Rishav Mallick

and 2 more

Viscoelastic processes in the upper mantle redistribute seismically generated stresses and modulate crustal deformation throughout the earthquake cycle. Geodetic observations of these motions at the Earth’s surface offer the possibility of constraining the rheology of the upper mantle. Parsimonious representations of viscoelastically modulated deformation should simultaneously be able to explain geodetic observations of rapid postseismic deformation and near-fault strain localization late in the earthquake cycle. We compare predictions from time-dependent forward models of deformation over the entire earthquake cycle on and surrounding an idealized vertical strike-slip fault in a homogeneous elastic crust underlain by a homogeneous viscoelastic upper mantle. We explore three different rheologies as inferred from laboratory experiments: 1) linear-Maxwell, 2) linear-Burgers, 3) power-law. Both the linear Burgers and power-law rheological models can be made consistent with fast and slow deformation phenomenology from across the entire earthquake cycle, while the single-layer linear Maxwell model cannot. The kinematic similarity of linear Burgers and power-law models suggests that geodetic observations alone are insufficient to distinguish between them, but indicate that one may serve as a proxy for the other. However, the power-law rheology model displays a postseismic response that is strongly earthquake magnitude dependent, which may offer a partial explanation for observations of limited postseismic deformation near magnitude 6.5-7.0 earthquakes. We discuss the role of mechanical coupling between frictional slip and viscous creep in controlling the time-dependence of regional stress transfer following large earthquakes and how this may affect the seismic hazard and risk to communities living close to fault networks.

Brendan Meade

and 2 more

Earthquake moment release is localized along a global fault system. This network of branching and anastomosing fractures defines the geometrically complex boundaries of tectonic plates and serves as the locus of contemporary elastic strain energy storage between earthquakes. The slow deformation of the earth’s crust in between earthquakes has been observed geodetically for decades and provides a filtered representation of the underlying earthquake behaviors. Here we describe efforts to model fault system activity at a global scale incorporating both tectonic plate motions and earthquake cycle effects. Interseismic earthquake cycle effects are represented using a first-order quasi-static elastic approximation, and these models yield a unified estimate of slip deficit rates and subduction zone coupling constrained by nominally interseismic geodetic surface velocity estimates. We present key findings from a kinematic global fault system model with 1.6×107 km2 of fault system area including 16 subduction zones and constrained by observations 22,500+ GPS velocities. Further, we describe new approaches to the efficient representation of viscoelastic deformation in large-scale block models and the prospects for high-resolution block scale models that directly image partial fault coupling across the entire global fault system. Because global geodetic observations capture faults behaviors at varying stages throughout the earthquake cycle, consideration of time-dependent deformation including viscous dissipation of coseismically induced stresses is important for accurate imaging of fault coupling. And, because concentrations of fault coupling have been shown to spatially correlate with recent significant earthquakes, being able to estimate partial coupling patterns on a global scale may highlight pending seismicity.