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Introduction  

In this study, we generate three sets of infrastructure designs, namely alternative dam 
sizes with associate candidate operating policies, for the Kariba dam system by solving 
the following three distinct multi-objective optimization problems: (i) Basic Infrastructure 
Design (BID), where the operating policies associated to different dam sizes are informed 
using a basic set of policy inputs, consisting of the reservoir storage and the month of the 
year; (ii) Perfect Operating Policy (POP), identified with respect to the full, deterministic 
known trajectory of external drivers (i.e., streamflows) over the entire evaluation horizon 
for each of the three dam sizes selected within the set of BID, obtaining a sequence of 
optimal release decisions that an ideal system operator would follow under perfect 
knowledge on the future; (iii) Informed Infrastructure Design (IID), which differs from the 
Basic one only in the formulation of the operating policies associated to different dam 
sizes, which are now dependent upon the selected set of informative forecast lead times 
determining the reservoir releases. This supplement contains seven sections. The first 
provides a mathematical formulation of the parameterized reservoir operating policy, 
whereas the second of the pure management optimization problem to be solved for each 
of the three dam sizes selected within the set of BID for identifying the corresponding 
Perfect Operating Policy. The third displays the runtime evolution of the Borg MOEA 
search to ensure that the algorithm search is at convergence and that the ten random 
seeds optimization covers the entire diversity and convergence space, finding high-quality 
solutions. The fourth analyzes the results of the Iterative Input Selection phase performed 
over both seasonal and inter-annual streamflow forecasts in order to identify the most 
informative lead times to be included in the optimal infrastructure design phase. The fifth 
discusses the Kariba system dynamics achieved under different dam sizes, comparing 
Basic and Informed Infrastructure Designs in order to thoroughly understand the effects 
of informative forecast lead times on enhancing the infrastructure design. Similarly, the 
sixth presents the system dynamics achieved under over-estimated forecasts for different 
dam sizes. The seventh performs a sensitivity analysis of the Informed Infrastructure 
Designs with respect to different accuracies in all the biased forecasts generated, 
evaluated in terms of percentage bias (Pbias) performance metric. 
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Section S1: Gaussian radial basis functions 

In this study, the water reservoir operating policy is parameterized according to non-linear 
approximating networks, and in particular Gaussian radial basis functions (RBFs), and the 
reservoir release decision 𝒖𝒕 is therefore calculated as follows: 

𝒖𝒕 = 𝜷 +%𝒘𝒊𝝋𝒊(𝑰𝒕)
𝑵

𝒊$𝟏

 

where 𝑵 is the number of RBFs 𝝋(∙), 𝜷 is the linear parameter associated to the decision 
variable 𝒖𝒕, and 𝒘𝒊 is the non-negative weight of the i-th RBF (𝒘𝒊 ≥ 𝟎, ∀𝒊). As for the single 
RBF, it is defined as follows: 

𝝋𝒊(𝑰𝒕) = 𝒆𝒙𝒑 5−%
7(𝑰𝒕)𝒋 − 𝒄𝒋,𝒊9

𝟐

𝒃𝒋,𝒊𝟐

𝑴

𝒋$𝟏

; 

where	𝑴 is the number of policy inputs 𝑰𝒕, 𝒄𝒊 and 𝒃𝒊 are the M-dimensional center and 
radius vectors of the i-th RBF. In particular, the centers must lie within the input bounded 
space and the radii must be strictly positive (Busoniu et al, 2011). As a result, the 
parameters vector employed for the parametrization of the operating policy is defined as 
𝜽 = 7𝒄𝒋,𝒊, 𝒃𝒋,𝒊, 𝒘𝒊, 𝜷9 ∈ ℝ𝒏𝜽 where i = 1,…,N,  j = 1,…,M, 𝒏𝜽 = nu + N(2M+nu), and nu = 
number of policy outputs (i.e., nu = 1 as we consider a single reservoir release decision).  

