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Abstract 20 

The accurate representation of the local-scale variability of precipitation plays an important role 21 

in understanding the hydrological cycle and land-atmosphere interactions in the High Mountain 22 

Asia region. Therefore, the development of hyper-resolution precipitation data is of urgent need. 23 

In this study, we propose a statistical framework to downscale the Modern-Era Retrospective 24 

analysis for Research and Applications, version 2 (MERRA-2) precipitation product using the 25 

random forest classification and regression algorithm. A set of variables representing 26 

atmospheric, geographic, and vegetation cover information are selected as model predictors, 27 

based on a recursive feature elimination method. The downscaled precipitation product is 28 

validated in terms of magnitude and variability against a set of ground- and satellite-based 29 

observations. Results suggest improvements with respect to the original resolution MERRA-2 30 

precipitation product and comparable performance with gauge-adjusted satellite precipitation 31 

products. 32 

 33 
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1. Introduction 40 

The resolution of the input precipitation dataset is one of the most critical elements in hyper-41 

resolution hydrologic modeling (~1-km or finer), as its accuracy greatly dictates the space-time 42 

representativeness of the output of land surface fluxes and states. This is particularly critical for 43 

complex terrain regions, such as High Mountain Asia (HMA), due to the highly localized 44 

precipitation gradients induced by topography. However, the availability of in-situ surface 45 

measurements for hydrologic, weather, and climate studies is scarce and their accuracy is 46 

influenced by the region terrain complex. Specifically, rain gauge observations are subject to 47 

wind-induced under-catch biases; and ground-based weather radar networks are rare and suffer 48 

from significant beam blockage and ground return problems in mountainous regions [Gou et al., 49 

2018; Chen et al., 2015; Tong et al., 2014b]. These factors undermine the use of ground-based 50 

networks in hydrologic modeling in such basins. Precipitation information can also be obtained 51 

from satellite observations and numerical weather prediction models, which provide continuous 52 

and consistent estimates. However, their resolutions are too coarse to catch the fine scale 53 

variability of precipitation systems over mountainous areas. This is a challenge especially in the 54 

context of hyper-resolution, given the prominent heterogeneity of mountainous hydrologic 55 

processes [Ma et al., 2018a, 2018b; Tong et al., 2014a]. Thus, downscaling techniques are 56 

required to develop hyper-resolution precipitation datasets to be used in land surface modeling 57 

[Zorzetto and Marani, 2019]. 58 

In broad terms, downscaling techniques can be classified into dynamical and statistical 59 

methods [Maraun et al., 2010; Haylock et al., 2006]. Statistical downscaling of precipitation is 60 

relatively simple and computationally efficient if compared to dynamical downscaling, which 61 

requires the use of either local-scale models or regional climate models. Machine learning is a 62 
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statistical technique that maps the predictor(s) with a predictand without constructing an explicit 63 

function and relying on (if any) existing physical or statistical relationships between the two. 64 

Among the plethora of machine learning techniques, the random forest (RF) algorithm stands out 65 

for its ability to deal with complex nonlinear relationships and to minimize the overfitting 66 

problem [Breiman, 2001]. RF has been applied in a range of hydrologic-related studies, such as 67 

streamflow prediction, estimation of soil moisture, groundwater potential mapping, digital soil 68 

mapping, susceptibility assessment of natural hazards [Shortridge et al., 2016; Ali et al., 2015; 69 

Goetz et al., 2015; Heung et al., 2015; Naghibi and Pourghasemi, 2015]. 70 

The use of RF in precipitation downscaling is a relatively new topic. Ibarra-Berastegi et al. 71 

[2011] applied an analogues method, based on RF and multilinear regression, to downscale 72 

reanalysis precipitation products over two basins in the Ebro Valley in Spain. Their results 73 

indicate that the analogues-RF combined method outperformed the analogues-regression 74 

combined one. He et al. [2016] proposed a machine-learning algorithm called Prec-DWARF 75 

(Precipitation Downscaling With Adaptable RFs) for spatial precipitation downscaling. Prec-76 

DWARF is shown to successfully reproduce the space-time and statistical characteristics of the 77 

original rainfall field, but with an overestimation of light rain rates and an underestimation of 78 

extreme rainfall. They further discovered that by separately building RFs for low-to-moderate 79 

and extreme rainfall rates, the skewed precipitation distribution could be resolved. Bhuiyan et al. 80 

[2018] developed a downscaling framework to generate an improved ensemble precipitation 81 

product based on quantile-based RF via blending four different precipitation products (three 82 

satellite-based products and one reanalysis product), air temperature, near-surface soil moisture, 83 

and terrain elevation information, over the Iberian Peninsula. Their results indicate higher 84 
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consistency of the downscaled precipitation products with ground-based observations compared 85 

to any of the single product. 86 

Selecting the predictor variables is an important step, yet receiving little attention in RF-87 

based precipitation downscaling. In the general formulation of RF regression, the importance of 88 

a predictor on a predictand is measured by the mean decrease in accuracy, MDA, defined as the 89 

change in mean square error (MSE) of the out-of-bag sample to the original model when the 90 

predictor is randomly permuted and used in a new prediction [Breiman, 2001]. Randomly 91 

permuting an irrelevant predictor should make no difference in the new prediction and thus 92 

results in negligible increments in MSE [Genuer et al., 2010; Grömping, 2009]. This concept has 93 

been adopted to quantify predictor importance in precipitation downscaling studies [Ma et al., 94 

2018c; Bhuiyan et al., 2018; He et al., 2016]. For example, Bhuiyan et al. [2018] showed that 95 

soil moisture and other precipitation variables were ranked as the most important predictors for 96 

their study conducted over the Iberian Peninsula. Topographic (elevation, aspect, and slope) and 97 

geographic (latitude and longitude) variables are characterized by lower importance in daily 98 

precipitation downscaling [Bhuiyan et al., 2018; He et al., 2016], although their predictive value 99 

increases when downscaling longer-term (yearly to monthly) cumulative precipitation [Ma et al., 100 

