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SUMMARY5

Tsunamis generated by large earthquake-induced displacements of the ocean floor can lead to tragic6

consequences for coastal communities. Ionospheric measurements of Co-Seismic Disturbances (CIDs)7

offer a unique solution to characterize an earthquake’s tsunami potential in Near-Real-Time (NRT) since8

CIDs can be detected within 15 min of a seismic event. However, the detection of CIDs relies on hu-9

man experts, which currently prevents the deployment of ionospheric methods in NRT. To address this10

critical lack of automatic procedure, we designed a machine-learning based framework to (1) classify11

ionospheric waveforms into CIDs and noise, (2) pick CID arrival times, and (3) associate arrivals across12

a satellite network in NRT. Machine-learning models (random forests) trained over an extensive iono-13

spheric waveform dataset show excellent classification and arrival-time picking performances compared14

to existing detection procedures, which paves the way for the NRT imaging of surface displacements15

from the ionosphere.16
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1 INTRODUCTION18

Large seafloor displacements due to earthquakes are known to generate destructive tsunamis. Unfortunately, Near-19

Real-Time (NRT) mapping of the co-seismic surface displacements to characterize the earthquake tsunami potential20
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is still challenging for conventional methods, especially for earthquakes withMw > 8 (LaBrecque et al. 2019; Wright21

et al. 2012; Katsumata et al. 2013). In our definition, NRT corresponds to times within 15-20 minutes after the22

earthquake onset which is crucial for early-warning application as it gives several tens of minutes for populations to23

evacuate before the tsunami reaches the coasts.24

Recently, several research groups have demonstrated that ionospheric measurements can offer an alternative to25

seismo-geodetic methods to estimate the tsunami potential of earthquakes. The ionosphere is an electrically charged26

atmospheric layer that is concentrated around 150-400 km of altitude. This layer is sensitive to the vertically propa-27

gating acoustic energy excited by natural hazards (earthquakes, tsunamis, volcanic eruptions) and man-made events28

(explosions, rocket launches, nuclear tests) (Heki 2006; Rolland et al. 2016; Komjathy et al. 2016; Shults et al. 2016;29

Astafyeva & Shults 2019; Astafyeva 2019). In particular, ionospheric signatures of earthquakes, known as co-seismic30

ionospheric disturbances (CID), can be detected 7-9 minutes after the earthquake. CIDs waveform characteristics are31

correlated to the seismic source properties. For instance, the amplitude of the CID scales almost linearly with the32

magnitude of an earthquake (Astafyeva et al. 2013b, 2014; Cahyadi & Heki 2015; Occhipinti et al. 2018; Heki 2021),33

or - for submarine earthquakes - with the tsunami wave height or volume of water that was displaced due to an earth-34

quake (Kamogawa et al. 2016; Rakoto et al. 2018; Manta et al. 2020). Additionally, CID arrival times and detection35

coordinates provide strong constraints on the position of the seismic source, or the origin of tsunami (Afraimovich36

et al. 2006; Heki et al. 2006; Astafyeva et al. 2009; Tsai et al. 2011; Lee et al. 2018; Bagiya et al. 2020; Inchin et al.37

2021; Zedek et al. 2021). Moreover, Astafyeva et al. (2011, 2013a); ?) showed that the distribution of the first-detected38

CIDs match the position of the maximum displacement on the ground, and (Kakinami et al. 2021) showed that the39

initial point of CID matches the maximum vertical displacement of the tsunami source.40

However, despite the high potential of seismo-ionospheric assessment of natural hazards, the detection and anal-41

ysis of ionospheric disturbances still rely on human experts. This manual process is problematic for processing large42

data volume to detect CIDs and estimate seismic source parameters. Only a few studies have focused on the autom-43

atization of detection procedures in the ionosphere but only at low frequencies (Efendi & Arikan 2017; Belehaki44

et al. 2020). Ravanelli et al. (2021) investigated the use of both GNSS ground and ionospheric TEC measurements45

for NRT tsunami genesis estimation. However, Ravanelli et al. (2021) did not present any detection procedure for46

CIDs, but only showed TEC variations in NRT scenario. In addition, their TEC processing procedure included the use47

of 8th order polynomial fit in order to highlight the co-seismic signature. The latter is not possible in our definition48

of NRT mode, i.e. 15-20 minutes after the earthquake onset time. The first NRT-compatible method detecting CID49

was suggested by Maletckii & Astafyeva (2021). However, this study only showed good results on 1 Hz data with50

CIDs showing high temporal TEC derivative. Therefore, the community needs methods allowing for rapid automatic51

detection and recognition of CIDs for both future NRT developments and processing of large amount of TEC data52

retrospectively.53

The problem of earthquake waveform detection has been investigated in the seismic community since the early54

days of modern computers (e.g., Allen 1982)). The automatization of waveform detection procedures has historically55
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been performed in the seismic community using analytical methods such as the Short-Time Average / Long-Time56

Average (STA/LTA) filter(Allen 1982)). However, the high rate of false positives generated by these analytical fil-57

ters has motivated the seismic community to implement Machine-Leaning (ML) approaches that combine both low58

computational time and high accuracy (Ross et al. 2018; Mousavi et al. 2020). Even when only small labelled wave-59

form datasets are available, ML methods provide excellent classification results (Provost et al. 2017; Wenner et al.60

2021). In particular, Random Forests (RF, Breiman 2001) show excellent generalization abilities, and do not require61

an extensive hyper-parameter tuning. Random-forest is an ensemble technique that build predictions by aggregating62

predictions from a set of decision trees. Aggregating results from individual decision trees built using bootstrap ag-63

gregation, that consist of randomly selecting input features to train each tree, makes RF particularly robust to new64

data.65

To address the lack of automatic detection method, we build a RF-based architecture to classify TEC timeseries,66

pick arrival times, and associate detected arrivals. Random-forests are trained over an extensive CID waveform dataset67

from 12 large-magnitude earthquakes, to classify vTEC waveforms between CIDs and noise and pick arrival times68

in NRT. Our method is, to the best of our knowledge, the first reported machine-learning classifier and arrival-time69

picker of CIDs. In this paper, we first describe the generation of our waveform dataset, our detection procedure, and70

our machine-learning models. We show classification performance results over our testing dataset and against other71

analytical detection methods. We finally discuss the future implementation of such method for NRT applications.72