Section S2: Pure management optimization problem 

As discussed in section 3.2 of the manuscript, the Perfect Operating Policy is identified 
under perfect foresight assumption by solving the management side of the joint 
optimization problem 3 in the manuscript with respect to the vector of 𝒏 = 2 management 
objectives, for a fixed dam size 𝜶C and associated irrigation diversion parameters 𝜽C𝒊𝒓𝒓 
selected within the set of Basic Infrastructure Designs. This pure management 
optimization problem can be formulated as follows: 

𝒑∗ = 𝐚𝐫𝐠	𝐦𝐢𝐧
𝒑

𝑱𝒑𝑷𝑶𝑷 

where          𝑱𝒑𝑷𝑶𝑷 = K𝑱𝒑
𝒉𝒚𝒅, 	𝑱𝒑𝒊𝒓𝒓K 

𝜶C, 𝜽C𝒊𝒓𝒓 given 

where the optimal operating policy 𝒑∗ is identified with respect to 𝒏 = 2 management 
objectives (i.e., 𝑱𝒑

𝒉𝒚𝒅, 	𝑱𝒑𝒊𝒓𝒓). This optimization problem can be solved by either a local 
optimization method (e.g., gradient-based) or a global optimization method (e.g., direct 
search). Conversely, if the objective function is time-separable, Deterministic Dynamic 
Programming (DDP) can be used (Bellman, 1957), which is able to provide an almost 
exact solution much more efficiently than other nonlinear optimization methods. We 
employ DDP to solve the pure management optimization problem with respect to the full, 
deterministically known trajectory of streamflows over the entire evaluation horizon H. For 
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each dam size, we therefore obtain an optimal operating policy 𝒑∗, from which we derive 
a target sequence of optimal release decisions (i.e., target output of the corresponding 
iterative input selection procedure) that an ideal system operator would follow under 
deterministic knowledge on the future.  

Section S3: Runtime evolution of the Borg MOEA search 

Our choice of running only 10 random seed trials was based on a preliminary diagnostic 
analysis of the Borg MOEA search in terms of hypervolume runtime dynamics (Figure S1). 
As can be observed, at the beginning of the search process the 10 random seed trials 
present an hypervolume that varies between 0.4 and 0.5. Such seeds variability quickly 
decreases as the number of function evaluations increases up to 1 million, when the 
hypervolume metric negligibly ranges from 0.75 to 0.77 (shaded area extension). In 
addition, from 750,000 to 1 million function evaluations the hypervolume value increases 
from 0.754 to 0.758 on average (bold line), meaning that no additional function evaluation 
is needed and that the best possible approximation of the Pareto front has been identified. 
This evolution of the search progress suggests that the algorithm eventually reaches 
convergence with little variability across the seeds, covering the entire diversity and 
convergence space and finding high-quality solutions. 