2018c; Xu et al., 2015]. 101 

Although the concept of MDA provides a relative ranking of predictor importance, it does 102 

not distinguish relevant from irrelevant predictors. To build a parsimonious prediction model for 103 

precipitation, additional procedures are required. One popular approach is the recursive feature 104 

elimination (RFE) that incorporates a predictor importance index to select a minimal set of 105 

variables [Degenhardt et al., 2017; Díaz-Uriarte and Alvarez de Andrés 2006]. RFE starts with 106 

the full list of variables by fitting RF model to the set. A portion of variables with the lowest 107 
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predictor importance index are disregarded and a new RF model is fitted to the rest. The process 108 

is repeated until a single variable is left as input. Model performance of every iteration is 109 

measured by the MSE of out-of-bag sample and relevant variables are those that make up the 110 

model with the minimum out-of-bag MSE. This process provides an intuitive view of the 111 

evolution of model performance with the number of predictor variables. While this is a popular 112 

approach in the field of bioinformatics, we believe that this is the first time it has been applied to 113 

precipitation downscaling. 114 

To explore the potential of RF in precipitation downscaling, this work presents a scheme to 115 

produce precipitation at 1km spatial resolution over HMA. A predictor selection method is 116 

introduced to reduce the model space, while retaining high model accuracy. The downscaled 117 

precipitation dataset is evaluated in terms of rain magnitude and pattern against ground-based 118 

observations and high-resolution satellite precipitation products. This work seeks to investigate i) 119 

the usefulness of variables representing near-surface atmospheric conditions, geospatial 120 

information, and seasonality in precipitation spatial downscaling over a complex terrain region; 121 

and ii) the application of an RFE-based procedure for predictor selection. The study is organized 122 

as follows. Section 2 describes the HMA region and all data used for downscaling and 123 

validation. Section 3 introduces the downscaling framework and the method to validate the 124 

downscaled precipitation products. Results are shown in Section 4 and discussed in Section 5. 125 

Conclusions and recommendations are presented in Section 6. 126 

 127 

2. Study Area and Datasets 128 

2.1. High Mountain Asia 129 
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The HMA region is one of the most extensive mountain systems in the world and contains 130 

the largest concentration of glacier ice outside the Polar Regions (Figure 1). It is the source of 131 

many major Asian river systems, such as Indus, Brahmaputra, Salween, Mekong, Yellow, and 132 

Yangtze rivers, which support the ecosystem services, agriculture, energy and livelihood of over 133 

one billion people. The region features a complex precipitation climatology under the combined 134 

and competitive influences of the Indian and East Asian monsoon systems and of the westerlies 135 

disturbances originated from the Caspian and Mediterranean Seas, modulated by the highly 136 

elevated terrain [Cannon et al., 2017; Wei et al., 2016; Maussion et al., 2014]. This study focuses 137 

on the region that extends from 61°E to 90°E and from 20°N to 41°N, including the central and 138 

western Tibetan Plateau (TP) and several major mountain ranges like the Hindu Kush, the Pamir, 139 

the Karakoram, the Kunlun, and the Himalaya. These mountain ranges serve as sources of the, 140 

from west to east, Amu Darya River, Indus River, Tarim River, Ganges River, and Brahmaputra 141 

River. 142 

2.2. Dataset Used in the Downscaling Algorithm 143 

The precipitation data to be downscaled are the uncorrected total precipitation (i.e., without 144 

corrections from ground-based stations) from the Modern-Era Retrospective Analysis for 145 

Research and Applications, version 2 (MERRA-2). MERRA-2 provides hourly cumulative 146 

precipitation at the land surface with a horizontal resolution of 0.5° × 0.625° [Gelaro et al., 147 

2017]. Other MERRA-2 variables used in the precipitation downscaling are surface air 148 

temperature, 2m dew point temperature, surface pressure, surface specific humidity, surface 149 

absorbed longwave radiation, surface incoming shortwave radiation, top-of-atmosphere 150 

incoming shortwave radiation, surface albedo, surface wind speed, surface roughness, zero-plane 151 

displacement height, measurement height of variables, and geopotential height. 152 
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Vegetation, surface albedo, and land cover information are obtained from the Moderate 153 

Resolution Imaging Spectroradiometer (MODIS) products. The MODIS normalized difference 154 

vegetation indices (NDVI) products, MOD13Q1 and MYD13Q1 version 6, are 250m/16-daily 155 

resolution [Didan et al., 2015a; 2015b]. The MODIS surface albedo products, MCD43A3 version 156 

6, is a 500m/daily product [Schaaf and Wang, 2015]. The MODIS land cover, MCD12Q1, is a 157 

500m/yearly product [Friedl and Sulla-Menashe, 2019]. Lastly, the global 90m Shuttle Radar 158 

Topography Mission (SRTM) digital elevation model (DEM) dataset are also used [Farr et al., 159 

2007]. 160 

2.3. Validation Dataset 161 

The ground-based precipitation measurements are collected from three networks providing 162 

daily cumulative precipitation (Figure 1). The first is the Chinese Surface Stations for Global 163 

Exchange Version 3.0 product collected by the Chinese Meteorology Administrative (CMA). 164 

There are 19 stations in the study area, 9 of those, labeled purple, located within the Tarim basin, 165 

an endorheic basin with extremely scant precipitation due to the rain shadows of TP and the Tien 166 

Mountain. The other 10 rain gauges (in green) are scattered over the relatively high elevation 167 

area of the Ganges river basin, the Brahmaputra river basin, the Inner TP, and the Indus basin. 168 

Secondly, the Nepalese Department of Hydrology and Meteorology (DHM) has 7 stations 169 

located in the eastern Narayani basin and 4 in the southern Koshi basin, featuring heated tipping 170 

buckets (blue dots in Figure 1). This area is influenced by the Indian monsoon rainfall and highly 171 

elevated topography. Thirdly, 7 stations from the Pakistan Meteorology Department (PMD) 172 

reside in the Karakoram area are also used (red dots in Figure 1). 5 out of 7 are located on the 173 

Gilgit-Upper Indus river valley and 2 are located on the Central Karakorum National Park on 174 

Baltoro Glacier. This region is also characterized by a low amount of precipitation as the 175 
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mountain ranges block the penetration of moist air from the Mediterranean and Caspian Seas 176 

during winter and spring and from the Indian Ocean during summer. 177 

Two satellite-based precipitation datasets are also used for comparison with the downscaled 178 

precipitation product. The Climate Hazards Group InfraRed Precipitation (CHIRP) is a satellite-179 

reanalysis product with 0.05°/daily resolution [Funk et al., 2015]. CHIRP uses a monthly 180 

precipitation climatology to adjust the global Thermal Infrared Cold Cloud Duration (CCD) 181 

rainfall estimates calibrated by the Tropical Rainfall Measuring Mission Multi-satellite 182 

Precipitation Analysis 3B42 version 7 (over 2000 to 2013) to produce pentadal precipitation 183 

estimates. CHIRP is further bias-corrected with rain gauge observations using a modified inverse 184 

distance weighting algorithm to produce the Climate Hazards Group InfraRed Precipitation with 185 

Station (CHIRPS) product. As the last step, the daily CCD data and the Version 2 atmospheric 186 

model rainfall field from the National Oceanic and Atmospheric Administration (NOAA) 187 

