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Abstract 18 

An efficient combination of the data collected by multiple instruments and platforms is needed to 19 

obtain accurate 3D ocean state estimates, representing a fundamental step to describe ocean 20 

dynamics and its role in the Earth climate system and marine ecosystems. Observations can 21 

either be assimilated in ocean general circulation models or used to feed data-driven 22 

reconstructions and diagnostic models. Here we describe an innovative deep learning algorithm 23 

that projects sea surface satellite data at depth after training with sparse co-located in situ vertical 24 

profiles. The technique is based on a stacked Long Short-Term Memory neural network, coupled 25 

to a Monte-Carlo dropout approach, and is applied here to the measurements collected between 26 

2010 and 2018 over the North Atlantic Ocean. The model provides hydrographic vertical profiles 27 

and associated uncertainties from corresponding remotely sensed surface estimates, 28 

outperforming similar reconstructions from simpler statistical algorithms and feed-forward 29 

networks.  30 

 31 

Plain Language Summary 32 

Being able to monitor the ocean's interior structure is crucial to assess the impact of ocean 33 

dynamics on the Earth climate and marine ecosystems. Available observations, acquired either 34 

from satellite sensors looking at the sea surface or from sparse in situ measurements of the water 35 

column, can only provide partial views of the 3D ocean state if analysed separately, due to their 36 

instrumental and sampling limitations. Taking advantage of recent advances in artificial neural 37 

network implementations, we present here a deep learning algorithm that is able to efficiently 38 

exploit sensors’ synergy and retrieve the vertical hydrographic structure of the sea from remotely 39 

sensed data, including an estimate of associated uncertainties.   40 

 41 

1 Introduction 42 

Ocean dynamics comprises several processes (inter)acting over a wide range of spatial 43 

and temporal scales, which may influence the Earth climate and contribute to modulate marine 44 

ecosystem functioning. Notably, several crucial processes contributing to the transport of 45 

momentum, energy, chemicals and marine organisms cannot be fully understood unless repeated 46 

views of the 3D ocean state and surface forcings are available. This is particularly relevant for 47 

processes in the mesoscale to sub-mesoscale range, given their intrinsic 3D nature (McWilliams, 48 

2019; Pilo et al., 2018; Stukel et al., 2017). In turn, the dynamical response and feedbacks of 49 

these processes to natural and anthropogenic pressures also remains largely uncertain. However, 50 

given both theoretical and practical limitations of available technologies, observations can only 51 

provide partial views of the ocean state, especially if analysed separately. Monitoring 3D ocean 52 

processes from observation-based reconstructions thus requires ingenious combinations of data 53 

acquired from different sensors looking at the sea surface from space, and from sparse in situ 54 

measurements collected throughout the water column.  55 

Scientists have followed two main complementary approaches to provide a description of 56 

3D ocean dynamics: the assimilation of observations in numerical models and the combination 57 

of purely data-driven reconstructions and diagnostic models. Both strategies are affected by 58 

strengths and weaknesses, though.  59 
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The data assimilation in prognostic models can guarantee the ocean state to evolve in a 60 

consistent way with the physics represented by the model (Carrassi et al., 2018; Moore et al., 61 

2019; Stammer et al., 2016). Models, however, are affected by uncertainties in initialization and 62 

forcings, and need parameterizations of sub-grid scale processes, which may lead to inaccurate 63 

representations of the physics, especially when aiming to reconstruct long timeseries for 64 

decadal/climatological studies (due to grid size limitations and subsequent need to parameterize 65 

also mesoscale processes, e.g. Forget et al., 2015). In general, models’ ability to reproduce non-66 

assimilated observations is further hindered by the difficulty to properly account for model and 67 

observation representativeness and errors.  68 

Data-driven approaches are based on a synergic use of different satellite, in-situ 69 

measurements and diagnostic models. They can reduce the differences between reconstructed 70 

and independent observations (for 2D examples see Ciani et al., 2020; Rio et al., 2016; 71 

