma287

distributed noise and the dates by normal noise. The error levels are taken from GEO-288

MAGIA as well. The resulting MAP for the hyperparameters is289

γ̂0
1 = −33.6673 µT α̂DP = 1.63939 µT τ̂DP = 318.454 yrs.

ε̂ = 101.656 % α̂ND = 40.4634 µT τ̂ND = 339.471 yrs.

ρ̂ = 2.59371 µT

Note that αND is given w.r.t. the reference radius, i.e. the variance at the Earth’s sur-290

face is much smaller. The error level scalings are as expected, as the reported errors have291

been used to corrupt the data (ε ≈ 100%) and a random contribution of 2.5 µT has been292

added. The correlation times appear rather large. Nonetheless, we believe that the re-293

sults are meaningful, as can be understood from looking at a one-dimensional example.294

Assume for simplicity, that there are direct observations of the axial dipole g0
1 . In real-295

ity these may be reconstructed from records, but in this example we consider synthetic296

ones generated from some reference model. In a situation with many observations with

800
1000
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1800

2000

time [yrs.]

−36

−34

−32

−30

g
0 1

[µ
T

]

Data rich situation

reference (ARCH10k.1)

recovered model

synthetic data

800
1000

1200
1400

1600
1800

2000

time [yrs.]

Data poor situation

Figure 3. Synthetic one-dimensional example illustrating how the lack of data influences the

information one can recover from the reference model. In the data rich situation on the left, the

reference model can be recovered quite well, while in the data poor situation on the right only

the long-term behavior can be recovered.

297

small uncertainties, the proposed modeling algorithm gives a correlation time correspond-298

ing to the short term variability of the reference model and the reference is recovered well299

and detailed (Figure 3, left panel). In a situation with few observations with large er-300

rors however, one can only recover the long-term variability of the reference model (Fig-301

ure 3, right panel). The “data poor” situation was designed in a way that is close to the302

actual situation: Every one hundred years a dipole with errors similar to the one we ob-303

served in MSKH20 was generated. In the actual modeling procedure, there is no “first304

step” of predicting on the axial dipole, but we believe that the large correlation times305

come from a similar mechanism. To emphasize the effect, in this toy example neither cross-306

correlations nor dating uncertainties have been considered. We performed a similar ex-307
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periment for synthetic field data and found similar results, i.e. only the long-term infor-308

mation can be recovered.309
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Figure 4. Comparison of the reference model to the one recovered from synthetic test data.

The long-term behavior could be recovered, while data is too sparsely distributed and uncertain-

ties are too large to recover the short timescale features. See the text for additional discussion.

In Figure 4 we compare the dipole of the reference model to our findings for the310

three dimensional synthetic data described at the beginning of this subsection. One can311

see that again only the long-term behavior of the reference model can be recovered from312

the data.313

3.2 Case study314

Here we present the results from applying the proposed modeling strategy to ac-315

tual archeomagnetic data, taken from GEOMAGIA v3.3 (Brown et al., 2015). The data316

covers the interval [800, 2000] AD and consists of 7801 records, of which 3.9 percent are317

complete vector triples. Figure 5 shows the spatial and temporal distribution of the data.318

Similar to MSKH20, we do not consider the Earth’s ellipticity. We use the originally re-319

ported error estimates and assign α95 = 4.5◦ as directional errors and σF = 8.25 µT320

as intensity errors to the 8.4 percent of data, where no error is reported. As described321

above, the dating uncertainties are considered as standard deviations of independent nor-322

mal distributions. When different values for upper and lower temporal error are reported,323

we use the bigger value. The 0.7 percent of data for which no dating uncertainty is re-324

ported are assigned a standard deviation σt = 100 yrs. Note that for the recent times325

fewer records are available from the archeomagnetic dataset. This results in bigger un-326

certainties towards recent times, as can be seen for example in the inclination series in327

Figure 8.328

We compare our findings to two existing magnetic field models as well as to the329

results of MSKH20. The models are ARCH10k.1 (C. Constable et al., 2016) and COV-330

ARCH (Hellio & Gillet, 2018). They are considered reasonably comparable, as they are331

based on similar data compilations. Both models report Gauss coefficients up to SH de-332
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Figure 5. Spatial and temporal distribution of the data. We separate the data only into com-

plete and incomplete without indicating declination, inclination and intensity separately, to avoid

overloading the plots.

gree ` = 10, while the actual spatial resolution is determined by regularization in ARCH10k.1333

and by cross-covariances based on prior assumptions in COV-ARCH and lies around ` =334

5 in both cases. ARCH10k.1 does not report uncertainties, while COV-ARCH provides335

an ensemble of 50 models from which uncertainties are constructed by calculating sam-336

ple mean and sample standard deviation. In contrast to the results presented by Hellio337

and Gillet (2018), the publicly available model is not time continuous but reports coarsely338

binned coefficients for every hundred years in the interval.339

We want to stress again, that the presented results stem from a conceptual design.340

Especially the common temporal correlation time for all degrees ` ≥ 2 should be re-341

considered, when building an actual model from the proposed strategy. The hyperparameter-342

MAP for the actual data is quite similar to the one in the synthetic data test (see sec-343

tion 3.1):344

γ̂0
1 = −36.095 µT α̂DP = 1.16144 µT τ̂DP = 348.555 yrs.

