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Table S1: List of events included in the dataset. Events are sorted by magnitude

.

Event
Reference Mag. Lat. ; Lon.

Date
(DD/MM/YY)

Time
(UTC)

Signal
duration (s) Sat. Samp

Tohoku 9.1 38.3 ; 142.37 11/03/2011 05:46:23 800 G26
G05

1s, 30s
Astafyeva et al. (2011, 2013a)
Sumatra 1 8.6 2.35 ; 92.8 11/04/2012 08:38:37 300 G32 15s
Astafyeva et al. (2014)
Tokachi 8.3 41.78 ; 143.90 25/09/2003 19:50:06 440 G13

G24
30s

Heki and Ping (2005)
Illapel 8.3 -31.57; -71.61 16/09/2015 22:54:32 600 G25,G12

G24
15s, 30s

Bagiya et al. (2019)
Sumatra 2 8.2 0.90 ; 92.31 11/04/2012 10:43:09 300 G32 15s
Astafyeva et al. (2014)
Iquique 8.2 -19.61 ; -70.77 01/04/2014 23:46:47 700 G01,G20

G23
15s, 30s

Bagiya et al. (2019)
Macquarie 8.1 -49.91 ; 161.25 23/12/2004 14:59:03 550 G05 30s
Astafyeva et al. (2014)
Fiorland 7.8 -45.75 ; 166.58 15/07/2009 09:22:29 300

G20
30s

Astafyeva et al. (2013b)
Kaikoura 7.8 42.757 ; 173.077 13/11/2016 11:02:56 550 G20

G29
1s, 30s

Bagiya et al. (2018)
Sanriku 7.3 38.44 ; 142.84 09/03/2011 02:45:20 200 G07

G10
1s, 30s

Thomas et al. (2018); Astafyeva and Shults (2019)
Kii 7.2 33.1 ; 136.6 05/09/2004 10:07:07 425 G15 30s
Heki and Ping (2005)
Chuetsu 6.6 37.54 ; 138.45 16/07/2007 01:12:22 300 G26 30s
Cahyadi and Heki (2015)
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Table S2: Slope parameters for different sampling rates used by the analytical detector presented in Section
S2.

Sampling (s) s1 (TECU/epoch) s2 (TECU/epoch) s3 (TECU/epoch) s4 (TECU/epoch)
1 0.017 0.027 0.045 0.05

15 0.08 0.125 0.12 -
30 0.11 0.18 - -

S2 Analytical detectors27

To further assess the RF classification performance, we compare the results to two analytical detection28

methods: 1) a STA/LTA detection method, and 2) a derivative-based threshold method that has recently29

been developed. Both methods require an extensive hyper-parameter optimization in order to reduce the30

increase both true and false positive rates over a specific dataset. This further highlights the benefits of31

using an optimized RF to classify CIDs. We compare the three methods over a waveform dataset consisting32

of windows of length 2000 s and centered on each true arrival.33

34

The STA/LTA method requires to set four parameters: the STA and LTA time windows and two thresh-35

olds to activate and deactivate the detection trigger. The STA window should represent the average duration36

of expected earthquake signals while the LTA window should capture the average TEC noise amplitude. The37

STA/LTA method employed here uses a 60 s STA window and a 400 s LTA window. A detection is trig-38

gered if the STA/LTA threshold reaches 2.5 while the end of a wavetrain is chosen where the threshold goes39

below 0.5. This trigger value of 2.5, lower than typically used by ground seismic station, is used to make40

sure to capture each arrival, i.e., increase the true positive rate, since small earthquakes generally show low41

signal-to-noise ratio. This choice of parameters is purely empirical and could be improved with a thorough42

investigation of the STA/LTA accuracy over the whole dataset. However, this is not straightforward since43

spurious arrivals can show a similar frequency content than CIDs.44

45

The analytical method used for comparison, referred to as ”AN”, is based on the analysis of TEC rate-of-46

change. Maletckii and Astafyeva (2021, Determining spatio-temporal characteristics of Coseismic Travelling47