Climate Forecast System (CFS) are used to disaggregate CHIRP and CHIRPS to daily resolution. 188 

The NOAA Climate Prediction Center (CPC) morphing technique (CMORPH) product and 189 

its gauge-adjusted version are available at 0.072°/half-hourly resolution [Joyce et al., 2004]. 190 

CMORPH is produced by propagating passive microwave precipitation estimates backward and 191 

forward with the cloud system advection vectors generated based on the geostationary satellites 192 

infrared imagery at a half-hourly interval. The gauge-adjusted CMORPH is produced using the 193 

probability density function matching technique with the NOAA CPC Unified daily gauge 194 

analysis (CPCU) over land and the Global Precipitation Climatology Project over ocean [Xie et 195 

al., 2017]. 196 
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The gauge-adjusted MERRA-2 precipitation product (0.5° × 0.625°/hourly), which is 197 

corrected by the CPCU gauge-based product, is also included for inter-comparison purposes 198 

[Reichle et al., 2017]. 199 

 200 

3. Methodology 201 

The kernel of the proposed precipitation downscaling framework is a RF classification and a 202 

RF regression. The framework contains several components with different functionalities (Figure 203 

2). First, an RFE-based procedure is used to select relevant predictors. The selected predictors 204 

are either upscaled or topographically corrected to 1km and temporally aggregated/disaggregated 205 

to daily. A binary precipitation mask is produced based on daily cumulative precipitation rate 206 

greater than 0mm and the RF classification model is trained to the precipitation mask. The 207 

1km/daily precipitation mask is estimated using the 1km predictors. Then, the RF regression 208 

model is trained and the 1km precipitation is estimated using the downscaled predictors over 209 

rainy pixels only. This framework is demonstrated using 3 years (2006–2008) of data over the 210 

study domain. 211 

3.1. Potential Predictors 212 

We consider a total of 13 predictors for precipitation, which include 8 atmospheric variables 213 

and 5 auxiliary variables. The atmospheric variables are air temperature, dew point temperature, 214 

air pressure, specific humidity, relative humidity, incident longwave radiation, incident 215 

shortwave radiation, and wind speed. The 7 atmospheric variables except for the relative 216 

humidity are collected from MERRA-2 and regridded to 50km. Relative humidity is calculated 217 

based on specific humidity, air temperature, and pressure. These 8 atmospheric variables are then 218 

adjusted for discrepancies from the 50km MERRA-2 geopotential height to a 1km terrain grids 219 
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derived from SRTM to account for topographic effects from the 1km terrain. The topographic 220 

corrections contain two parts: i) a bilinear interpolation to match resolution of the 50km 221 

MERRA-2 variables to 1km, and ii) a deterministic downscaling to adjust for topographic effects 222 

[Rouf et al., 2019; Tao and Barros, 2018; Ruiz-Arias et al., 2010a; 2010b; Cosgrove et al., 2003]. 223 

Details on the topographic correction processes are provided in Appendix A.1, accompaned by a 224 

brief evaluation of the downscaled variables with another high-resolution reanalysis dataset in 225 

Appendix A.2. All 8 atmospheric variables, both their 50km and 1km version, are then averaged 226 

from hourly to daily. 227 

We also include 5 auxiliary variables as potential predictors: 1- and 2-month-lagged 228 

vegetation, latitude, longitude, and date of year. Xu et al. [2015] showed that vegetation 229 

greenness could be used as a proxy for cumulative precipitation. We derive vegetation 230 

information from two MODIS NDVI products that have the same resolution, but different record 231 

date (MOD13Q1 is 8 days earlier than MYD13Q1). By combining the two, we obtain NDVI 232 

records every 8 days. The 8-daily NDVI is spatially aggregated to 50km and 1km resolution. The 233 

1-(2-)month-lagged vegetation of a target day is the NDVI 30 (60) days after the day. 234 

Latitude/longitude and date of year are also used, as they contain geographical and seasonality 235 

information. 236 

3.2. Selection of Predictors 237 

To determine an optimal number of predictors that balances the model performance and 238 

computational costs, an RFE-based procedure is adopted and the concept of MDA is used to 239 

quantify the predictor importance. To investigate the consistency of relative predictor importance 240 

among different years, we perform the selection separately for the three study years. A 30% of 241 

the data points (sampled evenly from rainy and non-rainy pixels and every time step) is withheld 242 



 12 

for validation. A maximum number of 60 trees is grown and the performance of the model based 243 

on one to the maximum number of trees is also investigated. Other meta-parameters of RF that 244 

may impact the model performance and training costs, e.g., minimal size of leaf nodes, size of 245 

the random subset of variables for each decision split, and size of the bootstrap sample, are 246 

adopted from values suggested in the literature (Table 1; He et al., 2016; Genuer et al., 2010; 247 

Breiman, 2001). 248 

First, the RF regression model is trained with the 13 variables presented in Section 3.1 and 249 

the logarithmic precipitation (P
*
) as the predictand. Model performance is measured by the MSE 250 

of the out-of-bag sample, η: 251 

𝜂 =
1

𝑁𝑜𝑜𝑏
∑ (𝑃𝑖

∗ −
1

𝑁𝑇𝐼𝑖,𝑗
∑ 𝑃𝑖,𝑗

∗̂
𝑁𝑇

𝑗=1
𝐼𝑖,𝑗)

2𝑁𝑜𝑜𝑏

𝑖=1
 (1) 

where 𝑃𝑖,𝑗
∗̂  denotes an estimate of Pi

*
 based on the out-of-bag sample using the j

th
 tree. Ii,j denotes 252 

whether the i
th

 observation of the j
th

 tree is out-of-bag. Noob is the union set of out-of-bag sample 253 

size of all trees. The predictor importance is measured by the MDA defined as [Breiman, 2001]: 254 

𝛥𝑛 =
1

𝑁𝑇
∑ (𝜂̇𝑗|𝑣𝑛 − 𝜂̇𝑗)

𝑁𝑇

𝑗=1
 (2) 

where Δn is the changes in out-of-bag MSE with the n-th variable perturbed 𝜂̇𝑗  and 𝜂̇𝑗|𝑣𝑛 255 

represent MSE of the original and perturbed out-of-bag sample of the n-th variable, respectively. 256 

𝜂̇𝑗 and 𝜂̇𝑗|𝑣𝑛 are defined similarly as Eq.(1): 257 

𝜂̇𝑗 =
1

𝑁𝑜𝑜𝑏,𝑗
∑ (𝑃𝑖

∗ − 𝑃𝑖,𝑗
∗̂ )