ε̂ = 135.781 % α̂ND = 39.4199 µT τ̂ND = 293.025 yrs.

ρ̂ = 3.82749 µT

Again, α̂ND is reported w.r.t. the reference radius and is way lower at the Earth’s sur-345

face. All values are in a reasonable order of magnitude. Surprisingly the residual scal-346

ing did not decrease in comparison to MSKH20. The proximity of both correlation times347

may be explained by the dominance of the quadrupole over the larger degrees. For fur-348

ther insight, we provide profiled distributions together with the modeling software (Schanner349

& Mauerberger, 2020).350

3.2.1 Field predictions351

Predicting on the EMF’s vector components is straightforward and given by wrap-352

ping equations 6 and 7, into the marginalization procedure described in the appendix.353

However, to get a reasonable spatial resolution too many design points have to be in-354

cluded to store the covariance matrices for all integration points, which is necessary to355

calculate the mixture distribution. Instead, similar to MSKH20, we resort to calculat-356

ing the moment matching Gaussian proxy. The top row of Figure 6 shows mean and stan-357

dard deviation for the down component of the EMF for the epoch 1700. Similarly, pre-358

dictions at the core-mantle boundary (CMB) can be performed, by translating the de-359

sign points accordingly. The results for the down component are shown for the epoch360
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1700 in Figure 7. Inferring the observables (declination, inclination and intensity) is hin-361

dered by the non-linear relation to the field. Utilizing again a linearization, mean and362

covariance can be constructed, similar to MSKH20 and Hellio et al. (2014, appendix A).363

The bottom row of Figure 6 shows a prediction of the EMF’s intensity for the epoch 1700.364

Compared to MSKH20 for snapshots in time, the new results show a slightly lower365

strength of the down component and lower field intensity. Moreover, the new results have366

a reduced standard deviation, which can be attributed to additional constraints due to367

the temporal correlations. The overall field structure is similar, showing features such368

as the South Atlantic Anomaly. The reconstruction at the CMB (Figure 7) reveals a re-369

gion of lower field strength at the southern tip of Africa, which is at the limit of signif-370

icance, but was not present in the snapshot model.371

−50 −25 0 25 50 0 1 2 3

40 50 60 0 1 2 3

mean standard deviation

Z

[µT]

F

[µT]

Figure 6. Maps of the EMFs down component (top) and intensity (bottom), together with

standard deviations for the epoch 1700.

Similar to the map, predictions at a specific location can be obtained for various372

times and time series of the observables can be constructed. This is in contrast to the373

typical B-spline interpolation, as temporal design points may be chosen arbitrarily. Mo-374

ment matching proxies have to be employed, as the number of parameters to infer is again375

too big when considering a reasonable temporal resolution. Figures 8 and 9 show time376

series at two distinct locations. Figure 8 presents time series for Paris, together with com-377

parison models and data, while the series in Figure 9 are for a location in the Pacific,378

where no data is present in the surroundings. The data in Figure 8 stem from a surround-379

ing of 250 km.380

Inclinations and intensities are translated to the coordinates of Paris along the cor-381

responding axial dipoles (Merrill et al., 1996). Declinations are taken as reported. For382

Paris, the different models mostly agree, with larger deviations towards the recent epoch,383
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Figure 7. Map of the down component of the EMF at the CMB, together with standard

deviation for the epoch 1700.

where the database is thinning out. Our inferred series shows less variation than com-384

parable models, which probably can be attributed to our somewhat unrealistic tempo-385

ral kernel with equal correlation time for all spatial wavelengths from `=2 on. As expected,386

the uncertainties are bigger for the location in the Pacific, and the comparing model se-387

ries show larger deviations.
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Figure 8. Data (grey dots) and model time series of the observables at Paris. Horizontal

and vertical grey bars indicate the one sigma temporal and field component data uncertainties,

respectively. For the MSKH20 snapshot model and COV-ARCH, which is reported in 100 year

intervals, dots for the epochs are linearly connected by coloured lines.
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Figure 9. Model time series of the observables for a location in the Pacific (−48.18◦,

−128.03◦) as in Fig. 8. Uncertainties are higher than for Paris (Figure 8) due to the lack of

data in the surrounding.