Ionospheric Disturbances (CTID) in near-real-time, Submitted to Sci. Reports) noticed that, in a majority48

of cases, the CID are characterized by a rapid and high increase of TEC. To capture the CID arrival we49

therefore suggest to analyze the rate of TEC change between the two consecutive epochs, between every two50

and every three epochs:51

∂vTEC1 = |vTECi − vTECi+1|, (1)

∂vTEC2 = |vTECi − vTECi+2|, (2)

∂vTEC3 = |vTECi − vTECi+3|, (3)

∂vTEC4 = |vTECi − vTECi+4|, (4)

where the subscript i corresponds to the time step ti. The vTEC at epoch i is considered as the CID arrival52

if each slope ∂vTEC1, ∂vTEC2, and ∂vTEC3 (and ∂vTEC4 for 1s data) are greater that the thresholds53

shown in Table S2. These threshold values were determined analytically upon data analysis for numerous54

CID.55

56

We show the confusion matrix for each method in Figures S1abc. Using the heuristic proposed in Section57

3.4, RF outperforms the other methods and show a higher positive rate than over the testing dataset (see58

Figure 2c). This owes to the choice of windows used for testing here that includes windows only up to 1000s59

from the true arrival. The STA/LTA filter also performs extremely well to detect true arrivals. However60

this good true positive rate comes at the cost of a large number of false alerts. The analytical method using61

only local time derivatives shows a large number of false negatives owing to both the choice of heuristic and62

the variety in true arrival waveform characteristics.63
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S3 Random forest classification hyper-parameter optimization64

Random forests have two main hyper-parameters to optimize during training: 1) maximum tree depth, and 2)65

number of trees. Increasing both hyper-parameters generally leads to increased accuracy as well as increased66

execution time and memory cost. Hyper-parameters should therefore be picked to maximize accuracy while67

minimizing computational cost. In Figure S2 we show the variations of various accuracy metrics for variations68

in tree depth and number of trees. The largest accuracy gain comes with the increase in maximum tree depth.69

However, variations in the number of trees do not lead to any substantial improvement across the different70

metrics. We select 800 trees as it maximizes the accuracy across recall, precision, and accuracy.71

S4 List of input features72

All input features used to train the RF classifier presented in Section 3 are described in Table table S3.73

The distribution of input features over our training and testing datasets is shown in Figure S3.74

S5 R2 cross correlations of input features and clustering analysis75

The RF model can provide an estimate of the relative feature importance through the calculation of the76

Gini’s impurity during training. Figure 2b shows that the three best features have been extracted from the77

timeseries in contrast to other signal classification studies Wenner et al. (2021). However, the calculation78

of feature importance can be biased when considering continuous or high-cardinality categorical variables79

or when inputs features are co-linear. To assess the input features correlations within our CID dataset, we80

show in Figure S4 the R2 cross correlations. Co-linearity is present in our input dataset between spectral81

and time-series features which indicates a potential bias in variable importance results.82

Additionally, the significant overlap between distributions in Figure 2b motivates the choice of a large83

number of features to properly discriminate between each class. However, multidimensional clusters in84

input data are difficult to represent in 2d which prevents human interpretation. Two standard methods85

to facilitate the visualization of clusters in data are called Principal Component Analysis (PCA), and T-86

Distributed Stochastic Neighbor Embedding (TSNE, Van der Maaten and Hinton (2008)). PCA consists87

in project the input features in onto a space with orthogonal, i.e., uncorrelated, vector basis such that the88

greatest variance of the data comes to lie on the first coordinate. TSNE builds probability distributions89

over pairs of high-dimensional vectors so that similar data points have a higher probability while dissimilar90

data points are assigned a lower probability. Then, TSNE constructs a similar probability distribution over91

the points in the low-dimensional space, and it minimizes the Kullback–Leibler divergence (KL divergence)92

between the two distributions with respect to the locations of the points in the map. Both PCA and TSNE93