Ubelmann et al., 2016), but usually allow only a much simpler description of the dynamics with 72 

respect to general circulation models (sometimes limited to zero or first order balances, as 73 

geostrophy and quasi-geostrophy, or simple Ekman models). Data-driven 3D reconstruction 74 

techniques that found a systematic application are based on purely empirical and/or statistical 75 

regressions/analyses (Buongiorno Nardelli et al., 2012, 2017, 2018; Guinehut et al., 2004, 2012; 76 

Hutchinson et al., 2016; Meijers et al., 2011; Meinen and Watts, 2000), eventually coupled to 77 

dynamical diagnostic tools (for full 3D examples see Mulet et al., 2012; Buongiorno Nardelli, 78 

2020). Methodologies derived within the surface quasi-geostrophy framework make much 79 

stronger assumptions on the ocean vertical stratification, though providing interesting theoretical 80 

perspectives (Fresnay et al., 2018; Isern-Fontanet and Hascoët, 2014; LaCasce and Wang, 2015; 81 

Lapeyre, 2017; Liu et al., 2019; Wang et al., 2013). More recently, mixed approaches have also 82 

been explored (Yan et al., 2020).  83 

All data driven approaches share the objective to project surface information at depth, 84 

starting from synoptic satellite observations and some prior knowledge of the hydrography. 85 

Despite the recent advancements in machine learning algorithms implementation and a growing 86 

interest in the possibilities opened by artificial intelligence for data science, only few attempts 87 

have been carried out until now to address this specific objective with artificial neural networks 88 

(e.g. Bao et al., 2019; Gueye et al., 2014; Lu et al., 2019; Sammartino et al., 2018; Wu et al., 89 

2012), either based on generalized regression neural networks, self-organizing maps or feed-90 

forward  neural networks. Models based on neural networks have also been proposed to 91 

“augment” observed vertical profiles with variables that have not been directly measured (e.g. 92 

Ballabrera-Poy et al., 2009; Bittig et al., 2018; Sauzède et al., 2016, 2017). 93 

In this paper, a stacked Long Short-Term Memory (LSTM, Hochreiter and Schmidhuber, 94 

1997) network is coupled to a Monte Carlo dropout approach and used to project surface data at 95 

depth after training with sparse co-located in situ vertical profiles. LSTM is a deep learning 96 

algorithm particularly suited to exploit sequential information as those present in hydrographic 97 

profiles. Dropout provides both a regularization strategy, when applied during training, and a 98 

"Bayesian" inference approximation if applied during both training and testing (Gal and 99 

Ghahramani, 2016). As such, the technique proposed here is able to provide both vertical 100 

hydrographic profiles and uncertainties on the predicted values. 101 

This work was carried out within the European Space Agency World Ocean Circulation 102 

project (ESA-WOC), as a preparatory step for the development of a daily 3D reconstruction of 103 

the dynamics in the North Atlantic (down to 1500 m depth) at 1/10° spatial resolution, covering 104 
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the period between 2010 and 2018. As such, the network was trained and tested taking as target 105 

(output) the measurements collected by Argo profilers and CTD casts within a wide portion of 106 

the North Atlantic over that period. Co-located satellite-derived sea surface temperature, sea 107 

surface salinity and absolute dynamic topography values (extracted from operational and 108 

experimental products) were used as input data.  109 

The performance of the proposed LSTM network has been assessed by keeping part of 110 

the in situ profiles as independent reference observations during test. Root mean squared errors 111 

have been estimated from LSTM profiles, from climatological data and multivariate Empirical 112 

Orthogonal Function reconstructions (mEOF-r, as in Buongiorno Nardelli et al., 2017), as well as 113 

from the output of simpler feed-forward networks.  114 

 115 

2 Data 116 

2.1 Surface data  117 

The SST used in the present study is the level 4 (L4, i.e. interpolated) multi-year 118 

reprocessed Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) developed by 119 