Section S4: Iterative Input Selection for seasonal and inter-annual forecasts 
We identify via Iterative Input Selection (IIS) algorithm the most informative seasonal 
forecast lead times that explain the sequence of optimal release decisions associated to 
the three target trade-offs highlighted in Figure 3 of the manuscript for the large L, medium 
M, and small S dam sizes selected. 
First, we perform a regression on a sample dataset consisting of the Kariba storage st and 
month of the year t in order to prevent this basic set of information, highly correlated with 
the release trajectory to be explained, to overshadow the real contribution of forecast lead 
times if jointly considered in the information selection phase. Results are summarized in 
Table S1, where each row corresponds to a different dam size, operated under three 
alternative target trade-offs, namely an hydropower-prone (H), a compromise (C) and an 
irrigation-prone (I) operating policy. The last column reports the share of the variance in 
the reservoir release trajectories obtained under the target trade-offs that is not explained 
(1-R2) by st and t respectively. The unexplained variance 1- R2 systematically increases 
from I to H operational trade-off, regardless of dam size. This has already been noticed in 
section 4.1 of the manuscript when discussing the maximum space for improvement in 
Figure 3 that decreases from H to I. Since the maximum space for improvement measures 
the distance between Basic Infrastructure Design and Perfect Operating Policy, and the 
former is informed with the basic set of information consisting of st and t, basic irrigation-
prone policies are already close to the target trade-off and would not benefit from their 
conditioning upon other informative variables besides storage and time. This is particularly 
evident for large L dam sizes, where 13% and 37% of the variance in the releases 
associated to I and H respectively is not explained by reservoir storage and time. The 
added benefit of including informative forecast lead times in addition to storage and time 
to explain the sequence of optimal release decisions will be thus more significant for large 
dam sizes operated under a hydropower-prone rather than an irrigation-prone policy. As 
for small S dam sizes, 1-R2 assumes almost constant values and equal to 0.27 across the 
three operational trade-offs. However, such values are pretty low, and the advantages of 
adding information are limited across all the operational trade-offs. This is reflected by the 
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value of the maximum space for improvement presented in Figure 3 of the manuscript, 
which assumes its lowest value for S dam sizes whose Basic and Perfect solutions are 
very close throughout the entire objective space. As expected, medium M dam sizes 
behave in between small and large reservoirs. 
After calculating the model residuals of st and t, they are employed as dependent variable 
when running the Iterative Input Selection algorithm with the set of perfect seasonal 
streamflow forecasts as independent variable. The aim of the IIS algorithm is to select the 
most informative seasonal forecast lead times and temporal aggregations (i.e., maximum 
and minimum over 7 months) describing the target optimal release sequence not 
explained by reservoir storage and time.  
Figure S2 shows the results of this information selection phase, reporting the variables 
that have been selected more frequently by IIS throughout the 50 runs of the algorithm 
and the associated average cumulated performance in terms of R2. This procedure was 
applied repeatedly to filter the randomness associated to the construction of the extra-
tress models employed by the input selection algorithm (Galelli and Castelletti, 2013). 
Each row corresponds to a specific dam size, each column to an alternative target trade-
off. Regardless of dam size and operational trade-off, the most informative variables 
selected always provide information on the future streamflow extremes (i.e., maximum for 
flood peaks or minimum for drought periods) rather than on the cumulated water volume 
entering the reservoir over different future lead times. In particular, hydropower-prone 
policies are best informed by the maximum future streamflow over 7 months qM7t for all 
three dam sizes. This variable allows the dam operator to acquire perfect knowledge on 
the maximum flood peak that will enter the reservoir in the next 7 months, and act 
accordingly by lowering the levels in order not to spill and thus maximize hydropower 
production (please refer to section 4.2 of the manuscript for further insights into system 
dynamics). The second most informative variable that is selected by the IIS algorithm is 
the minimum future streamflow over 7 months qm7t. However, this latter contributes to 
about 3% of the final cumulated performance averaged across the dam sizes and can be 
thus considered almost negligible. Dually, irrigation-prone operating policies are 
associated to the minimum future streamflow over 7 months qm7t as the only most 
informative variable for all three dam sizes. qm7 t allows the reservoir operator to acquire 
perfect knowledge on the most severe drought that the system will experience in the next 
7 months, and act accordingly by storing sufficient water to satisfy the irrigation demands 
and thus minimize the irrigation deficit. Not surprisingly, the compromise policy presents 
a less clear pattern than the other two extreme solutions, since it has to balance two 
competing objectives into a single operating strategy ensuring both satisfactory 
hydropower productions and irrigation deficits. Under a compromise trade-off, each dam 
size may achieve this balance by operating the reservoir differently based on its own active 
storage capacity. As a consequence, the most informative lead times explaining the 
different release trajectories obtained under each dam size change accordingly. 
 
Then, we employ the Iterative Input Selection algorithm to identify the most informative 
lead times out of an additional set of inter-annual streamflow forecast medians computed 
over 12, 24, 36, 48, and 60 months ahead (i.e., qmed12t, qmed24t, qmed36t, qmed48t, 
qmed60t). The selected lead times are then used in the Informed Infrastructure Design 
phase to assess whether inter-annual streamflow forecasts can further benefit particularly 
large dam sizes. Figure S3 shows the results of this second information selection phase, 
reporting the lead times that have been selected more frequently by IIS throughout the 50 
runs of the algorithm and the associated average cumulated performance in terms of R2. 
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This procedure was applied repeatedly to filter the randomness associated to the 
construction of the extra-trees models employed by the input selection algorithm (Galelli 
and Castelletti, 2013). Each row corresponds to a specific dam size (i.e., small S, medium 
M, large L), each column to an alternative target trade-off (i.e., hydropower-prone H, 
compromise C, irrigation-prone I). 