388

3.2.2 Gauss coefficients389

Although the proposed model is inherently non-parametric in both space and time,390

predictions on Gauss coefficients can be performed. As they are linearly related to the391

field, the procedure is straightforward (see Eq. 21 in Holschneider et al. (2016)). When392

predicting coefficients for a specific epoch, the full mixture distribution is accessible. When393

predicting on coefficient time series however, the number of parameters one has to in-394

clude in the prediction to get a reasonable temporal resolution is too memory intense395

to store the covariance matrices of every individual collocation point. This is similar to396

predictions of the field in MSKH20. Therefore, the time series shown in Figure 10 present397

the moment matching Gaussian proxy to the actual mixture. The dipole coefficients from398

the new modeling strategy show a similar dynamic as those of the other models, with399

the “outliers” from MSKH20 disappearing. The series of the quadrupole coefficients show400

different behavior, with an interval of lower axial quadrupole strength around 1200 AD.401

Differences to ARCH10k.1 and COV-ARCH might partly be due to some differences in402

the underlying data compilation.403

3.2.3 Spectra404

Power spectra are considered to condense the information contained in the Gauss405

coefficients (e.g. Backus et al., 1996). Using sampling techniques, mean and percentiles406

of the geomagnetic power spectrum distribution are available (for further details con-407

sider MSKH20, Section 5.6). Figure 11 shows the geomagnetic power spectrum for the408

epoch 1700, together with 16- and 84-percentiles. Within the reported uncertainties, the409
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Figure 10. Gauss coefficient time series for degrees ` = 1 and ` = 2, together with comparable

models. One sigma uncertainties are shown for our model in orange. MSKH20 and COV-ARCH,

which are available in 100 year steps are shown by coloured dots linked linearly by solid lines.

power in dipole and quadrupole agrees to the comparison models. For ` = 3 the recon-410

struction reports less power than COV-ARCH and MSKH20. Noteworthy is the faster411

power decay for degrees ` = 4 . . . 7 when compared to MSKH20, which also indicates412

larger deviations from the prior. This may be due to temporal correlations increasing413

the information or the long correlation time damping small scale structures. Implement-414

ing a separate correlation time for each coefficient may provide further insight.415

Similar to the geomagnetic power spectrum, the spectrum of the secular variation416

can be calculated (Alldredge, 1984). Therefore one has to predict on the derivatives of417

Gauss coefficients, also called the secular variations. As the derivative is a linear oper-418

ator, this is straightforward. To explain the basic concept, consider the simplified exam-419

ple of direct observations of the EMF:420

E[ġ(t)|O] =∂tE[g(t)|O]

=∂tḡ(t) + ∂tKg,B(t,y)
(
KB(y,y) + Σo

)−1(
o(y)− B̄(y)

) (28)

Since the a priori mean in our model is constant, the first term vanishes. Thus, to pre-421

dict on the secular variations one only has to calculate the derivative of the correlation422

between coefficients and observations, which in the suggested model reduces to the first423
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Figure 11. Comparison of the spatial power spectra for the epoch 1700 AD.

derivative of the SQE kernel:424

∂tKSQE(t, t′) = − 2

τ2
(t− t′)KSQE(t, t′) (29)

All other quantities are known from inferring the Gauss coefficients themselves. The co-425

variance of the secular variation translates analogously. Mean and percentiles of the sec-426

ular variation spectrum are then again available via sampling.427

As MSKH20 consists of snapshot models, the respective secular variation spectrum428

is not accessible. Similarly, as the publicly available version of COV-ARCH only reports429

values every 100 years, no secular variation can be calculated and the spectrum is miss-430

ing in Figure 12. Note, that we choose an earlier epoch for the secular variation spec-431

trum, as ARCH10k.1 is constrained to gufm1 (Jackson et al., 2000) for the recent times432

and therefore shows higher than average secular variation for these centuries. The sec-433

ular variation spectra for the two models are fairly similar, with a very good agreement434

for the dipole and slightly higher values for the higher degrees in our new model.435

3.2.4 Dipole436

Finally we present the dynamics of the EMFs dipole. Figure 13 shows time series437

of the dipole moment magnitude. The magnitude is higher than the ones reported by438

comparison models, while the “outliers” from MSKH20 are not present in the new re-439

sults. From 1840 on ARCH10k.1 is constrained by the gufm1 model, which in turn is con-440

strained by a large amount of direct observations and can be considered to represent the441

dipole moment quite reliably from that time on. The deviation of our model from ARCH10k.1442

during the last century is likely caused by a lack of archeomagnetic data for these epochs.443

444

Figure 14 shows the movement of the geomagnetic north pole. The mean curve (black445

line) is calculated via sampling. For a given epoch the full density is available analyt-446

ically (c.f. Mauerberger et al., 2020, Eq. 96). To not overload the plot, we only show mean447

and one-sigma ellipses for every century. The stereographic projection is responsible for448

the crescent-shaped distortion of the ellipses. The rapid movement of the dipole for ear-449

lier epochs suggested by other models is not found by our new reconstruction and for450
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Figure 12. Secular variation spectrum for 1400 AD.
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Figure 13. Time series of the dipole moment magnitude, together with comparison models.