U.K. Met Office and distributed (upon free registration) through the Copernicus Marine 120 

Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/services-121 

portfolio/access-to-products/, 122 

product_id=SST_GLO_SST_L4_REP_OBSERVATIONS_010_011). OSTIA combines the 123 

reprocessed ESA SST CCI, C3S, EUMETSAT, REMSS and OSPO satellite data, and in-situ 124 

data from HadIOD and provides daily maps of foundation SST (i.e. not affected by the diurnal 125 

cycle).  The analysis runs an optimal interpolation (OI) algorithm on a 1/20° regular grid 126 

(Roberts-Jones et al., 2012). OSTIA was sub-sampled here to 1/10° resolution, and resulting grid 127 

was used also for the pre-processing of the other surface datasets (see the SST example in figure 128 

1a). 129 

The SSS data have been developed within ESA-WOC project 130 

(https://doi.org/10.5281/zenodo.3943813). They have been obtained by adapting to the 1/10° 131 

North Atlantic grid the multidimensional optimal interpolation algorithm used to retrieve 132 

CMEMS global dataset (http://marine.copernicus.eu/services-portfolio/access-to-products/, 133 

product_id: MULTIOBS_GLO_PHY_REP_015_002, dataset_id: dataset-sss-ssd-rep-weekly). 134 

This algorithm interpolates SMOS observations and in situ SSS observations considering a 135 

space-time-thermal decorrelation function, estimated by including information from high-pass 136 

filtered daily SST data (Droghei et al., 2016; Buongiorno Nardelli, 2012). This multivariate 137 

approach effectively increases the SSS resolution by using satellite SST differences to constrain 138 

the surface patterns (see figure 1b). Here, we ingested the SMOS L3OS 2Q debiased daily 139 

salinity disseminated by the Centre Aval de Traitement des Données SMOS (CATDS, 2017), 140 

OSTIA SST data and CORA5.2 surface values (see section 2.2) as input data, and used CMEMS 141 

weekly SSS dataset to build our background field (linearly interpolating it in time between the 142 

two closest analysis dates, and upsizing to the 1/10° grid through a cubic spline). All other 143 

interpolation parameters are set as in Droghei et al. (2018).  144 

The Absolute Dynamic Topography (ADT) data considered here are based on the 145 

altimeter Sea Level Anomaly (SLA) product provided by SSALTO/Data Unification and 146 

Altimeter Combination System (DUACS). They are obtained by adding a Mean Dynamic 147 

http://marine.copernicus.eu/services-portfolio/access-to-products/
http://marine.copernicus.eu/services-portfolio/access-to-products/
http://marine.copernicus.eu/services-portfolio/access-to-products/
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Topography (Rio et al., 2014) to the SLA field, and are distributed by CMEMS as reprocessed 148 

data (http://marine.copernicus.eu/services-portfolio/access-to-products/, product_id: 149 

SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047). ADT has been upsized here 150 

to the ESA-WOC 1/10°x1/10° grid through a cubic spline (see example in figure 1c). ADT data 151 

have been pre-processed to make them consistent with insitu steric heights. The adjustment is 152 

carried out as in Buongiorno Nardelli et al. (2017), namely by regressing steric heights and co-153 

located ADT data in the neighbourhood of each grid point, considering matchups within a 154 

temporal window of ±10 days. 155 

2.2 Vertical profiles  156 

The vertical hydrographic profiles have been taken from the quality controlled Argo and 157 

CTD profiles produced by CMEMS CORA 5.2 (http://marine.copernicus.eu/services-158 

portfolio/access-to-products/, product_id: 159 

INSITU_GLO_TS_REP_OBSERVATIONS_013_001_b, doi: 10.17882/46219TS1, Szekely et 160 

al., 2019). The data considered here are restricted to the 2010-2018 period, and were interpolated 161 

through a spline on a regularly spaced vertical grid (with 10 m intervals). Steric heights have 162 

been computed taking 1500 m as reference level. 163 

2.3 Climatology  164 

Temperature and salinity monthly climatological fields computed by the World Ocean 165 