2 DATA COLLECTION73

The Global Navigation Satellite Systems (GNSS) are widely used to sound the ionosphere. GNSS signals transmitted74

by satellites and captured by ground-based dual-frequency GNSS receivers enable the estimation of the differential75

slant TEC (sTEC), that is equal to the number of electrons along a line-of-sight (LOS) between a satellite and a76

receiver. The sTEC is calculated from phase and code measurements (Hofmann-Wellenhof et al. 2008; Afraimovich77

et al. 2006; Shults et al. 2016). The phase measurements provide precise information about the ionospheric variations78

and disturbances, but they are biased by an unknown phase ambiguity constant. The code measurements are noisy79

and less precise, but are not ambiguous, which enables to estimate the bias by averaging the code values along the80

arc of measurements. The sTEC is then estimated by removing the bias from the phase measurements. However, in81

near-real-time scenario, since the CID and other disturbances are clearly seen in phase measurements, we suggest82

to calculate the sTEC using solely phase measurements that can be rapidly retrieved in real-time via the Networked83

Transport of RTCM via Internet Protocol (NTRIP):84

sTECph =
1

A
∗ f

2
1 ∗ f22
f21 − f22

∗ (L1 ∗ λ1 − L2 ∗ λ2) (1)

where A = 40.308 m3/s2, L1 and L2 are phase measurements, λ1 and λ2 are wavelengths at the two Global85

Positioning System (GPS) frequencies: f1 = 1227, 60 and f2 = 1575, 42 MHz. Once the sTEC is calculated, the first86
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data value is subtracted from all data series to remove the unknown bias. Finally, because the sTEC is affected by the87

elevation angle of the LOS, we convert sTEC to vertical TEC (vTEC) by using the standard “mapping function”:88

vTEC = sTEC ∗ cos
(
arcsin(

Re cos θ

Re +Hion
)

)
, (2)

where Re is the Earth radius, θ is the LOS elevation angle, Hion is the altitude of ionospheric detection. The Hion89

cannot be known because the sTEC is an integral parameter. Based on the physical principles, the Hion is presumed to90

be around the ionization maximum, i.e. around 250-350 km. Here we take Hion=250 km for all events. This choice is91

reasonable from the point of view of the ionospheric physics, while determining of the real altitude of CID detection92

is out of the scope of this work. Moreover, once the system is trained, it can detect CID in TEC data series for any93

Hion value. The total electron content is measured in TEC units (TECU), with 1 TECU= 1016 electrons/m2.94

To construct our database, we collected GNSS-TEC data with CID signatures for 12 earthquakes that occurred95

between 2003 and 2016 (see Figure 1 and Table A1), including the M6.6 Chuetsu earthquake which is the smallest96

earthquake ever recorded by ionospheric GNSS data (Cahyadi & Heki 2015). The typical CID waveform are N-shaped97

and hump signatures (Figure 1b). However, CID waveforms also depend both on the magnetic field configuration in98

the epicentral region and on the geometry of the GNSS-sounding (Heki & Ping 2005; Astafyeva & Heki 2009; Rolland99

et al. 2013; Bagiya et al. 2019). Therefore, in order to correctly represent the large diversity of CID waveforms in our100

model, we included a variety of different TEC signatures that could be recorded after an earthquake (examples shown101

in Figures 1b to 1e).102

The GNSS data used in this study were of 1, 15 and 30 second cadences A1. Following the NRT-compatible103

scenario, we did not apply band-pass filter to extract or amplify CID signatures, but only worked with raw relative104

vTEC.105

3 AUTOMATIC DETECTION AND ASSOCIATION MODELS106

We propose a multi-step RF-based procedure to detect and associate CIDs (see Figure 2): 1) selection of a time107

window, 2) data preprocessing, 3) waveform features extraction, 4) RF-based classification of inputs features between108

noise and CID classes, 5) if detection probability > 50% at step 4, RF-based arrival time picking, 6) if 3 successive109

time windows classified as CID, confirmation of the presence of an arrival and aggregation of arrival times, and 7) if110

a detection is confirmed at step 6, we then associate this arrival to previously detected CIDs. Finally, we shift the time111

window and repeat the procedure.112

3.1 Preprocessing and feature extraction113

To extract consistent waveform features in TEC data with different sampling times, we first downsample all waveforms114

down to 30 s (see Supplementary Section S6). Consistency in sampling rate is critical as the higher-frequency spectral115

content can lead to substantial variations in input features. For example, energy peaks at higher frequencies, that would116
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Figure 1. CID waveform dataset. (a) map showing the event included in the training dataset. Details about

each event can be found in Table A1. (b) to (g) vTEC waveforms against time that include a CID arrival

(panels b to e, green) and that only contain noise (panels f and g, red). The CID arrival time is shown as a

grey vertical line in panels (b) to (e).

normally be smoothed out at lower frequencies, can drastically alter the envelope kurtosis and skewness. Additionally,117

TEC data may contain long-term trends due to GNSS satellite motion and other long-period TEC changes which can118

be considered as noise for the problem of CID detection. Therefore, we remove long-term trends (signals with periods119

typically greater than 30 mn) by first taking the time derivative of vTEC waveforms to remove long-wavelength120

trends and then performing a linear de-trending. Derivatives are computed using second order central differences121

in the interior points and second order one-sides (forward or backwards) differences at the boundaries. Once the122

TEC waveforms have been pre-processed, we extract 39 features calculated from the vTEC timeseries, spectra, and123

spectrograms (see Supplementary Section S1). These features are commonly used for signal classification tasks (e.g.,124

Hammer et al. 2013; Hibert et al. 2014; Provost et al. 2017; Wenner et al. 2021).125
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Figure 2. Detection and association procedures described in Section 3: 1) selection of a time window, 2)

preprocessing of the waveform, 3) extraction of waveform features from i) time series, ii) spectrum, and iii)

spectrogram, 4) RF classification of input waveform, 5) RF arrival time picking, 6) confirmation of an arrival

if RF has classified three consecutive time windows (at times tn−2, tn−1, tn) as arrival, and 7) association

of arrivals across different satellites and stations.