Section S5: System dynamics under Informed Infrastructure Design  

Figure S4 displays the system dynamics for large L and small S dam sizes in terms of 
level trajectories (panel b and d) associated to the basic (orange), informed (cyan) and 
perfect (grey) solutions LH and SH highlighted in panels a and c, respectively. As observed 
in section 4.2, since the maximum future streamflow over 7 months allows the system 
operator to acquire perfect knowledge on the flood events that will occur in the near future, 
he/she is able to keep the large and small reservoir levels respectively 2.5 and 0.5 meters 
higher than the Basic and closer to the Perfect trajectories without spilling. The 
advantages of adding informative forecast lead times during the infrastructure design 
phase are less evident for small dam sizes as they have a restricted space of operation 
discretion due to a rather small active storage capacity compared to both medium and 
large dam sizes. 

Section S6: System dynamics under over-estimated forecasts 
Figure S5a displays the performance of the small S dam size in terms of Jhyd and Jirr 
achieved under the set of Basic Infrastructures Designs (orange) and Perfect Operating 
Policies (grey), along with the set of Informed Infrastructure Designs under over-estimated 
(yellow), under-estimated (green), under-dispersed (purple) and perfect (cyan) seasonal 
forecasts. In addition, Figure S5b shows the system dynamics in terms of level and release 
trajectories for the small dam size, when operated under a hydropower-prone operating 
policy (i.e., SH solutions highlighted in Figure S5a). When comparing Informed (Over-est) 
and Informed (Perfect) solutions, over-estimated forecasts, which over-estimate the wet 
season flood peaks, force the reservoir to release more water from January to May in 
order not to spill, while lowering releases during the dry season (September-December) 
in order not to excessively lower the reservoir levels and still maintain a satisfactory level 
of hydropower production. On the contrary, perfect forecasts enable the reservoir to 
release less during the wet season, saving water for the dry season when irrigation 
demand is higher. These dynamics allow both Informed Infrastructure Designs to attain 
the same hydropower production, yet over-estimated forecasts attain a 12% higher 
irrigation deficit. 

Section S7: Sensitivity analysis with respect to forecasts Pbias 
We perform a sensitivity analysis of the Informed Infrastructure Designs with respect to 
different accuracies in all the biased forecasts generated, evaluated in terms of 
percentage bias (Pbias) performance metric. We test a low, moderate and high Pbias for 
each of the forecast biases considered, namely over-estimation, under-estimation, and 
under-dispersion. In particular, we use a +20% (low), +30% (moderate), and +40% (high) 
Pbias for over-estimated, -20% (low), -30% (moderate), and -40% (high) for under-
estimated, and in the end -6% (low), -10% (moderate), and -15% (high) for under-
dispersed seasonal forecasts. Figure S6-Figure S8 display the performance of the 
hypervolume metric associated to a large L (panel a), medium M (panel b), and small S 
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(panel c) dam size and identified under a basic set of information (orange), together with 
perfect (cyan), over-estimated (Figure S6), under-estimated (Figure S7), and under-
dispersed (Figure S8) seasonal forecasts characterized by different percentage biases 
(low - green, moderate - yellow, high - red). In all three figures, the grey bar with 
hypervolume equal to one corresponds to the Perfect Operating Policies, designed under 
a full, deterministic knowledge of the future. As already discussed in section 4.4, 
regardless of dam size, the sets of Informed Infrastructure Designs are less sensitive to 
both under-estimated and under-dispersed forecasts with both a low and moderate Pbias, 
attaining almost the same hypervolume as for perfect forecasts. However, when 
associated to a high Pbias, their performance in terms of hypervolume worsens, moving 
closer to the Basic Infrastructure Design value, especially for large and medium dam sizes. 
On the contrary, over-estimated forecasts lead to the lowest values of the hypervolume 
metric for all three dam sizes, whose under-performance becomes even more pronounced 
under a +40% over-estimation. 
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Figure S1. Hypervolume runtime dynamics for the 10 random seeds optimization of the 
Informed Infrastructure Design. The shaded area is bounded by 5th and 95th percentiles 
of the hypervolume performance value across the multiple random seeds at each 250,000 
runtime function evaluation (NFE), whereas the bold line identifies the average 
performance. 
 