projections are shown in Figure S5. No obvious clusters can be identified which suggests that only complex94

nonlinear relationships can help discriminating signals between noise and CID classes. This further highlights95

the complexity of this classification problem.96

S6 Sensitivity of classification accuracy to number of validation97

points98

The heuristic presented in Section 3.4 relies on a single parameter to confirm a detection: the number of99

consecutive time steps with a detection probability > 50%, referred to as Nd. To determine the optimal100

value of Nd we varied this parameter between 2 and 5, and computed the true and false positive and negative101

rates over our true-arrival dataset, i.e., 2000 s waveforms centered on each true arrival. In Figure S6, we102

observe that the variations in Nd (Nb points trigger) do not affect significantly the true and false positive103

rates. Because we observe a slight decrease in False positive rate with an increase in Nd, we select Nd = 3104

as a trade-off between false alerts and time delay to confirm a detection.105
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Table S3: List of attributes.
Short name Description

W0 Ratio of the mean over the maximum of the envelope signal
W1 Ratio of the median over the maximum of the envelope signal
W2 Kurtosis of the raw signal (peakness of the signal)
W3 Kurtosis of the envelope
W4 Skewness of the raw signal
W5 Skewness of the envelope
W6 Number of peaks in the autocorrelation function
W7 Energy in the first third part of the autocorrelation function
W8 Energy in the remaining part of the autocorrelation function
W9 W7/W8
W10 Maximum of the envelope signal
S0 Mean of the Fourier transform (FT)
S1 Maximum of the FT
S2 Frequency at the FT maximum
S3 Frequency at the FT centroid
S4 Frequency at the FT 1st quartile
S5 Frequency at the FT 2nd quartile
S6 Median of the normalized FT
S7 Variance of the normalized FT
S8 Number of Fourier transform peaks (> 0.75 FT max.)
S9 Mean of FT peaks (S8)
S10 Gyration radius
FT0 Kurtosis of the maximum of all Fourier transforms (FTs) as a function of time
FT1 Kurtosis of the maximum of all FTs as a function of frequency
FT2 Mean ratio between the maximum and the mean of all FTs
FT3 Mean ratio between the maximum and the median of all FTs
FT4 Number of peaks in the curve showing the temporal evolution of the FTs maximum
FT5 Number of peaks in the curve showing the temporal evolution of the FTs mean
FT6 Number of peaks in the curve showing the temporal evolution of the FTs median
FT7 FT4/FT5
FT8 FT4/FT6
FT9 Number of peaks in the curve of the temporal evolution of the FTs central frequency
FT10 Number of peaks in the curve of the temporal evolution of the FTs maximum frequency
FT11 FT9/FT10

FT12
Mean distance between the curves of the temporal evolution of the FTs maximum
and mean frequency

FT13
Mean distance between the curves of the temporal evolution of the FTs maximum
and median frequency

FT14 Mean distance between the 1st quartile and the median of all FTs as a function of time
FT15 Mean distance between the 3rd quartile and the median of all FTs as a function of tim
FT16 Mean distance between the 3rd quartile and the 1st quartile of all FTs as a function of time
W11 Energy of the signal filtered in 0.001-0.005 Hz
W12 Energy of the signal filtered in 0.005-0.015 Hz
W13 Kurtosis of the signal filtered in 0.001-0.005 Hz
W14 Kurtosis of the signal filtered in 0.005-0.015 Hz
S11 Energy up to 0.5Nyf Hz
S12 Energy up to 0.75Nyf Hz
S14 Energy up to 1.0Nyf Hz
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S7 Arrival time picking optimization106