3.2 Building a single-station CID detector126

We selected a RF model (Breiman 2001) to discriminate vTEC signals between earthquakes and noise classes. Our127

RF model takes the features extracted from a given waveform as inputs (see Section 3.1) and outputs the probability128

of this waveform to be signal or noise. An input waveform is classified as CID if the detection probability predicted129

by the RF is over 50%. RFs predictions are constructed from average predictions from an ensemble of individual130

decision trees. Individual decision trees are built through bootstrap aggregation that consist of randomly selecting131

input features to train each tree. RFs have excellent generalization abilities, and do not require an extensive hyper-132

parameter tuning. We used the ”ExtraTrees” scikit implementation of the random forest (Pedregosa et al. 2011) which133

introduces an additional layer of randomness when building decision trees which allow for better generalization of134

the training dataset (Geurts et al. 2006). The training procedure relies on bootstrap samples to build each tree along135

with out-of-bag samples to estimate the generalization score. Bootstrapping makes decision trees less sensitive to136

the choice of training dataset which reduces the probability of overfitting. Additionally, the error computed from137

out-of-bag samples provides an excellent metric for RF’s classification performances.138

We need to first build a dataset of features to train our RF classifier. This dataset building process is summarized139
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in Figure 3. For each station, CID wavetrains are described by an arrival time and a duration. Wavetrain durations140

are considered uniform across satellites and stations for a given event (see Table A1). Signal durations are used to141

automatically label waveforms as CIDs, i.e., to build our training dataset. We consider a time-window to contain a142

CID if it overlaps the true wavetrain, i.e., CID confirmed by human analyst, by at least 70% which makes the RF143

more flexible to detect partial CID waveforms. Values picked for the duration correspond to estimates of the minimum144

duration of the CID across the network of satellites and stations. This choice ensures that at least the arrival time145

and/or the time at vTEC maximum are contained in the waveforms. Similar to Ross et al. (2018), we augment our146

training dataset by selecting four time-windows over each CID arrival by randomly shifting the beginning of the time147

window while still fulfilling the 70% overlap condition. Noise waveforms are selected randomly across all dataset148

with the condition that it should not overlap any CID wavetrain. Before extracting features, we add artificial Gaussian149

noise to the waveforms in the training dataset to reduce overfitting similar to Mousavi et al. (2020). We add Gaussian150

noise to both arrival and noise waveforms s so that the perturbed waveform s shows a specific Signal-to-Noise Ratio151

(SNR) such that s = s+
√

σ2

SNRn, where s is the original waveform, σ2 is the variance of the original waveform, n is152

the added noise sampled from a normal distribution, and the SNR is picked within the range SNR ∈ (1, 5). The final153

dataset consists of 2867 CIDs and 2867 randomly-picked noise waveforms.154

3.3 Building an arrival-time picker155

After the classification step, our detection algorithm needs to accurately select the arrival time in each window with156

a detection probability > 50%. This time picking procedure remains challenging using threshold-based conditions157

such as STA/LTA filters (Allen 1982). False positives will degrade the arrival time estimate when using threshold-158

based methods since signal-to-noise ratio, signal duration and dispersion characteristics vary significantly between159

events. To overcome this problem, we build an automatic arrival-time picking procedure by using an ”ExtraTrees” RF160

regressor. Our RF takes a normalized pre-processed waveform as input (see preprocessing in Section 3.1) and outputs161

offset in seconds from the window central time, i.e, a float number between -360 and 360. We trigger this arrival time162

picker only over windows where an arrival has been confirmed (see Section 3.4).163

Similar to the RF classifier, we first have to build a waveform dataset to train our RF arrival-time picker (see164

Figure 3). We select arrival window for waveforms that overlaps the true wavetrain by at least 30%. This overlap is165

significantly lower than for the detector. This choice aims at training the RF to pick arrival times over the first detection166

window with incomplete CID waveforms. Similar to Section 3.2, we augment our training dataset by selecting four167

time-windows over each CID arrival by randomly perturbing the beginning of the time window while still fulfilling the168

30% overlap condition which captures the uncertainty in arrival-time picking. The final dataset to train the arrival-time169

picker consists of 2867 CIDs.170
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3.4 Confirming a detection on a single station171

Because of the natural variability of the ionosphere, false detections can still be present after the RF classification step.172

These false detections generally correspond to short-time spikes in RF detection probabilities while true detections173

show an increase in RF detection probabilities over longer time periods. To further remove false positives, we confirm174

a detection if 3 consecutive time windows are classified as CIDs. Variations of this value between 2 and 5 have a175

relatively small (< 1%) influence on both recall and precision (see Supplementary Section S3). Short-time decrease176

in detection probabilities can occur within long CID wavetrains (generally caused by large earthquakes) compared177

to the processing time window. To reduce the number of false negatives, we notify the end of an CID wavetrain if 4178

consecutive time windows show a detection probability below 50%.179

Once a detection is confirmed, we must determine a single arrival time for the whole wavetrain. However, predic-180

tions in successive windows classified as CIDs and belonging to the same wavetrain might not have the same predicted181

time. Therefore, we determine the detected wavetrain’s arrival time by computing the 8th decile of the predicted ar-182

rival times over up to 10 successive CID windows. This choice of decile removes the influence of outliers in predicted183

arrival times made in early detection windows. We do not include predicted arrival times beyond 10 time steps, i.e.184

300 s, since these arrivals might correspond to time windows that do not include the true arrival time.185

3.5 Associating confirmed detections186

Once arrival times are picked across a network of stations and satellites, their spatial distribution informs us about187

the nature of the detected disturbance. Because large-scale disturbances (e.g., geomagnetic storms, internal gravity188

waves) or false positives can still pollute the detection dataset after the confirmation procedure at step 5, it is critical189

to discriminate between CIDs and other sources. If the detected signals belong to a CID, arrival times should follow190

the geometry of the CID wavefront, whose geometry is controlled by local sound velocities (Inchin et al. 2021).191

Therefore, the difference in CID arrival times between two stations/satellites can not be lower than the time it takes192

an acoustic wavefront to propagate between these two stations/satellites at the local acoustic velocity. Furthermore,193

the spatial extent of the CID wavefront in the ionosphere is constrained by the dimensions of the activated faults at194

the ground (Inchin et al. 2021) which is generally below 1000 km. Arrivals detected at two stations/satellites located195

at large distances from each other (i.e., > 1000 km) are not likely to belong to the same CID wavefront. By ignoring196

combinations of detections that show un-realistic travel times, we further improve the quality of our detection dataset.197

The association procedure is performed on a set of confirmed arrivals and consists of three steps: 1) for new198

detections dcurrent, give dcurrent an unused association number scurrent, 2) For each detection dcurrent find other199

confirmed detections daccept across the satellite network within an acceptable time range from the current detection200

dcurrent. By acceptable time range, we consider all arrivals with a time offset from the current detection toffset <201

rmax/cmin, where rmax = 500 km is the maximum association range between two detection points, and cmin = 0.65202

km/s is the minimum horizontal acoustic velocity. rmax is chosen as the maximum possible radius of a CID wavefront,203
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Figure 3. Building datasets to train our CID classifier and arrival-time picker. Each waveform in our vTEC

dataset contains information about the CID arrival time and wavetrain duration. First, 4 CID windows and