 
 
Figure S2. Information selection results obtained by performing 50 runs of the IIS 
algorithm in terms of average cumulated performance. Each row refers to a single dam 
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size, each column corresponds to a specific target trade-off of the Perfect operating 
policies to be explained by the most informative seasonal forecast lead times selected. 
 
 
 

 
Figure S3. Information selection results obtained by performing 50 runs of the IIS 
algorithm in terms of average cumulated performance. Each row refers to a single dam 
size, each column corresponds to a specific target trade-off of the Perfect operating 
policies to be explained by the most informative inter-annual forecast lead times selected. 
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Figure S4. Panel a/c: 2-D management objective space for the large L and small S dam 
sizes respectively, where the BID (orange), IID (cyan) and POP (grey) solutions 
associated to a hydropower-prone operating policy H are squared in black. Panel b/d: 
monthly cyclo-stationary level trajectories for the three solutions highlighted in panels a 
and c, respectively. Dotted lines bound the 5-th and 95-th percentiles of the monthly levels, 
whereas bold lines identify the monthly cyclo-stationary average. 
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Figure S5. Monthly cyclo-stationary level and release trajectories (panel b) for a small S 
dam size associated to a hydropower-prone operating policy H, corresponding to the 
solutions highlighted in panel a. Dotted lines bound the 5-th and 95-th percentiles of the 
monthly levels and releases, whereas bold lines identify the monthly cyclo-stationary 
average. 
 
 

 
Figure S6. For each dam size, namely large L (panel a), medium M (panel b), small S 
(panel c), the forecast value associated to the Informed Infrastructure Designs identified 
under basic information (orange), together with perfect (cyan), +20% over-estimated 
(green), +30% over-estimated (yellow), and +40% over-estimated (red) seasonal 
forecasts is quantified in terms of hypervolume. Arrows indicate the direction of preference 
in the hypervolume metric. 
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Figure S7. For each dam size, namely large L (panel a), medium M (panel b), small S 
(panel c), the forecast value associated to the Informed Infrastructure Designs identified 
under basic information (orange), together with perfect (cyan), -20% under-estimated 
(green), -30% under-estimated (yellow), and -40% under-estimated (red) seasonal 
forecasts is quantified in terms of hypervolume. Arrows indicate the direction of preference 
in the hypervolume metric. 
 

 
Figure S8. For each dam size, namely large L (panel a), medium M (panel b), small S 
(panel c), the forecast value associated to the Informed Infrastructure Designs identified 
under basic information (orange), together with perfect (cyan), -6% under-dispersed 
(green), -10% under-dispersed (yellow), and -15% under-dispersed (red) seasonal 
forecasts is quantified in terms of hypervolume. Arrows indicate the direction of preference 
in the hypervolume metric. 
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Table S1. Share of the variance in the reservoir release trajectories (dependent variable) 
that is not explained by reservoir storage and month of the year (independent variables) 
in terms of coefficient of non-determination 1-R2. Such trajectories are obtained under a 
hydropower-prone (H), compromise (C) and irrigation-prone (I) perfect operating policies 
associated to small S, medium M and large L dam sizes. 
 

Dam size Operational trade-off 1-R2 

Small (S) 
Hydropower (H) 0.29 
Compromise (C) 0.28 

Irrigation (I) 0.24 

Medium (M) 
Hydropower (H) 0.34 
Compromise (C) 0.27 

Irrigation (I) 0.20 

Large (L) 
Hydropower (H) 0.37 
Compromise (C) 0.23 

Irrigation (I) 0.13 
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