Atlas 2013 have been used to convert all daily observations to anomaly fields (see section 3). 166 

These climatologies are estimated on a 1/4° x 1/4° grid by applying an objective analysis 167 

algorithm (Locarnini et al., 2013; Zweng et al., 2013). The values in the first 1500 m, provided 168 

on 125 levels, have been interpolated through a spline on a regularly spaced vertical grid (with 169 

10 m intervals), and upsized to the 1/10° ESA-WOC grid through a cubic spline.  170 

http://marine.copernicus.eu/services-portfolio/access-to-products/
http://marine.copernicus.eu/services-portfolio/access-to-products/
http://marine.copernicus.eu/services-portfolio/access-to-products/
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 171 

Figure 1. Examples of the surface daily data taken as input to the reconstruction techniques: 172 

OSTIA L4 reprocessed SST (a), SSS L4 developed within ESA-WOC project (b), adjusted ADT 173 

L4 derived from DUACS data (c). 174 
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3 Reconstruction techniques 175 

3.1 Multivariate Empirical Orthogonal Function reconstruction (mEOF-r) 176 

The multivariate Empirical Orthogonal Function reconstruction (mEOF-r) was taken as 177 

reference for the retrieval of the 3D hydrographic fields. This methodology has been applied in 178 

many previous studies (Buongiorno Nardelli, 2013; Buongiorno Nardelli et al., 2006, 2012, 179 

2017; Buongiorno Nardelli and Santoleri, 2005), and it is thus only briefly recalled hereafter. It 180 

starts by building a state vector by concatenating (normalized) temperature, salinity and steric 181 

heights anomaly profiles, and decomposing its variability in EOF modes (thus called multivariate 182 

EOF). Anomalies are defined with respect to monthly WOA13 data (linearly interpolated in time 183 

between the central day of each month, and through a cubic spline horizontally). The EOFs are 184 

computed from available in situ observations, and the decomposition is truncated to a maximum 185 

of three modes. The three elements in the state vector reconstructed from the truncated EOF that 186 

correspond to the surface are equated to the anomalies of SST, SSS and adjusted ADT. In this 187 

way, a linear system is obtained, the unknowns being the three EOF amplitudes. Once solved 188 

through a trivial matrix inversion, full profiles associated with each mode can be estimated and 189 

finally summed up to get the synthetic vertical reconstruction.   190 

In order to account for local differences in the dynamics, the configuration proposed in 191 

Buongiorno Nardelli et al., (2017) has been adopted also here. The North Atlantic domain is 192 

divided into subdomains with a maximum extension of 30° both in latitude and in longitude. 193 

Multivariate EOFs are estimated considering only the in situ profiles collected within 20 days 194 

with respect to the reconstruction day. To remove eventual discontinuities in the reconstruction, 195 

all neighbouring subdomains are overlapped by one half of their latitudinal and longitudinal 196 

extensions. In the grid points where multiple reconstructions are available, these are averaged out 197 

by bilinearly weighting them with the inverse of the distance to each subdomain centre. In some 198 

cases, two modes (or even one mode) may be sufficient to retrieve most of the variability and the 199 

reconstruction error may increase if more modes are added (more than 95% of the variance is 200 

generally explained by the selected modes). Consequently, the optimal number of modes for the 201 