4 noise windows are extracted from each vTEC waveform. CID windows must overlap the CID wavetrain

by at least 70% while noise windows must start or end at least 1000 s, respectively, after or before the

CID wavetrain. Each window is then pre-processed (derivative and linear detrending) to remove long-term

trend. Features are extracted from the preprocessed CID and noise waveforms to build a training dataset

for our RF classifier with 85% assigned to the training dataset and 15% to the validation dataset. To build

our arrival-time picker RF model, preproccessed CID waveforms are normalized with 85% assigned to the

training dataset and 15% to the validation dataset.

and cmin corresponds to the minimum acoustic velocity in the lower ionosphere. Finally, 3) for each detection in an204

acceptable time range daccept, if detection has an association number saccept, change scurrent to saccept.205

4 RESULTS206

To optimize our ML models for detection and arrival-time picking, we split both datasets between 85% training207

data and 15% validation data (see Figure 3). The classifier’s validation dataset is to calculate confusion matrices and208

measure the rate of false and true positives which is not accessible when bootstrapping samples. The performance of209

the classification procedure is sensitive to the window size used for training. In Figure 4a, we show both recall and210

precision metrics for both classes vs the choice of window size. Precision indicates the proportion of true detections211

relative to all detections (true positives plus false positives). Recall corresponds to the ratio of correct detections over212

all detections that should have been made (true positives plus false negatives). Because performances are also affected213

by the choice of overlap threshold used to build the training dataset, recall and precision are averaged over four214

overlaps between 30% to 90%. We observe that there is a clear improvement in both noise precision and arrival recall215

(up to ∼ 94%) with an increase in window size over the testing dataset up to 720 s. This owes to the higher number216
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of incomplete CID wavetrain for smaller windows than larger ones. For larger time windows > 720 s, precision and217

recall values plateau as the predictive power of some input features computed over large time windows diminishes. We218

selected a time window of 720 s which gives excellent classification results while facilitating the arrival time picking219

procedure by decreasing the range of possible values compared to larger time windows. Timeseries inputs shown220

in Figure 4b seem to be the most important features as determined by our RF. However, the overlap between input221

distributions motivates the choice of a large number of features to classify waveforms (see Supplementary Section S2).222

The recall for our detection model, shown in Figure 4c, is high for a wide range of probability thresholds indi-223

cating that the RF rarely labels true arrivals as noise. We observe in Figure 4d that this value decreases rapidly for224

probability thresholds > 50% corresponding to a stricter classification. However, with larger thresholds, the fall-out,225

i.e., the number of false alerts will also decrease. Changes in number of false alerts with variations in probability226

thresholds highlights that the threshold can be adapted to specific applications depending on the objective. For early227

warning applications, the number of missed alert should be low and lower thresholds could therefore be used. In con-228

trast, when building arrival-time catalog to invert for source parameters, precision is key and false alerts should be229

avoided, which necessitates larger thresholds. Additionally, results indicate that RF outperforms the other analytical230

methods, including STA/LTA filters, in terms of both true and false positive rates (see Appendix appendix B).231

The RF model can provide an estimate of the relative feature importance through the calculation of the Gini’s im-232

purity during training. Figure 4b shows that the three best features have been extracted from the timeseries in contrast233

to other signal classification studies (e.g., Wenner et al. 2021). However, the calculation of feature importance can be234

biased when considering continuous or high-cardinality categorical variables or when inputs features are co-linear.235

Co-linearity is present in our input dataset between spectral and time-series features (see Supplementary Section S2)236

which indicates a potential bias in variable importance results. The significant overlap between distributions supports237

the choice of a large number of features to properly discriminate between each class. Note that this overlap between238

clusters is also present when using other clustering methods such as such as Principal Component Analysis and t-239

distributed Stochastic Neighbor Embedding (see Supplementary Section ??), which further highlights the complexity240

of this classification problem.241

Detection results for a waveform recorded during the 2011 Sanriku earthquake (Figure 5a) show that both pre-242

dicted (vertical grey line) and true (vertical red line in top panel) arrival times overlap, as the absolute error is low243

(< 3 s). Note that the time used to plot detection probabilities corresponds to the end of the time window used for each244

classification. We observe that the duration of this wavetrain (∼ 450 s) is much larger than the true wavetrain (∼ 200245

s), owing to the large time windows employed in our detection model. Outside of the detected wavetrain, detection246

probabilities generally remain low (< 20%) in accordance to the high true negative rate shown in Figure 4c.247

In addition to the classification of individual waveform snippets, accurate arrival times are crucial for near real-248

time applications. We assess our model’s arrival-time picking accuracy by computing the error between predicted249

and true arrival times. Arrival-time errors for each event in our CID dataset in Figure 5b indicate that most arrivals250

(∼ 95%) are captured with an absolute error < 60s, i.e., less than two time steps, and a large proportion of arrivals251
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Figure 4. Sensitivity and accuracy of the RF classification step. (a) Precision (prec.) and recall for noise

and arrival classes and various window sizes averaged over multiple overlap thresholds: 30%, 50%, 70%,

and 90%. The following formula are used to compute recall and precision for arrival and noise: recall

arrival = TP/(TP + FN), recall noise = TN/(TN + FP ), precision arrival = TP/(TP + FP ), and

precision noise = TN/(TN + FN). TP, TN, FP, and FN correspond to True positive, True Negative, False

positive, and False Negative. The correct detection of a CID corresponds to a TP. (b) Distribution of the

three best features against each other. In the diagonal, we show univariate histograms for each feature. Best

features are determined during training by calculating the Gini’s impurity. W0 corresponds to the ratio of

the envelope mean over the envelope maximum, W2 is the kurtosis of the timeseries, and S14 is the energy

up to the Nyquist frequency, i.e., 0.0165 Hz. (c) Confusion matrix for the detection model with window size

w = 720 s and an overlap of 70%. The confusion matrix is normalized over each row. (d) Arrival-class ROC

curve using the detection model with window size w = 720 s. The Area Under Curve (AUC) value is shown

above the panel. (e) examples of pre-processed waveforms corresponding to FP (red) and FN (green).
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(∼ 80%) are accurately reproduced with an absolute error < 30 s, which is below the sampling time in each CID252

waveform. Some outliers are present for both Illapel and Kaikoura events. Errors for the Kaikoura earthquake owe253

primarily to the high noise level in the waveforms (i.e., random fluctuations of TEC background) which leads to large254

variations in vTEC time derivatives. For Illapel, false positives are lumped together with the true detection windows255

and degrade the arrival-time picking performance over 4 time steps. However, the average arrival-time picking error256

across the whole dataset decreases significantly as the number of time steps increases, i.e., the picking time delay (see257