2𝑁𝑜𝑜𝑏,𝑗

𝑖=1
 (3) 

𝜂̇𝑗|𝑣𝑛 =
1

𝑁𝑜𝑜𝑏,𝑗
∑ (𝑃𝑖

∗ − 𝑃𝑖,𝑗
∗̂ |𝑣𝑛)

2𝑁𝑜𝑜𝑏,𝑗

𝑖=1
 (4) 
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where Noob,j is the out-of-bag sample size for the j-th tree. Then, all variables are ranked based on 258 

their Δn and the variable associated with the smallest Δn is removed. It is important to note that 259 

the variable ranking may change slightly as one repeats the training. To ensure a robust ranking, 260 

we follow the method proposed by Gregorutti et al., [2017] to repeat the training multiple times 261 

until the same variable appears three times with the smallest Δn. With one variable removed, this 262 

filtering process is repeated until there is only one variable left. η and Δn are recorded for 263 

different models and predictors. 264 

The relative model performance is quantified by a normalized MSE (η in Eq.(1) divided by 265 

the variance of P
*
) shown in Figure 3. The left three panels show performance of models for the 266 

three years as a function of the number of predictors and trees. The performance stays relatively 267 

constant for models with 7 predictors or more. To have a better visualization of the effects of the 268 

tree number, the right panel shows that for the 7-predictor models the normalized MSEs are less 269 

than 0.12 with 50 trees. To evaluate the consistency of the 7 most relevant predictors among 270 

different years, Table 2 lists the variable removal order through the iterations. The variable in 271 

row 1 is the first variable to be removed, i.e., the least important predictor to precipitation. We 272 

observe consistency of the ranking – dew point temperature, specific humidity, and air 273 

temperature are always removed at the first three iterations, while relative humidity, pressure, 274 

day of year, and wind speed are always kept till the last four iterations. The 7 most important 275 

predictors for the three years are relative humidity, pressure, day of year, wind speed, shortwave 276 

radiation, longitude, and 2-month-lagged NDVI. Note that although longwave radiation ranks the 277 

7
th

 instead of 2-month-lagged NDVI, which ranks the 8
th

, in the case of 2007, the latter one is 278 

still considered for the sake of having a unified set of predictors. The cross-correlation of the 7 279 

selected predictors and precipitation are assessed, showing correlation coefficients within ±0.5 280 
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for 27 out of the 28 cases (only pressure shows a mild correlation of 0.53 with 2-month-lagged 281 

NDVI). 282 

3.3. Model Training and Precipitation Downscaling 283 

Precipitation is highly intermittent in nature but this is often concealed when coarse 284 

resolutions are considered. Therefore, simple statistical interpolations can result in artificial 285 

boundaries that distort the rain shadow effects due to complex terrain. To resolve this issue, our 286 

framework creates 1km binary precipitation masks and then applies the mask to the 1km 287 

precipitation fields. The general idea is that, given a set of atmospheric and geospatial 288 

conditions, it is possible to infer whether the pixels are rainy or not. 289 

First, the RF classification model for the binary precipitation mask, Pm, is trained separately 290 

for the 3 study years, using the 7 identified predictors. Pm is defined by P and it is 0 for pixels 291 

with no rain and 1 otherwise:  292 

𝑃𝑚 = 𝑅𝐹𝐶(𝛺) (5) 

where RFC(*) denotes the RF classification model and Ω denotes the selected predictor set. The 293 

next step estimates the 1km mask, P̃m, quantifying whether the pixels are rainy or not, using the 294 

trained RFC(*) with Ω,̃ the predictor set formed by the 1km variables. 295 

Then, an RF regression is performed between the 7 selected variables and P
*
 of rainy pixel 296 

(Pm=1) for the training sample: 297 

𝑃∗|𝑃𝑚=1 = 𝑅𝐹𝑅(𝛺|𝑃𝑚=1) (6) 

where RFR(*) denotes the RF regression model. The downscaled precipitation (P̃
*
) is estimated 298 

with Ω ̃for rainy pixels indicated by P͂m equals 1 and a final step is to convert the logarithmic P͂
*
 299 

back to the actual precipitation rate (precipitation rate is set to 0 for pixels with P͂m equals 0). 300 
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Figure 4 shows snapshots of the 50km and 1km resolution precipitation mask for a single 301 

day. The 1km precipitation mask reveals similar locations of the non-rainy pixels with finer 302 

details, a rainy belt located on the south slope of HMA, which is not detectable in the 50km 303 

mask. Table 3 lists the size of the training (out-of-bag) and validation population with the model 304 

performance metrics. Values of the misclassification rate and normalized MSE for the out-of-bag 305 

and validation samples are similar to each other, suggesting stable performance of the models 306 

when a different dataset is considered. 307 

3.4. Evaluation of the Downscaled Precipitation Product 308 

The downscaled precipitation product is evaluated against ground- and satellite-based 309 

observations. For the comparison with the ground-based networks, the uncorrected and corrected 310 

MERRA-2, CMORPH, and CHIRPS are interpolated using the nearest neighbor to 1km and 311 

aggregated to daily, matching the downscaled precipitation. The use of nearest neighbor 312 

interpolation ensures the original precipitation magnitude of products. Time series of pixels 313 

collocated with rain gauges are extracted and error metrics are computed for the common time 314 

period. The Taylor’s and performance diagrams are used to collectively assess the performance 315 

of the precipitation datasets [Roebber, 2009; Taylor, 2001]. The Taylor’s diagram shows the 316 

normalized standard deviation (σ
*
), the normalized centered root mean squared error (E

*
), and 317 

the correlation coefficient (ρ) collectively in a single panel, allowing to investigate the dynamics 318 

among different error components. The differences in E
*
 and ρ derived by any combination of 319 

two precipitation datasets (with respect to the reference) are tested for statistical significance 320 

using the F-test and Z-test, respectively, with a significant level of 0.05 (Meng et al., 1992; 321 

Snedecor and Cochran, 1989). The performance diagram works complementarily to the Taylor’s 322 

as it focuses on the detection-based error metrics namely, the probability of detection (PoD), 323 
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false alarm ratio (FAR), bias ratio (BR), and critical success index (CSI) conditioned on an ad-324 

hoc threshold. Rather than null, we set such threshold to 0.01mm/d to discern rain and no-rain. 325 

All statistics and error metrics used to produce the two diagrams are defined in Appendix B. 326 