The arrival time picking procedure is based on a RF model. This model takes vTEC time derivatives as an107

input and gives a time shift from the window central time as an output. The RF will therefore be sensitive108

to the window size, as larger windows increase the number of inputs and tend to complicate the picking109

procedure while small time windows lack data points to regularize the time picking problem. Additionally,110

the range of window overlap with the true wavetrain used for training plays a significant role on the RF111

performances. Using small overlaps will train the machine to pick arrivals on incomplete waveforms and112

therefore makes the problem more difficult. However this will enable the machine to more efficiently pick113

arrival times over the first detection time windows of a given wavetrain. We show in Figure S7, the variations114

in time picking accuracy with window size and overlap (called deviation). As a trade-off between errors and115

the ability of our RF model to pick arrival times over incomplete waveforms, we choose a window size similar116

to the RF classifier (see Section 3.2) and an overlap of 30%.117

S8 Time evolution of detected arrivals118

A requirement for NRT applications is to obtain alerts within 20mn after the event. Therefore, our detection119

and association procedure should trigger a valid alert as soon as possible in addition to providing accurate120

arrival times. In Figure S8, we show the evolution of the distribution of arrival times with time since the121

event for the earthquake Tohoku. We observe that after 12mn, we already observe a specific trend in arrival-122

time values highlighting that the acoustic energy is propagating from East to West. After 15mn, almost all123

hand-picked arrival times have been correctly determined by our model.124

S9 Computational cost of detection and association procedures125

The distribution of computational costs for a waveform recorded at satellite G07, station 0048 is shown126

in Figure S9. The time picking step is only present when a detection occurs which explains the jump in127

computational cost around 7mn after the earthquake. The time evolution of computation costs for the128

association step over the entire satellite network during Tohoku is shown in Figure S10. We observe a129

significant increase in computational cost after 9 mn since the earthquake. This higher association cost owes130

to the increase in detections reported at each combination of satellite/station when the earthquake-induced131

acoustic wave reaches the ionosphere. Because the association procedure must scan through all possible132

combinations of detections to lump together arrivals from the same wavefront, the cost increases with the133

number of detections. The maximum cost for one time step over the whole network is less than 6 s.134

S10 Processing of Iquique earthquake135

In order to further assess the ability of our model to detect arrivals on new unseen data, we processed136

waveforms after the 2014 Iquique earthquakes (see Table S1). In Figure S11a, we show the slip distribution137

of the Iquique earthquake along with, in Figures S11bc, the RF predicted arrivals times and association138

classes. The earliest arrival times are reported when the ionospheric points are the closest to the regions of139

maximum slip.140

S11 Detection of CIDs at higher sampling rates141

A machine learning model trained with data sampled at 30s might learn patterns that are invariant with142

frequency. To assess how our classification model performs on 1s data, we extracted features in each time143

window without downsampling waveforms. In addition, we used a 1s time shift between two consecutive144

time windows. Detection probability and picked arrival times are shown in Figure S12. We observe that the145

true arrival is accurately retrieved by our detection model. However, detection probabilities are much lower146

than for 30s data (see Figure 3a). These lower probabilities owe to the additional noise introduced by higher147
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frequencies when extracting input features. The higher-frequency spectral content can lead to substantial148

variations in certain input features. For example, energy peaks at higher frequencies, that would normally149

be smoothed out at lower frequencies, can drastically alter the envelope kurtosis and skewness, which are150

critical parameters for discrimination between noise and arrival windows. Nonetheless, the ability of our151

model to recover the true arrival time is extremely promising for near-real-time applications.152

S12 Detection of ionospheric signal from volcanic eruptions153

Other low-frequency acoustic sources, such as explosions, volcanoes, or meteorites, can generate transient154

ionospheric perturbations. In particular, volcanic eruptions generate both infrasonic and gravito-acoustic155

signals in the 1-10 mHz frequency range. While the physics of gravity-wave propagation differs from infra-156

sound propagation Hines (1960), potential similarities between timeseries for such phases when processing157

incomplete wavetrains could trigger a RF detection. We therefore assessed the sensitivity of our RF model to158

travelling volcanic-induced ionospheric propagation using the example of the Calbuco volcanic eruption on159