Figure 5c).258

Confirmed detections across multiple satellites/stations can be used to plot ionospheric maps for each event.259

Comparing Tohoku’s ionospheric images in Figures 5d and 5e, we observe that the spatial distribution of arrival times260

is accurately reproduced by our detection model. The earliest arrival times match the location of maximum slip at the261

surface. The slight shift of the first arrivals to the south east owes to our choice of altitude of detectionHion (Astafyeva262

et al. 2013a). However, some spurious arrivals are present in Figure 5e, west of the fault with early arrival times. These263

false detections correspond to rapid changes in vTEC occurring more than 20 mn before or after the true arrival and264

classified as earthquake signals by our model.265

Our association procedure enables the discrimination between detections belonging to the same wavefront and266

spurious arrivals. The distribution of association classes for the confirmed detections is shown in Figure 5f. Owing267

to the large time difference between spurious arrivals and the true arrivals, false detections are correctly classified in268

different association classes (see first vertical dark purple line in the inset plot in Figure 5f). The time evolution of269

the distribution of confirmed arrivals (see Supplementary Section S5) indicates that the entirety of the true arrivals270

were detected within 15 min after the event. Note that the position of ionospheric detection points is dependent on the271

altitude of detection Hion, which could impact the association classes. However, while changing Hion from 180 to 250272

km for Tohoku affects the location of the ionospheric points, true CID arrivals are still correctly associated within the273

same class (see Supplementary Section S7).274

New detections have also been reported by our model west of the epicenter (Figures 5d and 5e), in addition to275

the ones picked by human analysts, for the largest class corresponding the true CID (inset plot in Figure 5e and light276

purple class in Figure 5f). A low signal-to-noise ratio pulse is visible after the predicted arrival time (vertical line) at277

t = 9.9 mn after the earthquake, which is consistent with acoustic travel time from the source highlighted by other278

studies (e.g., Astafyeva et al. 2013a). Using our model also ensures consistency in the choice of arrival times, in279

contrast to human analysts who introduce a subjective uncertainty range when determining the true onset.280

In order to further assess the ability of our model to detect arrivals on new unseen data, we processed waveforms281

recorded after the 2014 Iquique earthquake (see Table A1). In Figure 6a, we show the slip distribution of the Iquique282

earthquake along with the RF predicted arrivals times and association classes in Figures 6bc. Predicted arrival times283

are coherent with the region of maximum slip (the surface projection of the slip) at the surface.284
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Figure 5. Performance assessment of RF arrival-time picking, and association steps. (a) 4-h vTEC waveform for the Sanriku event, satellite

G07, station 0048 along with detection probabilities predicted by our RF detection model. The time used to plot probabilities over each window is

the window end time. The true arrival is shown as a red vertical line and the RF-predicted arrival time as a dark grey vertical line. The wavetrain

detected by the RF and heuristic models is highlighted with a grey background. (b) box plot of arrival-time picking errors (in s) vs event after 3

mn since the first detection window. (c) Evolution of arrival-time picking error vs time delay since first detected window. The red curve shows the

average error across all events. Red shaded background shows the 1st to 3rd quartile region computed across the events. (def) Tohoku’s ionospheric

arrival-time maps computed 14 minutes after the event for (d) hand-picked arrival times along with the epicenter location (yellow star), and surface

projection of the fault slip (in m) as green to yellow patches, (e) RF-based arrival-time predictions with an inset plot showing a vTEC waveform

for satellite G27 and station 0167 which was not reported by human analyst, and (f) association classes determined from predicted arrival times,

along with an inset plot showing the vTEC data for satellite G26, station 0155. The vertical lines correspond to the arrival times of the two detected

arrivals (first arrival is a false detection; the second is the true arrival). CID coordinates were calculated at the intersection point between the LOS

and the ionospheric layer using Hion = 200 km for lower elevations, and 250 km for higher elevations.
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Figure 6. The 2014 Iquique earthquake. (a) map showing the epicenter location (yellow star) and surface

projection of the fault slip (in m) as green to yellow patches. (b) CID detections by RF-based arrival-

time predictions, and (c) association classes determined from predicted arrival times. CID coordinates were

calculated at the intersection point between the LOS and the ionospheric layer using Hion = 250 km. These

maps can be generated 15 minutes after the event.

5 DISCUSSION285

Monitoring procedures NRT-compatible require both high accuracy and low computational time. To provide an es-286

timate of our algorithm’s computational time, we show in Figure 7 the cost associated with detection, arrival-time287

picking, and association steps after the 2011 Tohoku event on a single CPU (Dell T5610 Intel Xeon E5-2630 v2288

2.6Ghz 6 CPUs 64GB RAM on CentOS 7). The computational time for feature extraction, classification, validation,289

and time picking for a single satellite/station pair (Figure 7b) is always below 1 s and is dominated by RF steps. This290

result suggests that a similar detection methodology, trained with higher sampling-rate data, could be implemented for291

NRT applications up to 1 Hz. Note that the time picking step is only present when a detection occurs which explains292

the jump in computational cost around 7 mn after the earthquake.293

We observe a significant increase in computational cost across the network 9 mn after the earthquake in Figure294

7c. This jump in association cost corresponds to the earthquake-induced acoustic wave reaching the ionosphere which295

leads to a large number of detections at each combination of satellite/station (see Figure 7d). This association proce-296

dure is computationally expensive since it must scan through all possible neighbors of each new detection to update297

association classes, which scales linearly with the number of new detections. Yet, the maximum cost for one time298

step over the whole network is less than 6 s. It takes around 1 s to process 10 new detections, at a given time, over a299
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Figure 7. Computational cost associated with detection, arrival-time picking, and association steps after the

2011 Tohoku earthquake. (a) vTEC timeseries for satellite G07 and station 0048. (b) stack of computational

time (s) for feature extraction (green, see Section 3.1), RF classification (orange, see Section 3.2), RF arrival-

time picking (blue, Section 3.3), and heuristic valiconnectiondation (pink, Section 3.4). (c) Computational

cost (s) at each time iteration of the association procedure. (d) number of new detections per time iteration.