For the comparison with the satellite-based products, the downscaled precipitation is 327 

aggregated to 5km and 8km to match the spatial resolutions of CHIRPS and CMORPH, 328 

respectively. The CMORPH products are aggregated to daily. Because of the inherent bias 329 

between different precipitation products, we use ρ to quantify the similarity. Specifically, ρ for 330 

all locations in the 5km/8km terrain is comnputed between the aggregated downscaled 331 

precipitation and CHIRPS/CMORPH. Results are tested for statistical significance (to test 332 

whether the ρ values are greater than 0) using a Z-test with a significant level of 0.05 (Snedecor 333 

and Cochran, 1989). 334 

 335 

4. Results 336 

A qualitative assessment of the downscaled product with respect to its original resolution 337 

counterpart and to the reference products is presented in Figure 5. All products reveal a similar 338 

mean annual precipitation spatial pattern, but different magnitudes. This is particularly evident 339 

on the southern slope of the Himalayan Range, where MERRA-2 reaches values higher than 340 

4,000mm/year, while the other products do not exceed 3,800mm/year. The gauge adjustments 341 

work similarly in reducing the overall precipitation magnitudes for the MERRA-2 family and 342 

CHIRP/CHIRPS, while the corrected CMORPH shows the opposite trend to its uncorrected 343 

counterpart. Downscaled MERRA-2 also reveals lower magnitudes than MERRA-2. The spatial 344 

distribution of downscaled MERRA-2 reflects the topographic and vegetation features, which are 345 

blended in the RF downscaling framework. 346 
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4.1. Validation Against Ground-Based Observations 347 

Different precipitation datasets are evaluated against the ground observations using Taylor’s 348 

diagrams (Figure 6). Results of the statistical significance tests for both normalized centered root 349 

mean square error and correlation coefficient are listed in Table 4. Overall, values of E
*
 and ρ are 350 

generally lower and higher, respectively, in the evaluation against the DHM gauges in 351 

comparison to the others. This may point to an issue with light precipitation detection for the 352 

satellite and the reanalysis products, as the mean annual precipitation for the CMA-1, CMA-2, 353 

and PMD gauges are 41, 336, and 187mm/year, respectively, while that of the DHM gauges is 354 

1526mm/year. Product-wise speaking, the MERRA-2 family is characterized by higher ρ than 355 

the satellite-based products in 3 out of the 4 networks (except for CMA-2), with the downscaled 356 

one showing the highest ρ at 0.52 and 0.23 over DHM and PMD, respectively. Yet, no single 357 

product can be claimed as the best in terms of E
*
. For instance, CHIRP shows the lowest E

*
s at 358 

1.03 and 1.08 for CMA-1 and PMD, respectively; whereas the downscaled and corrected 359 

MERRA-2 take the lead in the DHM and CMA-2 cases, with E
*
s at 0.89 and 0.98, respectively. 360 

Another consistent observation among the network is that the downscaling framework improves 361 

the accuracy of MERRA-2, dragging it to the corrected MERRA-2.  362 

Precipitation detection is then evaluated through the performance diagrams presented in 363 

Figure 7. Overall, all products perform better in the DHM network and worse in the PMD one, 364 

which agrees with the Taylor’s diagrams. All products, except for CHIRPS, show BRs greater 365 

than 1.38, indicating that false alarms are more severe than missed events. The MERRA-2 family 366 

is always characterized by higher CSIs compared to the satellite-based products. By comparing 367 

the gauge-corrected products to their uncorrected versions (filled dots vs. unfilled dots in the 368 

same colors), one can see improvements in their BRs, getting closer to 1. But this is not always 369 
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the case for their CSIs as we only observe consistent increases for the MERRA-2 products. 370 

Results also suggest that the downscaling framework consistently improves both the bias ratio 371 

and the critical success index, making them closer to 1. This could be attributed to the extra 0-372 

precipitation days introduced by the 1km precipitation mask, which simultaneously decreases 373 

PoD and FAR, but leads to an overall better detection. A detailed investigation on each panel 374 

shows that the downscaled MERRA-2 has the highest CSI at 0.24 over the CMA-1 networks and 375 

the second highest CSIs for the other three cases (0.35, 0.55, and 0.16 for CMA-2, DHM, and 376 

PMD). 377 

Overall, the MERRA-2 family reveals higher correlation and detection consistency with the 378 

ground gauge networks, with the downscaled product showing improvements to the original 379 

MERRA-2, as it appears as the best product in the DHM (CMA-1) network comparison by 380 

means of correlation and random error (detection-based error). All products are generally better 381 

in capturing precipitation depicted by the DHM network, but their performance degrades when 382 

detecting light precipitation. 383 

4.2. Comparison with Remote Sensing Products 384 

Figure 8 displays the spatial distribution of correlation coefficient between the downscaled 385 

precipitation product and each satellite product. First, ρ between downscaled MERRA-2 and 386 

CHIRP/CHIRPS is higher than that of the downscaled MERRA-2 and CMORPH/corrected 387 

CMORPH. The downscaled product is more similar to CHIRP than its gauge-corrected version 388 

(Figure 8a and c); low values of ρ are generally clustered over most of the Tarim and areas 389 

around the borders of Indus and Luni basin. Several gray patches (negative ρ or value not 390 

significantly larger than 0) also appear within the Tarim basin in the CHIRPS case. For the two 391 

CMORPHs (Figure 8b and d), few regions present high ρ values; this includes portions of the 392 
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western Helmand, the southwestern Luni, most of the coastal basins, and some patches in the 393 

Ganges basin. More gray patches are identified in these comparisons, especially over the borders 394 

of the Indus with the Amu Darya and Tarim, a mountainous region which consists of the Hindu 395 

Kush, Pamir, and Karakoram Mountain. Some gray patches also appear within the Inner TP and 396 

on the borders of Ganges and Brahmaputra (the eastern Himalaya range). The correlation maps 397 

show results that are in line with the ones in Figure 6 and Figure 7, i.e., the two CMORPHs are 398 

always closer to each other than CHIRP to CHIRPS. 399 

To summarize, it is clear that downscaled MERRA-2 has a higher degree of similarity in 400 

terms of correlations with the CHIRP and CHIRPS products, especially the near-real-time one, in 401 

comparisons to the two CMORPHs. Low correlations are consistently found over the Tarim, 402 

southern Indus, and northern Luni basins in all cases. Negative correlation appears over the 403 

Hindu Kush-Pamir-Karakoram Mountain region, the eastern Himalaya range, and some patches 404 

within the Inner TP in the comparisons to CMORPHs.  405 

 406 

5. Discussions 407 

5.1. On the Selection of Predictors 408 

Topography is an important factor that modulates the precipitation distribution in such a 409 

mountainous terrain. Our results indicate that the downscaled precipitation preserves the 410 

mesoscale features of the MERRA-2 precipitation and inherits the fine-scale features from 411 

topography. This is because the proposed RF-based downscaling framework considers 4 near-412 

surface meteorological variables (i.e., air pressure, relative humidity, shortwave radiation, and 413 

wind speed) that are corrected for slope, aspect, curvature, shadowing effects, sky obstruction, 414 

and reflection to account for the topographic effects. To avoid repeating information, those 415 