3D reconstruction is chosen by evaluating the mean hindcast error within each subdomain, so as 202 

to minimize the root mean square difference between the input profiles and the synthetic profiles 203 

reconstructed from corresponding in situ surface measurements.  204 

3.2 Feed-forward neural networks 205 

Feed-forward networks represent the simplest type of artificial neural networks and 206 

consist of one input layer (the input vector) and one output layer (the output vector) connected 207 

through a variable number of hidden layers (if that number is >1 we speak about a “deep 208 

network”). Each of the layers is made up by a variable number of units: the elements of the 209 

vectors in the case of the input/output layers, and the artificial “neurons” (or computing nodes) in 210 

the hidden layers. Each of the units in one layer is connected to all units in the following layer 211 

through weights that are estimated during the network training, and each computing node 212 

processes the sum of its weighted input by passing it through an activation function which 213 

provides the neuron’s output. FFNN networks are designed to model complex flows of 214 

information from the input to the output and are common candidates to solve non-linear 215 

regression problems. The definition of a proper model for each specific problem, however, 216 

requires optimizing the choice of several “hyper-parameters”, starting from the number of hidden 217 
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layers, the number of units within each hidden layer, to the activation function to apply within 218 

each hidden layer. For a given architecture, network training also implies a number of additional 219 

choices. In fact, training is performed by minimising some model loss function while iteratively 220 

feeding the network with several input-output samples. Various algorithms exist to this aim, and 221 

the same network trained in a different way on the same data may indeed lead to different results 222 

("local" optima). Different results can be obtained depending also on the number of iterations 223 

(epochs) considered.  224 

Large feed-forward networks (in terms of number of layers/units) are prone to over-225 

fitting, as distinct sets of neighbouring neurons might adjust to reproduce individual samples, 226 

leading to complex co-adaptations which would not allow to generalize the network to unseen 227 

data. Again, different strategies can be followed to avoid co-adaptation: the dropout approach 228 

followed here is described in section 3.4.  229 

In our tests, two different input/output vectors have been initially considered. In the first 230 

case, somehow imitating simple multilinear regression approaches, the input vector was made up 231 

of: the target depth for the retrieval, the anomalies of SST, SSS and adjusted ADT (same as in 232 

mEOF-r), the latitude, longitude, and the day of the year projected on a circle (as in Sammartino 233 

et al., 2018), while the output included the co-located values of temperature, salinity and steric 234 

heights anomalies at the target depth. In the second configuration, the depth has been dropped 235 

from the input data and the concatenated temperature, salinity and steric heights anomaly profiles 236 

were taken as output (same as mEOF-r state vector). All vectors are preliminary normalized 237 

through min-max algorithm. 238 

Several preliminary hyper-parameter tuning tests have been carried out, considering one 239 

to three hidden layers, and a variable number of units within each, ranging between 5 and 50, 240 

with a 5 units increase step. The sigmoid performed better than hyperbolic tangent as activation 241 

function. “Adam” was selected as network optimizer, taking the mean squared error as loss 242 

metrics. 15% of input samples were randomly kept as a holdout validation dataset at each 243 

iteration. The number of optimal training epochs was found by monitoring model performance 244 

(early stopping). 245 

The performance of the first set of models (those retrieving values at individual depths) 246 

never improved with respect to the climatology, while a visible improvement was found in the 247 

second configuration, especially when the choosing two hidden layers. The successive tests were 248 

thus restricted to this latter configuration, significantly increasing the number of hidden units 249 

(tests were run with up to 5000 units per layer). The final FFNN architecture considered in the 250 

following, which further improved the reconstruction accuracy) includes 1000 units in the two 251 

hidden layers (above that number, performance substantially stabilized). 252 

3.3 Long Short-Term Memory networks 253 

Recurrent neural networks (RNN) can be described as sequences of sub-networks (also 254 

called “cells”) designed to include information from the previous cell in a sequence as input to 255 

the successive one. This makes them particularly fit to model ordered sequences of data. Simple 256 

recurrent networks, however, are not able to efficiently process information from cells that lie 257 

too far along the sequence, due to vanishing/exploding values in the gradient-descent based 258 

optimizations.  259 
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Long Short-Time Memory (LSTM) network is a particular type of RNN, that is 260 

specifically designed to avoid vanishing/exploding gradients and preserve the relevant 261 

information flow throughout the network (Hochreiter and Schmidhuber, 1997). Within LSTM 262 