One sigma uncertainties are shown for our model in orange. The MSKH20 snapshot model and

COV-ARCH, which are available in 100 year steps, are shown by colored dots linked linearly by

solid lines.

more recent times, the path lies further to the west. Deviance for the most recent epochs451

is again caused by a lack of data.452

4 Conclusions453

The presented work extends the Bayesian strategy for correlation-based modelling454

of the archeomagnetic field introduced in MSKH20 to the temporal domain. In Section455
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Figure 14. Movement of the geomagnetic north pole. Every one hundred years mean and

one-sigma ellipses of the snapshot-distributions are shown. Color varies according to time, with

markers every one hundred years.

2, all necessary modifications are discussed, together with a novel approach to include456

dating uncertainties. In contrast to previous works (Hellio et al., 2014; Hellio & Gillet,457

2018; Korte et al., 2009; Licht et al., 2013; Hellio & Gillet, 2018; Senftleben, 2019), us-458

ing a NIGP (McHutchon & Rasmussen, 2011) to incorporate dating uncertainties does459

not rely on sampling techniques. The a priori model is again constructed with the aim460

of being as objective as possible. The uninformative dipole prior from MSKH20 cannot461

easily be translated to the time-dynamic realm, as temporal correlations are send to zero462

together with the a priori precision and cannot easily be recovered in the posterior. In-463

stead, we assume a priori a constant axial dipole with the dipole strength being a free464

parameter. Together with all but one other model parameters, the dipole strength is marginal-465

ized so that the model does not depend on the specific value. This marginalization presents466

another challenge, as numerical integration in a seven dimensional space has to be per-467

formed. The Riemann sum approach from MSKH20 is not applicable, due to the curse468

of dimensionality (i.e. unfeasible computation time). As a practicable alternative to the469

brute force integration we implement a CCD (S. M. Sanchez & Sanchez, 2005) based in-470

tegration, as proposed by Rue et al. (2009). The major challenge in implementing this471

strategy consists of finding the MAP of the marginal posterior. Running the LIPO-TR472

algorithm (King, 2009, 2017) for the validation and case study datasets took around 25473

hours each on a regular workstation. Once the MAP is found, the set of integration points474

consists of 79 hyperparameter combinations and the marginalization takes between half475

an hour and five hours, depending on the quantity one predicts on, as some quantities476
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require sampling, which is more computationally demanding. With the marginalization477

performed, the model depends only on the a priori choice of the Gauss coefficients co-478

variance structure at the reference radius, the value of the reference radius and the tem-479

poral covariance structure. For the conceptual work presented, we chose an unphysical480

SQE kernel. This has the advantage of being easy to implement, but the main point why481

we use this kernel instead of a more reasonable one is the necessity to calculate tempo-482

ral derivatives to implement the NIGP. For the SQE kernel this is straightforward. We483

have shown by means of a synthetic test and a case study on real data from 800 AD to484

2000 AD that even with the simplified kernel the results compare well with previous mod-485

els. Notably the “outliers” for the years 1100 and 1300, present in MSKH20, do not ap-486

pear in the present work. This may be explained by the new model considering tempo-487

ral errors, and thus covering a false binning, or by the long correlation time suppress-488

ing the influence of single records.489

Implementing a more realistic kernel, such as the one proposed by Gillet et al. (2013),490

will be the direction of future work. Together with a Bayesian framework for data se-491

lection this will allow the construction and proposition of a new correlation based field492

model. In MSKH20, the expansion of the database by records from ship logs was dis-493

cussed. Incorporating uncertainties arising from imprecise locations may be performed494

by the use of the proposed NIGP. Instead of temporal derivatives, the spatial gradients495

of the kernel are used to translate the input uncertainties to contributions to the mea-496

surement errors. The challenges to scale relative intensities and preserve stratification497

(Nilsson et al., 2014) persist, so that sediment records require a different approach than498

the application of the NIGP proposed here.499

We again developed a python framework to save the effort of implementing the pro-500

posed algorithm (Schanner & Mauerberger, 2020). Together with extensive documen-501

tation, the software source code provides further insight into the modeling algorithm.502