 20 

topographic variables are not explicitly considered as predictors to train the RF models. 416 

Moreover, this study investigates the relative predictor importance of 13 variables and selects 7 417 

of those to train the RF models for precipitation downscaling. These variables include surface 418 

meteorology, geospatial information, vegetation cover, and seasonality of the region. In addition, 419 

physical properties of cloud, soil moisture, and other land surface parameters may also be 420 

included in the precipitation downscaling. For example, the cloud optical thickness effective 421 

radius and cloud water path are found to be related to precipitation rate [Sharifi et al., 2019] and 422 

soil moisture can be used to infer precipitation through an inversed water balance equation 423 

[Brocca et al., 2014]. Future studies should focus on the potential of those variables in the 424 

downscaling framework. 425 

5.2. On the Similarity to Satellite Products 426 

Our results suggest that the downscaled precipitation product has a high degree of linear 427 

agreement with CHIRP. Downscaled MERRA-2 inherits the temporal variability of MERRA-2, 428 

which is produced by the Goddard Earth Observing System version 5.12.4 (GEOS v5.12.4) and 429 

CHIRP utilizes the CFS v2 precipitation to disaggregate the pentadal 3B42-calibrated CCD 430 

precipitation estimates [Gelaro et al., 2017; Funk et al., 2015]. GEOS v5.12.4 and CFS v2 are 431 

similar in two ways. They both use a three-dimensional variational data assimilation analysis 432 

algorithm based on the Gridpoint Statistical Interpolation scheme and they assimilate 433 

observations from common sources as conventional ground-based observations of standard 434 

atmospheric variables, radiosondes and pibals, aircraft data, satellite-derived wind, radio 435 

occultation data and satellite radiance [Gelaro et al., 2017; Reichle et al., 2017; Saha et al., 436 

2010]. Therefore, our results highlight these underlying similarities between the two reanalysis 437 

systems used to produce MERRA-2 and CHIRP. 438 



 21 

The near-real-time CMORPH is a satellite-only product whose temporal variability is based 439 

on the motion vectors of cloud systems derived from the consecutive geosynchronous earth orbit 440 

infrared images. This explains in part the lower agreement with the downscaled product. 441 

Additionally, the low correlation can be attributed to the proportion of missing values in 442 

CMORPH. The current version of CMORPH has no procedures to gap-fill the snow-covered 443 

surface, leading to incomplete spatial coverage during cold seasons [Xie et al., 2017]. This is 444 

substantiated by Figure 9, which shows the fraction of missing values during the winter season 445 

(December to February) for the study domain. The fraction of missing values reaches almost 446 

50% over the Karakoram Mountain region coincident with the area with negative correlation 447 

coefficients revealed by Figure 8b and d. 448 

 449 

6. Conclusions 450 

In this study, we developed a nonparametric precipitation downscaling framework based on 451 

the RF algorithm for HMA. The proposed framework includes a unique recursive feature 452 

elimination procedure for predictor selection. It utilizes i) an RF classification to develop a high-453 

resolution precipitation mask and ii) an RF regression to spatially downscale the precipitation 454 

rate over rainy pixels. The RF models are separately built for 3 years, 2006, 2007, and 2008. The 455 

use of the 7 selected variables as predictors is demonstrated to be sufficient to provide stable and 456 

accurate performance for the RF regression models. The downscaled precipitation product is 457 

validated against four ground-based rain gauge networks and is compared to four widely used 458 

satellite precipitation products. 459 

Results suggest that the downscaled precipitation preserves the mesoscale features of the 460 

MERRA-2 precipitation, while also inheriting the topographic features of the downscaled 461 
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atmospheric variables and vegetation indices. The ground-based validation results suggest 462 

consistent improvements, regardless of the precipitation magnitude or detection, after 463 

downscaling the original MERRA-2. The downscaled product outperforms others over the DHM 464 

network, while reaches a similar level of performance in the CMA-1 and PMD ones in terms of 465 

root mean square error and correlation coefficient. In terms of detection, results suggest that false 466 

alarms are more severe than missed events; the MERRA-2 family precipitation always show 467 

better critical success indices than the satellite-based products.  468 

The downscaled precipitation product reveals higher similarities in terms of correlation with 469 

CHIRP and CHIPRS than the two CMORPHs, especially with CHIRP. Correlations are 470 

generally lower over the Tarim basin and parts of the Indus and Luni basins for the CHIRP and 471 

CHIRPS cases. For CMORPH, most of the study area are characterized by low correlation, 472 

particularly the region of the Hindu Kush, Pamir, and Karakoram Mountains. 473 

In conclusion, the developed precipitation downscaling framework may alleviate the urgent 474 

need of high-resolution surface meteorological and climatological data for environmental 475 

modeling over the HMA area. Given the low density of the ground-based meteorological 476 

network, future studies should focus on indirect validation methods. For instance,  the potential 477 

of using the downscaled products as input to a hydrological model over basins in HMA could be 478 

assessed if streamflow gauges were available in the region. In addition, the application of the 479 

framework to other precipitation products might be tested.  480 
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Appendix A. Topographic correction of atmospheric variables 481 

A.1. Topographic correction procedures 482 

The topographic correction processes are designed to spatially downscale the 8 hourly 483 

atmospheric variables used as potential predictors for precipitation from 50km to 1km. In this 484 

appendix, we show only the necessary processes and evaluation results for the 4 selected 485 

variables (pressure, relative humidity, shortwave radiation, and wind speed). 486 

The topographic correction method for air pressure (p, Pa) accounts for the pressure 487 

difference between the 50km and the 1km terrain elevation. It is based on the hydrostatic 488 

equation and the Ideal Gas Law [Cosgrove et al., 2003]: 489 

𝑝̃ = 𝑝𝑒
−
𝑔(𝑍̃−𝑍)
𝑅𝑇𝑚  (A.1) 

where variable with/without “~” indicates variable for the 50km/1km terrain. Z is the terrain 490 

elevation (m above sea level). R is the ideal gas constant (287J/kg·K) and g is the gravitational 491 

acceleration (9.81m/s
2
). Tm is the mean air temperature between the 50km and the 1km terrain 492 

elevation, i.e., 
𝑇̃+𝑇

2
, with T representing the air temperature (K). T̃ is adjusted from T based on the 493 

lapse rate correction: 494 

 𝑇̃ = 𝑇 + 𝛤(𝑍̃ − 𝑍) (A.2) 

where Γ is a dynamic temperature lapse rate estimated as the slope of regressing temperature and 495 

elevation difference of a location to its eight neighbors in space for a time step [Rouf et al., 496 