cells, the external input vector (xi) is concatenated to the previous cell hidden state (hi-1) and then 263 

passed through different "gates", each one aimed at carrying out a specific task to update both the 264 

hidden state itself (hi) and a cell state (Ci), that is directly transmitted to the next cell and 265 

basically acts as a network "memory". The LSTM cell specifically includes a forget gate, an 266 

input gate, and an output gate, as depicted in figure 2a:  267 

 268 

Figure 2. Diagram showing the elements of a single LSTM cell (a). Stacked LSTM model for 269 

the reconstruction of vertical hydrographic profiles (b). 270 

 271 

whose equations thus read: 272 

𝑓𝑖 = 𝜎(𝑊𝑓[ℎ𝑖−1, 𝑥𝑖] + 𝑏𝑓) 
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𝐼𝑖 = 𝜎(𝑊𝐼[ℎ𝑖−1, 𝑥𝑖] + 𝑏𝐼) 

𝐶̃𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝐶[ℎ𝑖−1, 𝑥𝑖] + 𝑏𝐶) 

𝑂𝑖 = 𝜎(𝑊𝑂[ℎ𝑖−1, 𝑥𝑖] + 𝑏𝑂) 

𝐶𝑖 = 𝑓𝑖 ∗ 𝐶𝑖−1 + 𝐼𝑖 ∗ 𝐶̃𝑖 

ℎ𝑖 = 𝑂𝑖 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑖) 

where 𝜎 and 𝑡𝑎𝑛ℎ represent the sigmoid and hyperbolic tangent activation functions, 273 

respectively. 274 

LSTM networks can include a single layer of LSTM cells or multiple LSTM layers 275 

stacked one on top of the other, potentially leading to quite deep architectures. The number of 276 

cells in each layer matches the length of the sequence by definition, but the number of hidden 277 

units still needs to be configured.  278 

Here, the sequential information to exploit is provided by a multivariate output state 279 

vector comprising temperature, salinity and steric height anomaly profiles. In practice, each cell 280 

in the sequence considers in input the same surface values (i.e. the anomalies of SST, SSS and 281 

adjusted ADT), but takes as the output values at increasing depths (with depth “acting” as time in 282 

more standard applications of LSTM). As for FFNN models, all vectors are scaled within the 0-1 283 

range before feeding the network. 284 

The number of hidden units considered ranged between 5 and 50, with a 5 units increase 285 

step, and three different network architectures have been tested: a simple LSTM and two stacked 286 

LSTMs (with 2 and 3 layers each). The optimization algorithm and related parameters were 287 

exactly the same used for the FFNN reconstruction training, as well as the dropout strategy 288 

applied to avoid overfitting and obtain reconstructed profile uncertainties (see next section). 289 

The best performance was obtained with a 2-layers stacked network, including 35 hidden 290 

units in each LSTM layer, as depicted in figure 2b. 291 

3.4 Monte-Carlo Dropout 292 

Standard dropout consists in randomly excluding a percentage of units during network 293 

training. Dropout provides a very efficient regularization strategy if applied during training, 294 

significantly reducing the risk of co-adaptation, thus limiting overfitting and improving model 295 

performance (Hinton et al., 2012; Srivastava et al., 2014). Moreover, dropout provides also an 296 

extremely simple and powerful approach to quantify a neural network uncertainty, if applied 297 

during both training and testing. In fact, running a regression neural network several times with 298 

dropout during testing generates different output for the same input. It was shown 299 

mathematically that these output are equivalent to Monte-Carlo sampling (Gal and Ghahramani, 300 

2016). Hence, ensemble mean and variance provide the network’s output values and related 301 

uncertainty, respectively. During learning, 20% of the units have been dropped here. 302 

4 Technique assessment 303 

The assessment of the techniques has been performed by estimating temperature and 304 

salinity root mean squared differences (RMSD) with respect to fully independent test data 305 

