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Earth System Nitrogen Cycle EarthlN model se

e Nitrogen is the main component of the atmosphere, a key nutrient for organisms, and exerts con-
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e New approach is to more completely include biologic and geologic fluxes, and link N behavior >/Pe,3£|:edgg;ts
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e This approach is consistent with large-scale changes in atmospheric mass through time, up to e | NH4 POy /
3 present atmospheric masses of nitrogen (1 PAN = 4 x 10'® kg N) supporting geochemical
pl”OXieS that 1Ild1Cate atmOSphel‘lC dl“aWdOWIl thI‘Ough tlme e Biologic fluxes: export production from fixed N and

newly-fixed N (Fgy ), remineralization (F,.ojn), nitrification
(Fphit), and denitrification (F4.,).- Export production occurs
shallow ocean (Shelf, high-latitude, low-latitude), all nitro-
gen fluxes occur in all ocean boxes and upper sediments (i.e.,
reactive shelf and deep sediments)

Standard run results: atmospheric c

® Geologic fluxes: include burial, subduction, outgassing, hy-
drothermal alteration of ocean crust, and continental weath-

e 4.75 PAN total N, equal amounts starting in atmosphere and mantle i
e Mantle cooling, subduction rate, crust production from Korenaga, 2010 — Subduction efficiency is linked to mantle temperature:
. . hot mantle = more N returns to atmosphere at sub-
@ Oxygenlc phOtOSYﬂtheSIS eVOlveS a,t 28 Ga, duction zones, cooler mantle = more N sequestered to
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® HYdrOthermal alterathn 1S ﬁxed VOlume ﬂOW (5 X 1016 L yr_l) — Remineralization and production efficiency linked to
O5: oxygenic photosynthesis is more effective at pri-
mary production, deep water 02 leads to more efhi-
cient remineralization
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Model sensitivities: mantle cooling :

e Mantle temperature has strong

e T e e e control on atmospheric mass ; 4;
/ e Large changes in N distribution -?ﬁs ?E
S - possible, depending on mantle
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inefficient subduction (10%) low (PO,—limited) to draw down massive at-

mosphere.

Conclusions

e By linking with PO,, we show that this nutrient interacts with N to control N distribution

e Incorporating geologic fluxes (sedimentation, subduction) provides new depth

e Planetary atmospheres with N, can vary substantially over time in the presence of life with direct implications for sustained habitability
e Total planetary N has strong control on distribution, but more detailed mantle cycle needed

e Model as constructed can make predictions, including atmospheric mass, fluxes, and eventually isotopic record