2019].  497 

Relative humidity is defined as the ratio between actual and saturated mixing ratio of water 498 

vapor; by recognizing that mixing ratio of water vapor may be further expressed by vapor 499 

pressure and air pressure, one arrives at the following equation for relative humidity (r,̃ %): 500 
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𝑟̃ =
𝐸̃ (𝑝̃ − 𝐸̃)⁄

𝐸𝑠̃ (𝑝̃ − 𝐸𝑠̃)⁄
× 100 (A.3) 

where Ẽ and Ẽs are actual and saturated vapor pressure (Pa), which, in terms, are related to dew 501 

point and air temperature by the Magnus formula (see, for example, Lawrence [2005]): 502 

𝐸̃ = 𝐶𝑒
(
𝐴𝑇𝑑̃
𝑇𝑑̃+𝐵

)
 (A.4) 

where constant A, B, and C are 17.368/22.452, 238.88°C/272.55°C, and 611.21Pa/611.15Pa for 503 

water/ice surface. T̃d is the dew point temperature and, by replacing which with T̃, one arrives 504 

with Es. T̃d is adjusted from Td using Eq.(A.2) by replacing Γ with Γd, a dynamic lapse rate for 505 

dew point temperature similarly determined as the air temperature lapse rate [Rouf et al., 2019]. 506 

Wind speed (W, m/s) is adjusted for friction velocity under the logarithmic wind profile 507 

assumption: 508 

𝑊 =
𝑈∗
𝜅
ln (

𝐻− ℎ0
𝑧0

) (A.5) 

where κ is the Von Kármán constant (~0.41). U* is friction velocity (m/s); z0, h0, and H are 509 

surface roughness, zero-plane displacement height, and measurement height (m above ground). 510 

Note that wind speed for the 1km terrain, W̃, may be expressed by Eq.(A.5) with the 511 

corresponding variables for the 1km terrain. By taking the ratio between W̃ and W, one arrives at 512 

the following: 513 

𝑊̃ = 𝑊
𝑈∗̃
𝑈∗

 (A.6) 

Note that the differences between the 1km and 50km ln (
𝐻−ℎ0

𝑧0
) term may be neglected as we 514 

consider the same measurement height for the terrains. To find W̃, one would need Ũ*. Tao and 515 

Barros [2018] reveals that 
𝑈∗̃

𝑈∗
 may be approximated by (

𝑧0̃

𝑧0
)
0.09

 as one considers the dependence of 516 
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the geostrophic drag coefficient on surface roughness and the geostrophic wind remains 517 

unchanged with the two terrain scales. The variable z0 is adopted from MERRA-2 while z̃0 may 518 

be determined if one considers its dependency on land cover [Bohn and Vivoni, 2019]. Bohn and 519 

Vivoni [2019] provides a surface roughness look-up-table conditional on land cover classes and 520 

months. We adopt the table and implement it over the 500m/yearly MODIS land cover product 521 

to construct a 1km/monthly surface roughness, named as z̃LC. A temporal disaggregation factor is 522 

derived from the hourly MERRA-2 z0 and then multiple to z̃LC for z̃0: 523 

𝑧0̃ = 𝑧𝐿𝐶̃
𝑧0
𝑧0̅

 (A.7) 

where z̄0 is the monthly mean of z0. 524 

The topographic correction of incident shortwave radiation (S, W/m
2
) is separated for 525 

different components, considering the differences in optical path length of sunlight, the terrain 526 

shadowing effects, the openness of terrain, and the reflecting from ambient terrain [Ruiz-Arias et 527 

al., 2010a; 2010b]. It comprises four steps. At first, S is partitioned into beam (Sb) and diffuse 528 

radiation (Sd) based on the Ruiz-Arias et al. [2010a] regression model. Then, Sb and Sd are 529 

adjusted by the following: 530 

𝑆𝑏̃ = 𝑆𝑏𝑒
𝑘(𝑝̃−𝑝) 𝑐𝑜𝑠(𝜃) 𝛿 (A.8) 

𝑆𝑑̃ = 𝑆𝑑𝐹𝑣 (A.9) 

where k (Pa
-1

) is the broadband attenuation coefficient defined as the top-of-atmosphere and 531 

surface radiation difference over pressure difference [Rouf et al., 2019]; the term e
k(p̃-p)

 is used to 532 

account for the differences in optical path length due to the pressure difference. The cosine of 533 

solar illumination angle, cos(θ), ranging between -1 to 1, indicates if the sun is below or above 534 

the local horizon (note that values lower than 0 are set to 0); and δ is a binary shadow mask 535 

indicating whether the location is blocked by the surrounding terrain. These two factors account 536 
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for the self- and cast-shadowing caused by the local slope and surrounding terrain. Term Fv in 537 

Eq.(A.9) is the sky-view factor accounting for the sky obstruction. In step 3, a reflected radiation 538 

component S̃r is estimated: 539 

𝑆𝑟̃ = 𝐴̃𝐹𝑡[𝑆𝑏̃ + (1 − 𝐹𝑣)𝑆𝑑̃] (A.10) 

where A is the surface albedo adopted from MODIS; Ft is the terrain configuration factor. Lastly, 540 

the sum of these three components gives the 1km incident shortwave radiation [Ruiz-Arias et al., 541 

2010b].  542 

A.2. Pattern-based Comparisons 543 

The topographically-corrected atmospheric variables are compared to the High Asia Refined-544 

Analysis (HAR) product, which is developed by dynamical-downscaling of global analysis data 545 

using the Weather Research and Forecasting model [Maussion et al., 2014]. HAR is an hourly 546 

atmospheric dataset generated primarily for TP with a high spatial resolution at 10km. The aim 547 

here is to provide a qualitative assessment on whether the topographic correction procedures 548 

introduce reasonable spatial features to the coarse resolution variables by comparing to the 549 

dynamical downscaling applied by HAR. The 1km topographically-corrected variables are 550 

spatially aggregated to 10km to match with the HAR ones. Both datasets are temporally 551 

aggregated to daily for the comparison as daily is the time scale the 1km variables were used to 552 

produce the downscaled precipitation. Three error metrics – mean relative error (ε), normalized 553 

centered root mean square error (E
*
), and correlation coefficient (ρ) – are produced to assess the 554 

consistency between the datasets. E
*
 and ρ are used earlier in the Taylor’s diagrams; ε is used to 555 

quantify the systematic difference (see Appendix B for definitions). 556 

Figure A 1 shows the error metrics for the four selected atmospheric variables based on the 557 

three study years. Note that since the relative humidity is not directly available from HAR, the 558 
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specific humidity is compared instead. Looking at the three panels from the first row, we can see 559 

a high consistency between air pressure. Majority of the locations have positive ε, ranging from 560 

