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S1 List of input features21

All input features used to train the RF classifier presented in Section 3 are described in Table table S1.22

The distribution of input features over our training and testing datasets is shown in Figure S1.23

S2 R2 cross correlations of input features and clustering analysis24

The RF model can provide an estimate of the relative feature importance through the calculation of the25

Gini’s impurity during training. Figure 4b shows that the three best features have been extracted from the26

timeseries in contrast to other signal classification studies Wenner et al. (2021). However, the calculation27

of feature importance can be biased when considering continuous or high-cardinality categorical variables28

or when inputs features are co-linear. To assess the input features correlations within our CID dataset, we29

show in Figure S2 the R2 cross correlations. Co-linearity is present in our input dataset between spectral30

and time-series features which indicates a potential bias in variable importance results.31
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Table S1: List of attributes. Nyf = 0.0165 Hz is the Nyquist frequency. These attributes are commonly-used
in signal-classification studies. We refer the reader to the following references for more details: (Bessason
et al., 2007; Curilem et al., 2009; Hammer et al., 2012; Hibert et al., 2014; Provost et al., 2017; Wenner et al.,
2021)

Short name Description

W0 Ratio of the mean over the maximum of the envelope signal
W1 Ratio of the median over the maximum of the envelope signal
W2 Kurtosis of the raw signal (peakness of the signal)
W3 Kurtosis of the envelope
W4 Skewness of the raw signal
W5 Skewness of the envelope
W6 Number of peaks in the autocorrelation function
W7 Energy in the first third part of the autocorrelation function
W8 Energy in the remaining part of the autocorrelation function
W9 W7/W8
W10 Maximum of the envelope signal
W11 Energy of the signal filtered in 0.001-0.005 Hz
W12 Energy of the signal filtered in 0.005-0.015 Hz
W13 Kurtosis of the signal filtered in 0.001-0.005 Hz
W14 Kurtosis of the signal filtered in 0.005-0.015 Hz
S0 Mean of the Fourier transform (FT)
S1 Maximum of the FT
S2 Frequency at the FT maximum
S3 Frequency at the FT centroid
S4 Frequency at the FT 1st quartile
S5 Frequency at the FT 2nd quartile
S6 Median of the normalized FT
S7 Variance of the normalized FT
S8 Number of Fourier transform peaks (> 0.75 FT max.)
S9 Mean of FT peaks (S8)
S10 Gyration radius
S11 Energy up to 0.5Nyf Hz
S12 Energy up to 0.75Nyf Hz
S14 Energy up to 1.0Nyf Hz
FT0 Kurtosis of the maximum of all Fourier transforms (FTs) as a function of time
FT1 Kurtosis of the maximum of all FTs as a function of frequency
FT2 Mean ratio between the maximum and the mean of all FTs
FT3 Mean ratio between the maximum and the median of all FTs
FT4 Number of peaks in the curve showing the temporal evolution of the FTs maximum
FT5 Number of peaks in the curve showing the temporal evolution of the FTs mean
FT6 Number of peaks in the curve showing the temporal evolution of the FTs median
FT7 ratio of FT4 over FT5
FT8 ratio of FT4 over FT6
FT9 Number of peaks in the curve of the temporal evolution of the FTs central frequency
FT10 Number of peaks in the curve of the temporal evolution of the FTs maximum frequency
FT11 FT9/FT10

FT12
Mean distance between the curves of the temporal evolution of the FTs maximum
and mean frequency

FT13
Mean distance between the curves of the temporal evolution of the FTs maximum
and median frequency

FT14 Mean distance between the 1st quartile and the median of all FTs as a function of time
FT15 Mean distance between the 3rd quartile and the median of all FTs as a function of time
FT16 Mean distance between the 3rd quartile and the 1st quartile of all FTs as a function of time
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Additionally, the significant overlap between distributions in Figure 4b motivates the choice of a large32

number of features to properly discriminate between each class. However, multidimensional clusters in33

input data are difficult to represent in 2d which prevents human interpretation. Two standard methods34

to facilitate the visualization of clusters in data are called Principal Component Analysis (PCA), and T-35