It is available at https://sec23.gitext-pages.gfz-potsdam.de/korte/corbam/.503

Acronyms504

CCD central composite design505

CMB core-mantle boundary506

EMF Earth’s magnetic field507

GP Gaussian process508

MAP maximum a posteriori probability estimator509

MCMC Markov Chain Monte-Carlo510

NIGP noisy input Gaussian process511

POE point of expansion512

SH spherical harmonics513

SQE squared exponential514

Acknowledgments515

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research516

Foundation), grant 388291411. M. Schanner performed theoretical and conceptual work,517

with support from S. Mauerberger and M. Holschneider. The manuscript was assembled518

–20–



manuscript submitted to JGR: Solid Earth

by M. Schanner, with support from all co-authors. Software development and data pro-519

cessing was conducted by M. Schanner, with contributions from S. Mauerberger. M. Ko-520

rte took care of data selection as well as interpretation and embedding of the case study.521

The work and findings were supervised by M. Korte and M. Holschneider.522

Special thanks go to H. Matuschek for providing FieldTools (Matuschek & Mauer-523

berger, 2019), assistance and support and to S. Panovska for helpful discussions on the524

secular variation spectrum.525

There is no new data involved in this publication. The data used in the case study526

is available via GEOMAGIA v3.3 (Brown et al., 2015). All results were produced using527

a python implementation of the discussed algorithm, which is publicly available (Schanner528

& Mauerberger, 2020).529

Appendix A Constructing the spatial covariance kernel530

The Lagrange kernel (Eq. 9) is constructed from the Gauss coefficient correlations531

as follows:532

Consider the covariance of the magnetic potential in SH decomposition. Then, for533

a pontential of internal origin534

Cov[Φ(x),Φ(x′)] = R2
∑
`,m

∑
`′,m′

(
R2

|x||x′|

)`+1

Y m` (x̂)Y m
′

`′ (x̂′)Cov
[
gm` , g

m′

`′

]
. (A1)

Assuming that at some reference sphere the Gauss coefficients are uncorrelated with a535

flat spectrum, i.e.536

Cov
[
gm` , g

m′

`′

]
= δ`,`′δm,m′ , (A2)

where δij refers to the Kronecker delta. This gives537

Cov[Φ(x),Φ(x′)] = R2
∞∑
`=0

(
R2

|x||x′|

)`+1∑
m

Y m` (x̂)Y m` (x̂′) . (A3)

Following Holschneider et al. (2016), evaluating the sums gives the kernel

KL(x,x′) =
1√

1− 2b+ a2
, (9)

where b = x · x′/R2 and a = |x||x′|/R2. The dipole kernel can be extracted by set-538

ting ` = 1. This yields539

KDP,S(x,x′) =
b

a3
. (A4)

Thus the non-dipole kernel reads540

KND,S(x,x′) = KL(x,x′)−KDP,S(x,x′)− 1

a
, (A5)

where the last term excludes the monopole (` = 0).541

Appendix B Detailed modeling algorithm542

The modeling algorithm consists of two stages. The first one deals with finding the543

MAP of the hyperparameters. The MAP then serves as a center point for marginaliz-544

ing the hyperparameters in the second step. We begin this section by laying out the in-545

version process. From quantities that are calculated along the way, the marginal pos-546

terior can be constructed. Using both procedures, the full algorithm can presented in547

a compact way.548
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B1 Inversion549

The inversion closely follows the modeling concept described in MSKH20. To pro-550

vide insight into the mathematical background of the inversion, we lay out the full in-551

version process for the field B at locations of interest y. Inverting for other quantities,552

such as the Gauss coefficients or the field’s intensity, is straightforward.553

To keep the equations concise, we use the following notation for matrices:554

B̄(x) is the a priori (mean) field at locations x.555

∇H|B̃(x) refers to the gradient of the observation functionals (c.f. Eqs. 14-16), evalu-556

ated at the POE B̃ at locations x.557

H̄(x) refers to the linearized, transformed prior field at locations x558

H̄(x) = H
(
B̃(x)

)
+∇H|B̃(x)

(
B̃(x)− B̄(x)

)
(B1)

The transformed prior field serves as a mean proxy to observations at locations559

x.560

Σyy refers to the a priori covariance of the field at locations y. This is561

Σyy = KB(y,y) (B2)

This is a matrix, composed of 3×3 blocks, containing correlations at each point.562

B̄|o(y) is short hand for the posterior mean of the field at locations y, given observa-563

tions o, i.e.564

B̄|o(y) = E[B(y)|o] (B3)

H̄ |o(x) is similar to H̄(x) and refers to the linearized transformed mean at locations565

x, posterior to observations o.566

Σyy|o is short hand for the posterior covariance of the field, i.e.567

Σyy|o = Cov[B(y),B(y)|o] (B4)