0.02 to 0.03 (the greenish color), indicating a very slight overestimation to the HAR air pressure 561 

by the topographic corrected one. Locations characterized by larger discrepancies are those 562 

located on the southern and northern slope of TP. For specific humidity, high ρs (larger than 0.95 563 

for most of the locations) can still be observed while the magnitudes of ε and E
*
 increase 564 

compared to the air pressure case. Patterns of ρ and E
*
 generally agree with each other, revealing 565 

lower E
*
s and higher ρs along the southern slope of TP; yet, magnitudes of ε over the southern 566 

slope are larger. Moving on to the shortwave radiation, its ε map suggests a slight 567 

underestimation as most of the pixels are in blueish color. The overall magnitude of ε is within 568 

±0.1 for the majority locations. The ρ and E
*
 maps of this case suggest that a large portion of the 569 

southern part of the domain (areas in gray) are characterized by E
*
s higher than 0.6 and ρs lower 570 

than 0.8. The case of wind speed shows the highest differences compared to the other three 571 

variables (note the enlarged color bar scales for the bottom three panels). The two wind speed 572 

datasets are more similar over TP but reveal relatively large differences over the northern and 573 

southern slope of TP. 574 

To sum up, patterns of the topographically-corrected variables are comparable to the HAR 575 

ones, especially for the air pressure and specific humidity cases. The overall magnitudes of 576 

shortwave radiation are similar as revealed by the low systematic differences, but their 577 

distributions can be quite different on the southern part of the domain. Wind speed shows some 578 

major differences over the domain as marked by the gray areas.  579 
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Appendix B. Definitions of Statistics and Error Metrics 580 

The Taylor’s and performance diagrams are used in this study to quantify the discrepancies 581 

between different datasets. Both diagrams contain multiple statistics and error metrics; their 582 

definitions are listed in Table A 1. Note that xi and yi represent the estimation and the reference 583 

of a variable, respectively; K is the total number of data pairs. Term H, M, and F represent the 584 

number of hit, missing, and false alarm of precipitation conditioned on the 0.01mm/d threshold. 585 

Bolded numbers shown in the value range column indicate the idle performance.  586 
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Table 1. RF meta-parameter values for model training. 754 

Parameter Value 

Number of predictors [1 13] 

Number of trees [1 60] 

Size of minimum leaf node 10 

Size of the random subset for each 

decision split 

One third (square root) of number of predictors for 

regression (classification) 

Size of the bootstrap sample 36.8% of the training sample 

 755 

Table 2. Order of removal of potential predictor variables. Bold text shows variables identified as 756 

important predictors for precipitation downscaling. 757 
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1 Dew point temperature Dew point temperature Dew point temperature 

2 Specific humidity Specific humidity Specific humidity 

3 Air temperature Air temperature Air temperature 

4 1-month-lagged NDVI 1-month-lagged NDVI Latitude 

5 Latitude Latitude Longwave radiation 

6 Longwave radiation 2-month-lagged NDVI 1-month-lagged NDVI 

7 2-month-lagged NDVI Longwave radiation Longitude 

8 Longitude Shortwave radiation 2-month-lagged NDVI 

9 Shortwave radiation Longitude Shortwave radiation 

10 Wind speed Wind speed Wind speed 

11 Day of year Day of year Day of year 

12 Air pressure Air pressure Air pressure 

13 Relative humidity Relative humidity Relative humidity 

  758 
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Table 3. Verification of the RF classification and regression models using the misclassification 759 

rate (MCR) and normzlized MSE. 760 

Sample Year 

RF classification RF regression 

Size MCR (%)  Size 
Normalized 

MSE (×10
-2

) 

Out-of-bag 

2006 141,850 3.94 130,788 11.96 

2007 142,379 4.52 124,800 11.99 

2008 142,714 4.25 128,184 11.94 

Validation 

2006 165,759 3.89 152,566 11.56 

2007 166,374 4.38 145,660 11.60 

2008 166,836 4.22 149,586 11.81 

  761 
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Table 4. Results of the significance tests for the normalized centered root mean square error (E
*
) 762 

and correlation coefficient (ρ) in the Taylor’s diagrams of Figure 6. The upper/lower portions of 763 

the table are for the E
*
/ρ tests. A value of 1 indicates statistically significant differences are 764 

found between the two specified precipitation data in terms of E
*
 or ρ at a significance level of 765 

0.05. 766 
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Table A 1. Definitions of statistics and error metrics used in the study. 768 

Name Definition Value range 

Mean 𝜇𝑋 =
1

𝐾
∑ 𝑥𝑖

𝐾

𝑖=1
 \ 

Variance 𝜎𝑌
2 =

1

𝐾
∑ (𝑦𝑖 − 𝜇𝑌)

2
𝐾

𝑖=1
 \ 

Covariance 𝑐𝑋𝑌 =
1

𝐾
∑ (𝑥𝑖 − 𝜇𝑋)(𝑦𝑖 − 𝜇𝑌)

𝐾

𝑖=1
 \ 

Mean relative error 𝜖 =
𝜇𝑋 − 𝜇𝑌
𝜇𝑌

 (-∞, 0, +∞) 

Normalized standard deviation 𝜎∗ =
𝜎𝑋
𝜎𝑌

 (0, 1, +∞) 

Normalized centered root mean square error 
𝐸∗ =

√1
𝐾
∑ (𝑥𝑖 − 𝑦𝑖 − 𝜇𝑋 − 𝜇𝑌)

2𝐾
𝑖=1

𝜎𝑌
 

[0, +∞) 

Correlation coefficient 𝜌 =
𝑐𝑋𝑌
𝜎𝑋𝜎𝑌

 [-1, 1] 

Probability of detection 𝑃𝑜𝐷 =
𝐻

𝐻 +𝑀
 [0, 1] 

False alarm ratio 𝐹𝐴𝑅 =
𝐹

𝐻 + 𝐹
 [0, 1] 

Bias ratio 𝐵𝑅 =
𝐻 + 𝐹

𝐻 +𝑀
 (0, 1, +∞) 

Critical success index 𝐶𝑆𝐼 =
𝐻

𝐻 +𝑀 + 𝐹
 [0, 1] 

  769 
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