(e) number of associated detections up to current time iteration.

network of about 100 satellites/stations. The number of associated detections reaches a plateau about 13 mn after the300

earthquake (see Figure 7e) which corresponds to the end of the association of all first CID arrivals.301

The practical implementation of our detection/association procedure will require an efficient internet between302

the relevant GNSS stations to collect and extract timeseries for classification in NRT. However, because the overall303

computational cost of one time iteration using our method is below 6 s on a single CPU using non-compiled Python304

codes, at least 24 s are available for data acquisition and processing with waveforms sampled at 30 s. The association305

step is currently the most costly (∼ 90% of the total cost) but can be run in parallel to the other detection steps. Note306

that we also explored the feasibility of using our model to detect CIDs at a higher sampling rate by extracting input307

features without downsampling input data (see Supplementary Section S6). Our RF detection model always shows308
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detection probabilities > 50% using a 1 s sampling time but still predict a strong increase in detection probability309

around the CID arrival. This suggests that increasing the detection threshold to higher values (e.g., from 50% to 70%)310

would enable implementation of our detection method at higher sampling-rates at the cost of a higher false positive311

likelihood.312

Our model seems to be also able to detect vTEC variations associated with volcanic explosions and Rayleigh313

waves (see Supplementary Section S8). This suggests that a dataset of volcanic-induced and Rayleigh waves vTEC314

waveforms should be built and used to train an efficient discriminator between noise, earthquake, and volcanic phases.315

However, the discrimination between TEC signals from volcanic or seismic origin can easily be done by comparing316

the predicted arrival times at the ionospheric points to the distribution of seismic events in seismic catalogs which are317

available in NRT (Thompson et al. 2019).318

6 CONCLUSIONS319

We introduced an automatic procedure for detection, arrival-time picking, and association of CIDs. Detection and320

arrival time picking steps are performed using random forests trained over a CID dataset built from 12 earthquake321

events. These methods show excellent classification results with 96% true positive rate and 96% true negative rate,322

and arrival-time accuracy with an average error < 20 s using a 120 s time delay since the first detection window.323

Our model also outperforms threshold-based detection methods in terms of both recall and precision. Our analytical324

classification procedure accurately associates all arrivals corresponding to the same wavefront. Classification results325

also indicate that low signal-to-noise ratio arrival that were not picked by human analysts could also captured by our326

RF detection model.327

The performance of our automated procedure is promising for future NRT applications, including the use of CID328

arrival times for construction of ionospheric images of seismic sources. The first demonstration of seismo-ionospheric329

imagery was based on retrospective analysis of CID generated by the 2011 Tohoku earthquake (Astafyeva et al. 2011,330

2013a). Here we show that our newly developed method can generate such images in NRT. Note that the position of331

ionospheric detection points is dependent on the altitude of detectionHion. The latter parameter is not known precisely,332

but it is presumed to be around the height of ionospheric ionization maximum, i.e. around 250-350 km, depending on333

solar, geomagnetic, seasonal and diurnal conditions. Future studies should focus on determining the real Hion in order334

to obtain accurate source locations.335

Acquiring labeled vTEC data from additional events which will significantly improve the generalization abilities336

of our RF models. Additionally, the choice of features made in this paper could be further refined to obtain better337

accuracy (Han & Kim 2019). More accurate RF classifications could also alleviate the need for a validation step338

presented in Section 3.4. However, RF memory costs increase exponentially with tree depth, and consequently dataset339

size, ∼ 2D, with D the tree depth (Louppe 2014; Solé et al. 2014). The RF classification model is only about 70340

mb but will grow considerably larger with new data. With a larger dataset, image segmentation ML techniques such341

as standard convolutional neural networks (Ross et al. 2018, 2019), transformers (Mousavi et al. 2020) or residual342
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networks (Mousavi et al. 2019) applied on non-engineered inputs such as spectrograms could lead to substantial343

improvements in accuracy and memory costs for both classification and arrival time picking steps.344

Finally, the proposed association algorithm does not incorporate any information about the source nor the atmo-345

spheric dynamics. This procedure could be improved by assessing the consistency of arrival time differences across a346

network of satellites and stations using a range of possible sources, similarly to the methods used for the automated347

production of seismic bulletins (Draelos et al. 2015). In contrast to seismic media, atmospheric velocities, i.e., winds,348

are time-dependent which introduces further complexity when computing theoretical source-receiver arrival times.349

Fast simulations of acoustic wave propagation up to the ionosphere with realistic atmospheric specifications would350

greatly improve the classification between true and false arrivals and enable the localization of the largest surface351

displacements (Bagiya et al. 2019; Inchin et al. 2021; Zedek et al. 2021). Finally, to confirm the detection of an earth-352

quake across a given network and trigger an alert for human analysts, an additional heuristic could be implemented353

based, for example, on the number of detections per association class.354

APPENDIX A: LIST OF EVENTS355

The list of events compiled in our CID dataset is described in Table A1.356

APPENDIX B: COMPARISON OF RF-BASED METHOD TO ANALYTICAL DETECTORS357

To further assess the RF classification performance, we compare the results to two analytical detection methods: 1) a358

Short-Time Average / Long-Time Average (STA/LTA) detection method, and 2) a derivative-based threshold method.359

The STA/LTA method requires to set four parameters: the STA and LTA time windows and two thresholds to activate360

and deactivate the detection trigger. The STA window represents the average duration of expected earthquake signals361

while the LTA window captures the average TEC noise amplitude. The STA/LTA method employed here uses a 60 s362

STA window and a 400 s LTA window. A detection is triggered if the STA/LTA threshold reaches 2.5 while the end of363

a wavetrain is chosen where the threshold goes below 0.5. This trigger value of 2.5, lower than employed at seismic364

stations, is used to make sure we capture each arrival, i.e., to increase the true positive rate. Parameters are chosen365

empirically and could be improved with a thorough investigation of the STA/LTA accuracy over the whole dataset.366

However, fine tuning the hyperparameters increases the likelihood of over-fitting a specific dataset. This shows the367

advantage of using a ML-based approach that relies on an efficient optimization procedure enabling us to reach high368

accuracy without strong overfitting.369

The analytical method used for comparison, referred to as ”AN”, is based on the analysis of TEC rate-of-change.370