Σyo refers to cross-covariance between the field at points of interest y and observations568

of the field o. As these are linearized, the matrices involve a gradient569

Σyo = KB(y,xo)∇H|B̃(xo) . (B5)

xo are the locations of the observations o. The dot product is taken pointwise, i.e. for570

every observation xo.571

Σoo refers to the covariance amongst observations:572

Σoo = ∇H|>
B̃(xo)

(
KB(xo,xo) + ΣT + ρΣp

)
∇H|B̃(xo) + εΣe (B6)

The residual Σp is an identity matrix of the dimension of number of observations
and Σe is the (typically diagonal) matrix of approximate measurement errors, see
Section 2.3. ΣT is the correction term for dating uncertainties, see Section 2.4:

ΣT = Σtt′ ◦ ∂t∂t′KB(t, t′)|to

As the linearization is tackled by means of a two-step strategy, at first the data is573

partitioned into complete c and incomplete i records:574

o = {c, i} (B7)

The first step in the two-step strategy only deals with complete records. However, as the575

posterior mean from the first step serves as the point of expansion (POE) in the second576

–22–



manuscript submitted to JGR: Solid Earth

step, predictions at locations of incomplete records xi have to be included as well. The577

posterior mean and covariance from the first step read578

E[B(y)|c] =B̄(y) + Σyc · Σ−1
cc ·

(
c− H̄(xc)

)
(B8)

Cov[B(y),B(y)|c] =Σyy − Σyc · Σ−1
cc · Σ>yc (B9)

Posterior correlations for the incomplete records are given by579

Σyi|c =Σyi − Σyc · Σ−1
cc · Σ>ic (B10)

Σii|c =Σii − Σic · Σ−1
cc · Σ>ic (B11)

To calculate the relevant linearized quantities, the POE is calculated as the inverse ob-580

servation functional, i.e. in the first step581

B̃(xc) = H−1(c) (B12)

with582

H−1 :

DI
F

→ B = F

cos(I) cos(D)
cos(I) sin(D)

sin(I)

 . (B13)

In the second step, the posterior mean of the first step is used as POE:583

B̃(xi) = B̄|c(xi) (B14)

The remaining records are incorporated and give a posterior with584

E[B(y)|c, i] =B̄|c(y) + Σyi|c · Σ−1
ii|c ·

(
i− H̄ |c(xi)

)
(B15)

Cov[B(y),B(y)|c, i] =Σyy|c − Σyi|c · Σ−1
ii|c · Σ

>
yi|c (B16)

During the illustrated procedure, the hyperparameters are assumed to be known. As this585

is a priori not the case, we next illustrate how to marginalize them.586

B2 Marginal posterior587

The density588

p(o|η) =

∫
p(o|B)p(B|η) dB (B17)

is called marginal likelihood where the term marginal refers to the integration over the589

EMF. p(o|η) is a function in the hyperparameters η, given the data o. For a certain choice590

of hyperparameters, p(o|η) describes how likely the observations are. In our case, η con-591

sists of the a priori dipole strength and variances, the correlation times and the error and592

residual scalings, η = {γ0
1 , αDP, αND, τDP, τND, ε, ρ}, see also Section 2.5. Building the593

compound distribution for the EMF (Eq. 25) requires calculating the marginal likelihood.594

Fortunately, this can be done using expressions from the previous section. In the same595

language as before, the marginal likelihood is also given by a two-step formula596

p(o = {c, i}|η) = p(i|η, c)p(c|η) . (B18)

The conditional in p(i|η, c) refers again to the POE in calculating the gradients for lin-597

earization. With the matrix notation from before, one has (Rasmussen & Williams, 2006)598

p(c|η) =
exp

(
− 1

2

(
c− H̄(xc)

)T
Σ−1
cc

(
c− H̄(xc)

))√
(2π)3nc |Σcc|

(B19)

p(i|c, η) =
exp

(
− 1

2

(
i− H̄ |c(xi)

)T
Σ−1
ii|c
(
i− H̄ |c(xi)

))√
(2π)ni |Σii|c|

. (B20)
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Here nc and ni refer to the numbers of complete and incomplete records respectively. Mul-599

tiplying the marginal likelihood with a prior over the hyperparameters gives the marginal600

posterior, up to a normalization constant:601

p(η|o) ∝ p(o|η)p(η) (B21)

For numerical reasons, one often uses the log marginal posterior602

ln p(η|o) = ln p(o|η) + ln p(η) + const. . (B22)

B3 Exploration and integration603

With the details outlined in the previous sections, we can now describe the main604

two stages of the modeling algorithm:605

Exploration The first stage consists of finding the maximum a posteriori probability606

estimator (MAP) η̂ of the marginal posterior. Therefore, the log marginal poste-607

rior is optimized using global optimization techniques.608

Integration With the MAP as center, a set of integration points Sη is constructed as609

described by Rue et al. (2009) and S. M. Sanchez and Sanchez (2005). With weights610