(fig.3). To this aim, a randomly selected 15% of the 35344 in situ profiles collected in the area 306 
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(totalling 5125 profiles) have been excluded from the network training. All techniques 307 

considered process anomalies with respect to WOA13 data, and are thus intended as corrections 308 

to the climatological profiles. Climatological temperature RMSD attains around 1.5°C at the 309 

surface, reaches a maximum of up to 1.7°C at 100 m depth (at the base of the upper mixed 310 

layer) and then gradually decreases to the minimum error <0.25 °C at 1500 m, with a wide 311 

secondary maximum positioned around 500 m characterized by errors >1°C down to 800 m. The 312 

temperature retrieved with mEOF-r shows a moderate improvement in the upper 100 m and then 313 

in the 200-900 m layer, but then significantly degrades the climatology below 900 m. 314 

Conversely, both the FFNN with 2 hidden layers (each with 1000 units) and the stacked LSTM 315 

(with 2 layers and 35 hidden units in each cell) significantly improve the reconstruction all along 316 

the water column. Noticeably, LSTM clearly outperforms any of the other methodologies, with a 317 

RMSD never exceeding 1°C, and attaining below 0.75°C already at 200 m depth. Salinity RMSD 318 

show similar behaviours, with the climatological estimates reaching up to 0.5 g/kg, and 319 

remaining above 0.2 in the upper 600 m,  the mEOF-r displaying only a partial improvement in 320 

the upper 100 m (keeping its error close to that associated with the surface input data, i.e. around 321 

0.25 g/kg), and FFNN and LSTM reducing the RMSD to almost one half, the LSTM further 322 

improving in the 200-800 m layer (fig. 3b). 323 

 324 

Figure 3. RMSD between temperature (a) and salinity (b) climatological and reconstructed 325 

profiles. RMSD confidence intervals (one 𝜎) have been estimated with bootstrapping, and they 326 

are displayed here as shadowed areas. 327 

 328 
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 329 

Figure 4. Independent observations of temperature (a) and salinity (e) at 100 m depth and 330 

corresponding LSTM reconstructions (c, g); temperature (b) and salinity (f) predicted LSTM 331 

reconstruction error and temperature (d) and salinity (h) differences between test data and 332 

synthetic reconstructions at 100 m. 333 

As anticipated, the neural network methods coupled with Monte-Carlo dropout present 334 

another significant advantage with respect to mEOF-r and similar statistical reconstruction 335 
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techniques, being able to deliver not only retrieved values, but also associated uncertainties. 336 

Comparing RMSD predicted by the LSTM with observed differences between test data and 337 

synthetic reconstructions at 100 m shows consistent patterns (clearly related to the areas where 338 

mesoscale variability is strongest, i.e. the Gulf Stream), both in the temperature and salinity 339 

fields (fig.4).    340 

5 Conclusions 341 

We have developed an innovative deep learning algorithm to project sea surface satellite 342 

observations at depth after learning from sparse co-located in situ hydrographic data. The 343 

proposed technique, based on a stacked Long Short-Term Memory neural network, coupled to a 344 

Monte-Carlo dropout approach, provides vertical profiles and associated uncertainties, 345 

outperforming both neural network reconstructions based on simpler feed-forward networks and 346 

multivariate EOF reconstruction. This technique will find immediate application for the 347 

development of a 3D product covering the North Atlantic in the framework of the European 348 

Space Agency World Ocean Circulation project (ESA-WOC). The work described here, 349 

however, covers only the development and assessment of the LSTM reconstruction methodology 350 

based on presently available data, as a new training of the network will be needed once updated 351 

ADT estimates will be made available by the project. 352 

Remarkably, adaptation of this technique to other areas/periods is easy and 353 

straightforward. Simultaneous availability of uncertainties associated with individual profiles 354 

also suggests that this deep learning methodology could be tested to extend present data 355 

assimilation approaches in numerical models by ingesting consistent remotely sensed sea surface 356 

data and synthetic profile estimates. 357 
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