Maletckii & Astafyeva (2021) noticed that, in a majority of cases, the CID are characterized by a rapid and high371

increase of TEC. To capture the CID arrival we therefore suggest to analyze the rate of TEC change between the two372
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consecutive epochs, between every two and every three epochs:373

∂vTEC1 = |vTECi − vTECi+1|, (B.1)

∂vTEC2 = |vTECi − vTECi+2|, (B.2)

∂vTEC3 = |vTECi − vTECi+3|, (B.3)

∂vTEC4 = |vTECi − vTECi+4|, (B.4)

where the subscript i corresponds to the time step ti. The vTEC at epoch i is considered as the CID arrival if each374

slope ∂vTEC1, ∂vTEC2, and ∂vTEC3 (and ∂vTEC4 for 1s data) are greater that the thresholds shown in Table A2.375

These threshold values were determined analytically over multiple events. Detections are confirmed if 12 consecutive376

time steps fulfill the threshold conditions described in Table A2.377

To assess the performance of each method, we determine the False and True negative and positive rates over378

the waveforms included in the testing dataset. To provide meaningful results, we scan entire waveforms (from 1-h to379

2-h duration) instead of a few windows as done for RF training. Including entire waveforms means that more noise380

windows will be included than CID windows, which is an excellent test to assess the performance of each method in381

more realistic conditions (where CIDs are rare). We consider that a wavetrain, i.e., a time window characterized by an382

arrival time and a duration, classified as CID by any method is a true positive if it overlaps the true arrival by at least383

70%.384

Our RF-based detection method outperforms AN and STA in terms of true positive and negative rates (see Fig-385

ures A1). We observe a lower true negative rate than determined during the RF validation step (see Figure 4c). This386

owes to the presence of much larger number of noise windows in the dataset. The STA/LTA filter also performs well387

to detect true arrivals. However, this high true positive rate comes at the cost of a low false positive rate, i.e., a large388

number of false alerts. The analytical method using only local time derivatives shows a large number of false negatives389

owing to presence of noise in the data.390
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ucsd.edu/dataBrowser.shtml), National Seismological Centre, University of Chile (http://gps.csn.uchile.397

cl). Finite-fault data were downloaded from the US Geological Survey website (https://earthquake.usgs.gov/398
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Figure A1. Confusion matrices calculated over the RF testing dataset consisting of 1-h to 2-h long wave-

forms for (a) the RF classification model, (b) the analytical time-derivative based model, and (c) the

STA/LTA filter. Confusion matrices show from top to bottom and left to right, the True Positive Rate (TPR),

False Positive Rate (FPR), False Negative Rate (FNR), and True Negative Rate (TNR), such that: TPR =

TP/(TP + FN), TNR = TN/(TN + FP ), FPR = TP/(TP + FP ), and FNR = TN/(TN + FN).

earthquakes). RF models, validation, and associations codes will be released upon publication on a FigShare and a399

GitHub repository.400
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spheric view of the 2011 tohoku-oki earthquake seismic source: the first 60 seconds of the rupture, Sci-430

entific reports, 10:5232.431

Belehaki, A., Tsagouri, I., Altadill, D., Blanch, E., Borries, C., Buresova, D., Chum, J., Galkin, I., Juan,432

J. M., Segarra, A., et al., 2020. An overview of methodologies for real-time detection, characterisation433

and tracking of traveling ionospheric disturbances developed in the techtide project, Journal of Space434

Weather and Space Climate, 10, 42.435

Breiman, L., 2001. Random forests, Machine learning, 45(1), 5–32.436

Cahyadi, M. N. & Heki, K., 2015. Coseismic ionospheric disturbance of the large strike-slip earthquakes in437

north sumatra in 2012 mw dependence of the disturbance amplitudes, Geophysical Journal International,438

200(1), 116–129.439

Draelos, T. J., Ballard, S., Young, C. J., & Brogan, R., 2015. A new method for producing automated440

seismic bulletins: Probabilistic event detection, association, and location, Bulletin of the Seismological441

Society of America, 105(5), 2453–2467.442

Efendi, E. & Arikan, F., 2017. A fast algorithm for automatic detection of ionospheric disturbances: Drot,443

Advances in Space Research, 59(12), 2923–2933.444

Geurts, P., Ernst, D., & Wehenkel, L., 2006. Extremely randomized trees, Machine learning, 63(1), 3–42.445

Hammer, C., Ohrnberger, M., & Faeh, D., 2013. Classifying seismic waveforms from scratch: a case study446

in the alpine environment, Geophysical Journal International, 192(1), 425–439.447

Han, S. & Kim, H., 2019. On the optimal size of candidate feature set in random forest, Applied Sciences,448

9(5), 898.449

Heki, K., 2006. Explosion energy of the 2004 eruption of the asama volcano, central japan, inferred from450

ionospheric disturbances, Geophys. Res. Lett., 33, L17101.451

Heki, K., 2021. Ionospheric disturbances related to earthquakes in ionospheric dynamics and applications,452

Geophys. Monograph, 260, edited by C. Huang, G. Lu, Y. Zhang, and L. J. Paxton, pp. 511–526.453



Near-real-time detection of co-seismic ionospheric disturbances using machine learning 21

Heki, K. & Ping, J., 2005. Directivity and apparent velocity of the coseismic ionospheric disturbances454

observed with a dense gps array, Earth and Planetary Science Letters, 236(3), 845–855.455

Heki, K., Otsuka, Y., Choosakul, N., Hemmakorn, N., Komolmis, T., & Maruyama, T., 2006. Detection456

of ruptures of andaman fault segments in the 2004 great sumatra earthquake with coseismic ionospheric457

disturbances, J. Geophys. Res., 111, B09313.458

Hibert, C., Mangeney, A., Grandjean, G., Baillard, C., Rivet, D., Shapiro, N. M., Satriano, C., Maggi,459

A., Boissier, P., Ferrazzini, V., et al., 2014. Automated identification, location, and volume estimation460

of rockfalls at piton de la fournaise volcano, Journal of Geophysical Research: Earth Surface, 119(5),461

1082–1105.462

Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E., 2008. GNSS-Global Navigation Satellite System,463

Springer.464

Inchin, P., Snively, J., Kaneko, Y., Z., D., M., & Komjathy, A., 2021. Inferring the evolution of a large465

earthquake from its acoustic impacts on the ionosphere., AGU Advances, 2.466

Kakinami, Y., Saito, H., Yamamoto, T., Chen, C.-H., Yamamoto, M., Nakajima, K., Liu, J.-Y., & Watanabe,467