∆η, the integral for the compound distribution Eq. 25 is approximated by a sum611 ∫
p(B|o, η) · p(η|o) dη ≈

∑
η∈Sη

p(B|o, η) · p(η|o) ∆η . (B23)

This way the compound distribution is approximated by a Gaussian mixture. Sim-612

ilar expressions exist for the compound distributions of all quantities of interest,613

such as Gauss coefficients or observables like the linearized intensity F .614

References615

Alldredge, L. R. (1984). Harmonics required in main field and secular variation mod-616

els. Journal of geomagnetism and geoelectricity , 36 (2), 63-72. doi: 10.5636/jgg617

.36.63618

Backus, G., Parker, R., & Constable, C. (1996). Foundations of geomagnetism. Cam-619

bridge University Press.620

Bloxham, J., & Jackson, A. (1992). Time-dependent mapping of the magnetic field621

at the core-mantle boundary. Journal of Geophysical Research: Solid Earth,622

97 (B13), 19537-19563. Retrieved from https://agupubs.onlinelibrary623

.wiley.com/doi/abs/10.1029/92JB01591 doi: 10.1029/92JB01591624

Bouligand, C., Gillet, N., Jault, D., Schaeffer, N., Fournier, A., & Aubert, J. (2016,625

11). Frequency spectrum of the geomagnetic field harmonic coefficients from626

dynamo simulations. Geophysical Journal International , 207 , 1142-1157. doi:627

10.1093/gji/ggw326628

Bouligand, C., Hulot, G., Khokhlov, A., & Glatzmaier, G. (2005, 06). Statistical629

paleomagnetic field modeling and dynamo numerical simulation. Geophysical630

Journal International , 161 , 603-626. doi: 10.1111/j.1365-246X.2005.02613.x631

Brown, M. C., Donadini, F., Nilsson, A., Panovska, S., Frank, U., Korhonen, K., . . .632

Constable, C. G. (2015, May 12). Geomagia50.v3: 2. a new paleomagnetic633

database for lake and marine sediments. Earth, Planets and Space, 67 (1),634

70. Retrieved from https://doi.org/10.1186/s40623-015-0233-z doi:635

10.1186/s40623-015-0233-z636

Constable, C., Korte, M., & Panovska, S. (2016). Persistent high paleosecular varia-637

tion activity in southern hemisphere for at least 10 000 years. Earth and Plane-638

tary Science Letters, 453 , 78 - 86. doi: 10.1016/j.epsl.2016.08.015639

–24–



manuscript submitted to JGR: Solid Earth

Constable, C. G., Johnson, C. L., & Lund, S. P. (2000). Global geomagnetic field640

models for the past 3000 years: transient or permanent flux lobes? Phil.641

Trans. R. Soc. Lond. A, 358 , 991-1008.642

Constable, C. G., & Parker, R. L. (1988). Statistics of the geomagnetic secular643

variation for the past 5 m.y. Journal of Geophysical Research: Solid Earth,644

93 (B10), 11569-11581. doi: 10.1029/JB093iB10p11569645

Gillet, N., Jault, D., Finlay, C. C., & Olsen, N. (2013). Stochastic modeling of the646

Earth’s magnetic field: Inversion for covariances over the observatory era. Geo-647

chemistry, Geophysics, Geosystems, 14 (4), 766-786. Retrieved from https://648

agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ggge.20041 doi: 10649

.1002/ggge.20041650

Hartmann, G. A., & Pacca, I. G. (2009, 06). Time evolution of the south at-651

lantic magnetic anomaly. Anais da Academia Brasileira de Ciências,652

81 , 243 - 255. Retrieved from http://www.scielo.br/scielo.php653

?script=sci arttext&pid=S0001-37652009000200010&nrm=iso doi:654

10.1590/S0001-37652009000200010655

Hellio, G., & Gillet, N. (2018). Time-correlation-based regression of the geomag-656

netic field from archeological and sediment records. Geophysical Journal Inter-657

national , 214 (3), 1585-1607. doi: 10.1093/gji/ggy214658

Hellio, G., Gillet, N., Bouligand, C., & Jault, D. (2014, 08). Stochastic modelling of659

regional archaeomagnetic series. Geophysical Journal International , 199 , 931-660

943. doi: 10.1093/gji/ggu303661

Holschneider, M., Lesur, V., Mauerberger, S., & Baerenzung, J. (2016). Correlation-662

based modeling and separation of geomagnetic field components. Journal663

of Geophysical Research: Solid Earth, 121 (5), 3142–3160. doi: 10.1002/664

2015JB012629665

Jackson, A., & Finlay, C. (2015). Geomagnetic secular variation and its applications666

to the core. In G. Schubert (Ed.), Treatise on geophysics (2nd ed., Vol. 5, pp.667