April 22, 2015 Shults et al. (2016). In figure S13, we observe that the first arrival of the main disturbances160

associated with the volcanic eruption is accurately captured. However, later arrivals are not detected by our161

model suggesting that vTEC data from volcanic phases should be included in the training dataset to better162

discriminate noise vs earthquake vs volcanic activity.163
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E. Astafyeva, P. Lognonné, and L. Rolland. First ionospheric images of the seismic fault slip on the example168

of the tohoku-oki earthquake. Geophysical Research Letters, 38(22), 2011. doi: 10.1029/2011GL049623.169
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each true arrival for (a) the RF classification model, (b) the analytical time-derivative based model, and (c)
the STA/LTA filter. The normalization of confusion matrices is identical to what is shown in Figure 2c.
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Figure S3: Distribution of each input features over our training and testing datasets. The short name of
feature for each plot is shown above the plot. The description of each feature is given in Table table S3
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Figure S7: Performance of RF arrival time picker. (a) Root Mean Square Error (RMSE) vs minimum true-
wavetrain overlap (deviation) and window size (s). The minimum true-wavetrain overlap corresponds to
the minimum fraction of the wavetrain that has to be included in a window to be considered for training.
(b) R2 error vs minimum true-wavetrain overlap (deviation) and window size (s). Bottom Distribution of
arrival-time picking errors (s) vs true time shift from central time (s) over (c) the testing dataset, and (d)
the training dataset.
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Figure S8: Distribution of detected arrival times after (a) 7 minutes, (b) 12 minutes, and (c) 15 minutes
since the event. We used Hion = 180 km to determine the location of the ionospheric points. The colorcode
corresponds to the predicted arrival time at each satellite/station. Grey dots correspond to the location of
satellites/stations where there is no detection yet but where there will eventually be a detection.
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Figure S9: Distribution of detection procedure’s computational cost for one station/satellite. Top, vTEC
timeseries for satellite G07 and station 0048. Bottom, stack of computational time (s) for earthquake Sanriku,
satellite G07 and station 0048, for various detection operations: feature extraction (green, see Section 3.1),
RF classification (orange, see Section 3.2), RF arrival-time picking (blue, 3.3), and heuristic validation (pink,
3.4).
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Figure S10: Time evolution of the association procedure’s computational cost for earthquake Tohoku. (a)
vTEC timeseries for satellite G05 and station 0908. (b) Computational cost (s) at each time iteration of the
association procedure. (c) number of new detections per time iteration. (d) number of associated detections
up to current time iteration.

18



26°S

24°S

22°S

20°S
18°S
16°S
14°S
12°S

76
°W

72
°W

68
°W

64
°W

a)
True arrivals

b) Iquique
RF predictions

c)
Associated arrivals

20°S

0 20 40
Class number

9.
00

0
9.

62
1

10
.2

41
10

.8
62

11
.4

83
12

.1
03

12
.7

24
13

.3
45

13
.9

66
14

.5
86

Minutes since event

Figure S11: Ionospheric arrival-time maps computed 16 minutes after the Iquique earthquake. (a) map
showing the epicenter location (yellow star), and the maximum fault slip (in m) as green to yellow patches,
(b) RF-based arrival-time predictions, and (c) association classes determined from the RF-predicted time
using the method presented in Section 3.4.
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Figure S12: Performance assessment of RF detection and arrival-time picking at a higher sampling rate of
1s. 4-h vTEC waveform for the Sanriku event, satellite G07, station 0048 along with detection probabilities
predicted by our RF detection model. The true arrival is shown as a red vertical line while the RF-predicted
arrival time as a dark grey vertical line. The wavetrain detected by the RF and heuristic models (see steps
4 and 6 in Section 3) is highlighted with a grey background.
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Figure S13: vTEC waveform for the Calbuco eruption, satellite G03, station antc along with detection
probabilities predicted by our detection procedure (see Section 3) using a window size w = 720 s. Volcano-
associated ionospheric perturbations are present between 21.3 and 22.5UT. The RF-predicted arrival time
as a dark grey vertical line. The detected wavetrain using the RF is highlighted with a grey background.
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