S., 2021. Onset altitudes of co-seismic ionospheric disturbances determined by multiple distributions of468

gnss tec after the foreshock of the 2011 tohoku earthquake on march 9, 2011, Earth and Space Sciences.469

Kamogawa, M., Orihara, Y., Tsurudome, C., Tomida, Y., Kanaya, T., & Ikeda, D., e. a., 2016. A possible470

space-based tsunami early warning system using observations of the tsunami ionospheric hole, Scientific471

Reports, 6:37989.472

Katsumata, A., Ueno, H., Aoki, S., Yasushiro, Y., & Barrientos, S., 2013. Rapid magnitude determination473

from peak amplitudes at local stations, Earth, Planets Space, 65, 843–853.474

Komjathy, A., Yang, Y., Meng, X., Vekhoglyadova, O., Mannucci, A., & Langley, R., 2016. Review475

and perspectives: Understanding natural-hazards-generated ionospheric perturbations using gps measure-476

ments and coupled modeling, Radio Science, 51, 951–961.477

LaBrecque, J., Rundle, J., Bawden, G., Surface, E., & Area, I. F., 2019. Global navigation satellite system478

enhancement for tsunami early warning systems, Global Assessment Report on Disaster Risk Reduction.479

Lee, R., Rolland, L., & Mykesell, T., 2018. Seismo-ionospheric observations, modeling and backprojection480

of the 2016 kaikoura earthquake, Bulletin of the Seismological Society of America, 108(3B), 1794–1806.481

Louppe, G., 2014. Understanding random forests: From theory to practice, arXiv preprint482

arXiv:1407.7502.483

Maletckii, B. & Astafyeva, E., 2021. Determining spatio-temporal characteristics of coseismic travelling484

ionospheric disturbances (ctid) in near real-time, Scientific Reports, 11.485

Manta, F., Occhipinti, G., Feng, L., & Hill, E., 2020. Rapid identification of tsunamigenic earthquakes486

using gnss ionospheric sounding, Scientific Reports, 10:11054.487

Mousavi, S. M., Zhu, W., Sheng, Y., & Beroza, G. C., 2019. Cred: A deep residual network of convolutional488



22 Quentin Brissaud and Elvira Astafyeva

and recurrent units for earthquake signal detection, Scientific reports, 9(1), 1–14.489

Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C., 2020. Earthquake trans-490

former—an attentive deep-learning model for simultaneous earthquake detection and phase picking, Na-491

ture communications, 11(1), 1–12.492

Occhipinti, G., Aden-Antoniow, F., Bablet, A., Molinie, J.-P., & Farges, T., 2018. Surface waves magnitude493

estimation from ionospheric signature of rayleigh waves measured by doppler sounder and oth radar,494

Scientific Reports, 8:1555.495

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,496

P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duch-497

esnay, E., 2011. Scikit-learn: Machine learning in Python, Journal of Machine Learning Research, 12,498

2825–2830.499

Provost, F., Hibert, C., & Malet, J.-P., 2017. Automatic classification of endogenous landslide seismicity500

using the random forest supervised classifier, Geophysical Research Letters, 44(1), 113–120.501

Rakoto, V., Lognonné, P., Rolland, L., & Coisson, P., 2018. Tsunami wave height estimation from gps-502

derived ionospheric data, J. Geophys. Res., 123, 4329–4348.503

Ravanelli, M., Occhipinti, G., Savastano, G., Komjathy, A., Shume, E. B., & Crespi, M., 2021. Gnss total504

variometric approach: first demonstration of a tool for real-time tsunami genesis estimation, Scientific505

reports, 11(1), 1–12.506

Rolland, L., Vergnolle, M., Nocquet, J.-M., Sladen, A., Dessa, J.-X., Tavakoli, F., Nankali, H., & Cappa,507

F., 2013. Discriminating the tectonic and non-tectonic contributions in the ionospheric signature of the508

2011, mw7.1, dip-slip van earthquake, eastern turkey, Geophys. Res. Lett., 40.509
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Table A1. List of events included in the dataset. Events are sorted by magnitude

.

Event
Reference Mag. Lat. ; Lon.

Date
(DD/MM/YY)

Time
(UTC)

Min. signal
duration (s) Sat. Samp

Tohoku 9.1 38.3 ; 142.37 11/03/2011 05:46:23 800 G26
G05

1s, 30s

Astafyeva et al. (2011, 2013a)

Sumatra 1 8.6 2.35 ; 92.8 11/04/2012 08:38:37 300 G32 15s

Astafyeva et al. (2014)

Tokachi 8.3 41.78 ; 143.90 25/09/2003 19:50:06 440 G13
G24

30s

Heki & Ping (2005)

Illapel 8.3 -31.57; -71.61 16/09/2015 22:54:32 600 G25,G12
G24

15s, 30s

Bagiya et al. (2019)

Sumatra 2 8.2 0.90 ; 92.31 11/04/2012 10:43:09 300 G32 15s

Astafyeva et al. (2014)

Iquique 8.2 -19.61 ; -70.77 01/04/2014 23:46:47 700 G01,G20
G23

15s, 30s

Bagiya et al. (2019)

Macquarie 8.1 -49.91 ; 161.25 23/12/2004 14:59:03 550 G05 30s

Astafyeva et al. (2014)

Fiordland 7.8 -45.75 ; 166.58 15/07/2009 09:22:29 300
G20

30s

Astafyeva et al. (2013b)

Kaikoura 7.8 42.757 ; 173.077 13/11/2016 11:02:56 550 G20
G29

1s, 30s

Bagiya et al. (2018)

Sanriku 7.3 38.44 ; 142.84 09/03/2011 02:45:20 200 G07, G10
G08

1s, 30s

Thomas et al. (2018); Astafyeva & Shults (2019)

Kii 7.2 33.1 ; 136.6 05/09/2004 10:07:07 425 G15 30s

Heki & Ping (2005)

Chuetsu 6.6 37.54 ; 138.45 16/07/2007 01:12:22 300 G26 30s

Cahyadi & Heki (2015)
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Table A2. Slope parameters for different sampling rates used by the analytical detector AN.

Sampling (s) s1 (TECU/epoch) s2 (TECU/epoch) s3 (TECU/epoch) s4 (TECU/epoch)

1 0.017 0.027 0.045 0.05

15 0.08 0.125 0.12 -

30 0.11 0.18 - -
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