Distributed Stochastic Neighbor Embedding (TSNE, Van der Maaten and Hinton (2008)). PCA consists36

in project the input features in onto a space with orthogonal, i.e., uncorrelated, vector basis such that the37

greatest variance of the data comes to lie on the first coordinate. TSNE builds probability distributions38

over pairs of high-dimensional vectors so that similar data points have a higher probability while dissimilar39

data points are assigned a lower probability. Then, TSNE constructs a similar probability distribution over40

the points in the low-dimensional space, and it minimizes the Kullback–Leibler divergence between the two41

distributions with respect to the locations of the points in the map. No obvious clusters can be identified in42

the two first components of the PCA (Figure S3a) which indicates that only complex nonlinear relationships43

can help discriminating signals between noise and CID classes. TNSE non-linear mapping suggests two44

clusters (Figure S3b). These clusters are particularly visible for events showing strong CID amplitudes such45

as Sanriku. However, events with low signal-to-noise ratio CIDs, such as Kii, do not show a significant overlap46

between noise and arrival clusters. This further highlights the complexity of this classification problem.47

S3 Sensitivity of classification accuracy to number of validation48

points49

The heuristic model presented in Section 3.4 relies on a single parameter to confirm a detection: the number50

of consecutive time steps with a detection probability > 50%, referred to as Nd. To determine the optimal51

value of Nd we varied this parameter between 2 and 5, and computed the true and false positive and negative52

rates over our true-arrival dataset, i.e., 2000 s waveforms centered on each true arrival. In Figure S4, we53

observe that the variations in Nd (Nb points trigger) do not affect significantly the true and false positive54

rates. Because we observe a slight decrease in False positive rate with an increase in Nd, we select Nd = 355

as a trade-off between false alerts and time delay to confirm a detection.56

S4 Arrival time picking optimization57

The arrival time picking procedure is based on a RF model. This model takes vTEC time derivatives as an58

input and gives a time shift from the window central time as an output. The RF will therefore be sensitive59

to the window size, as larger windows increase the number of inputs and tend to complicate the picking60

procedure while small time windows lack data points to regularize the time picking problem. Additionally,61

the range of window overlap with the true wavetrain used for training plays a significant role on the RF62

performances. Using small overlaps will train the machine to pick arrivals on incomplete waveforms and63

therefore makes the problem more difficult. However this will enable the machine to more efficiently pick64

arrival times over the first detection time windows of a given wavetrain. We show in Figure S5, the variations65

in time picking accuracy with window size and overlap (called deviation). As a trade-off between errors and66

the ability of our RF model to pick arrival times over incomplete waveforms, we choose a window size similar67

to the RF classifier (see Section 3.2) and an overlap of 30%.68

S5 Time evolution of detected arrivals69

A requirement for NRT applications is to obtain alerts within 20mn after the event. Therefore, our detection70

and association procedure should trigger a valid alert as soon as possible in addition to providing accurate71

arrival times. In Figure S6, we show the evolution of the distribution of arrival times with time since the72

event for the earthquake Tohoku. We observe that after 12mn, we already observe a specific trend in arrival-73

time values highlighting that the acoustic energy is propagating from East to West. After 15mn, almost all74

hand-picked arrival times have been correctly determined by our model.75
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S6 Detection of CIDs at higher sampling rates76

A machine learning model trained with data sampled at 30s might learn patterns that are invariant with77

frequency. To assess how our classification model performs on 1s data, we extracted features in each time78

window without downsampling waveforms. In addition, we used a 1s time shift between two consecutive time79

windows. Detection probability and picked arrival times are shown in Figure S7. Detection probabilities are80

always over 50%, i.e., RF classified the whole timeseries as a CID with the use of a detection threshold at81

50%. Yet, we observe a significant increase in detection probability around 2.85 UT, from 60% to 95%,82

that matches the arrival of the CID. Jumps in detection probabilities indicates that using a larger detection83

threshold, such as ≥ 70% instead of ≥ 50%, could enable the processing of higher sampling-rate data with of84

our algorithm. These larger probabilities owe to the additional noise introduced by higher frequencies when85

extracting input features. The higher-frequency spectral content can lead to substantial variations in certain86

input features. For example, energy peaks at higher frequencies, that would normally be smoothed out at87

lower frequencies, can drastically alter the envelope kurtosis and skewness, which are critical parameters for88

discrimination between noise and arrival windows. Nonetheless, the ability of our model to recover the true89

arrival time is extremely promising for near-real-time applications.90

S7 Impact of Hion on association classes91

The position of ionospheric detection points is dependent on the altitude of detection Hion, which could92

impact the association classes. To assess the sensitivity of the association classes on Hion, we changed the93

altitude of the ionospheric points for the Tohoku event from 180 to 250 km. The location of the center of the94

main association class (light purple in Figure S8c) tends to shift towards the South-East with the increase95

in Hion. While the location of the ionospheric points changes with Hion, the true arrival times (Figure S8a)96