137–184). United Kingdom: Elsevier. doi: 10.1016/B978-0-444-53802-4.00099668

-3669

Jackson, A., Jonkers, A., & Walker, M. (2000). Four centuries of geomagnetic670

secular variation from historical records. Philosophical Transactions of the671

Royal Society of London A: Mathematical, Physical and Engineering Sciences,672

358 (1768), 957–990. doi: 10.1098/rsta.2000.0569673

King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of Machine Learn-674

ing Research, 10 , 1755-1758.675

King, D. E. (2017). A global optimization algorithm worth using. http://blog.dlib676

.net/2017/12/a-global-optimization-algorithm-worth.html. (Accessed:677

2020-07-07)678

Korte, M., & Constable, C. G. (2003). Continuous global geomagnetic field models679

for the past 3000 years. Phys. Earth Planet. Interiors, 140 , 73-89.680

Korte, M., Donadini, F., & Constable, C. (2009). Geomagnetic field for 0-3ka: 2.681

a new series of time-varying global models. Geochem. Geophys. Geosys., 10,682

Q06008 , doi:10.1029/2008GC002297.683

Licht, A., Hulot, G., Gallet, Y., & Thbault, E. (2013). Ensembles of low degree684

archeomagnetic field models for the past three millennia. Physics of the Earth685

and Planetary Interiors, 224 , 38 - 67. doi: 10.1016/j.pepi.2013.08.007686

Matuschek, H., & Mauerberger, S. (2019). Toolbox for manipulating vector fields on687

the sphere. GFZ Data Services. Retrieved from http://doi.org/10.5880/688

fidgeo.2019.033 doi: 10.5880/fidgeo.2019.033689

Mauerberger, S., Schanner, M., Korte, M., & Holschneider, M. (2020). Correlation690

based snapshot models of the archeomagnetic field. Geophysical Journal Inter-691

national . Retrieved from https://doi.org/10.1093/gji/ggaa336 (ggaa336)692

doi: 10.1093/gji/ggaa336693

McHutchon, A., & Rasmussen, C. E. (2011). Gaussian process training with in-694

–25–



manuscript submitted to JGR: Solid Earth

put noise. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, &695

K. Q. Weinberger (Eds.), Advances in neural information processing systems696

24 (pp. 1341–1349). Curran Associates, Inc.697

Merrill, R. T., McElhinny, M. W., & McFadden, P. L. (1996). The magnetic field698

of the earth: Paleo-magnetism, the core, and the deep mantle. Academic Press,699

San Diego.700

Nilsson, A., Holme, R., Korte, M., Suttie, N., & Hill, M. (2014, 05). Reconstructing701

Holocene geomagnetic field variation: new methods, models and implications.702

Geophysical Journal International , 198 (1), 229-248. doi: 10.1093/gji/ggu120703

Rasmussen, C., & Williams, C. (2006). Gaussian processes for machine learning.704

MIT Press, Cambridge, MA.705

Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for706

latent Gaussian models by using integrated nested Laplace approximations.707

Journal of the Royal Statistical Society: Series B (Statistical Methodology),708

71 (2), 319-392. Retrieved from https://rss.onlinelibrary.wiley.com/709

doi/abs/10.1111/j.1467-9868.2008.00700.x doi: 10.1111/j.1467-9868.2008710

.00700.x711

Sanchez, S., Fournier, A., Aubert, J., Cosme, E., & Gallet, Y. (2016, 08). Modelling712

the archaeomagnetic field under spatial constraints from dynamo simulations:713

a resolution analysis. Geophysical Journal International , 207 (2), 983-1002. doi:714

10.1093/gji/ggw316715

Sanchez, S. M., & Sanchez, P. J. (2005, October). Very large fractional factorial and716

central composite designs. ACM Trans. Model. Comput. Simul., 15 (4), 362377.717

Retrieved from https://doi.org/10.1145/1113316.1113320 doi: 10.1145/718

1113316.1113320719

Schanner, M. A., & Mauerberger, S. (2020). CORBAM: CORrelation Based Archeo-720

magnetic Modeling. Potsdam: GFZ Data Services. Retrieved from https://721

doi.org/10.5880/GFZ.2.3.006722

Senftleben, R. (2019). Earth’s magnetic field over the last 1 000 years (Unpublished723

doctoral dissertation). University of Potsdam.724

Snelson, E., Rasmussen, C. E., & Ghahramani, Z. (2003). Warped Gaussian725

processes. In In advances in neural information processing systems (nips726

(p. 2003). MIT Press.727

Suttie, N., & Nilsson, A. (2019). Archaeomagnetic data: The propagation of an er-728

ror. Physics of the Earth and Planetary Interiors, 289 , 73 - 74. doi: 10.1016/729

j.pepi.2019.02.008730
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