are still correctly associated in the same class (light purple in Figure S8c).97

S8 Detection of ionospheric signal from volcanic eruptions and98

Rayleigh waves99

Other low-frequency acoustic sources, such as volcanoes or surface Rayleigh waves can generate transient100

ionospheric perturbations. In particular, volcanic eruptions generate both infrasonic and gravito-acoustic101

signals in the 0.1-10 mHz frequency range known as Co-Volcanic Ionospheric Disturbances (CVID). While102

gravity waves show a much lower frequency content Hines (1960), near-epicentral CVID can show short-103

period signals with significant energy below 5 minutes Shestakov et al. (2021). We therefore first assessed104

the sensitivity of our RF model to travelling volcanic-induced ionospheric propagation using the example of105

the Calbuco volcanic eruption on April 22, 2015 Shults et al. (2016). In figure S9, we observe that the entire106

volcanic-induced gravito-acoustic wavetrain is classified as CID. This can be explained by the similarity107

of CIDs and CVIDs in the feature space due to significant energy at high frequencies corresponding to108

infrasound signals mixed with the graviy wavefield.109

The atmospheric perturbations generated by seismic Rayleigh waves can also propagate to the ionosphere110

and be observed on TEC data (Rolland et al., 2011). Such signals typically show energy between XXX s and111

XXX s, similar to epicentral infrasound. Testing our method on a Rayleigh-wave signal observed after the112

XXX event, we observe that the transient signal is well captured and its arrival time accurately predicted113

(see Figure S10). This indicates that both epicentral and Rayleigh-wave infrasound can be observed and114

associated by our detection method.115
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Figure S1: Probability density of each input features over our training and testing datasets. The short name
of feature for each plot is shown above the plot. The description of each feature is given in Table table S1
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Figure S2: Spearman’s correlation coefficients between each feature used for training. A description of each
feature is given in Table table S1.
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Figure S3: First versus second component of (a,c) a Principal Component Analysis (PCA) and (b,d) a
T-Distributed Stochastic Neighbor Embedding (TNSE, Van der Maaten and Hinton (2008)). Points are
colorcoded with (a,b) the detection class, and (c,d) the event name for the arrival class.
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Figure S5: Performance of RF arrival time picker. (a) Root Mean Square Error (RMSE) vs minimum true-
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Figure S6: Ionospheric maps after the 2011 Tohoku earthquake generated at various times since the event.
(a) to (c) Distribution of detected arrival times after (a) 7 minutes, (b) 11 minutes, and (c) 15 minutes since
the event. CID coordinates were calculated at the intersection point between the LOS and the ionospheric
layer using Hion = 250 km. The colorcode corresponds to the predicted arrival time at each ionospheric
point. Grey dots correspond to the location of ionospheric points where there is no detection yet but with
detections after 20 mn.
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Figure S7: Tohoku’s ionospheric arrival-time maps computed 14 minutes after the event for (d) hand-picked
arrival times along with the epicenter location (yellow star), and surface projection of the fault slip (in m) as
green to yellow patches, (e) RF-based arrival-time predictions, and (f) association classes determined from
predicted arrival times.. CID coordinates were calculated at the intersection point between the LOS and the
ionospheric layer using Hion = 180 km.
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Figure S8: Performance assessment of RF detection and arrival-time picking at a higher sampling rate of
1s. 2-h vTEC waveform for the Sanriku event, satellite G07, station 0048 along with detection probabilities
predicted by our RF detection model (bottom). The true arrival is shown as a red vertical line.
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Figure S9: vTEC waveform for the Calbuco eruption, satellite G03, station antc along with detection
probabilities predicted by our detection procedure (see Section 3) using a window size w = 720 s. Volcano-
associated ionospheric perturbations are present between 21.3 and 22.5UT. The RF-predicted arrival time
as a dark grey vertical line. The detected wavetrain using the RF is highlighted with a grey background.

14



6

4

2

0

vT
EC

 satellite G06 - station tskbwindow length
time shift RW

RF arrival

12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5
Time (UT)

0.0

0.5

1.0

De
te

ct
io

n
pr

ob
ab

ilit
y

RF

Figure S10: vTEC waveform from seismic Rayleigh waves recorded after the 1994 earthquake in Kuril
Islands (Astafyeva et al., 2009), satellite G06, station tskb along with detection probabilities predicted by
our detection procedure using a window size w = 720 s. Rayleigh-wave-associated ionospheric perturbations
are present between 13.6UT and 13.8UT. The RF-predicted arrival time as a dark grey vertical line. The
detected wavetrain using the RF is highlighted with a grey background.
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