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Key Points:
· Thermolab: a set of MATLAB codes is presented to perform equilibrium and non-equilibrium thermodynamic calculations.
· Local thermodynamic equilibrium is used to study effects o non-ideality of solution models non-linear transport processes.
· [bookmark: _GoBack]Non-linear diffusion processes are investigated with Thermolab providing a transient natural physical process towards equilibrium.  

Abstract
We developed a numerical thermodynamics laboratory called “Thermolab” to study the effects of the thermodynamic behavior of non-ideal solution models on reactive transport processes in open systems. The equations of state of internally consistent thermodynamic datasets are implemented in MATLAB functions and form the basis for calculating Gibbs energy. A linear algebraic approach is used in Thermolab to compute Gibbs energy of mixing for multi-component phases to study the impact of the non-ideality of solution models on transport processes. The Gibbs energies are benchmarked with experimental data, phase diagrams and other thermodynamic software. Constrained Gibbs minimization is exemplified with MATLAB codes and iterative refinement of composition of mixtures may be used to increase precision and accuracy. All needed transport variables such as densities, phase compositions, and chemical potentials are obtained from Gibbs energy of the stable phases after the minimization in Thermolab. We demonstrate the use of precomputed local equilibrium data obtained with Thermolab in reactive transport models. In reactive fluid flow the shape and the velocity of the reaction front vary depending on the non-linearity of the partitioning of a component in fluid and solid. We argue that non-ideality of solution models has to be taken into account and further explored in reactive transport models. Thermolab Gibbs energies can be used in Cahn-Hilliard models for non-linear diffusion and phase growth. This presents a transient process towards equilibrium and avoids computational problems arising during precomputing of equilibrium data.
Plain Language Summary
The behavior of Earth materials, rocks, minerals, melts, fluids and gases is important to predict physical processes in the Earth with computer models. The purpose of this is to study how the changes of variables such as fluid and solid composition influence the diffusion, fluid flow and reaction in rocks. Here we present a set of computer codes, called Thermolab, to calculate important physical properties such as density and chemical composition of solids, fluids and melts in chemical equilibrium. The calculations are based on the Gibbs energy that exists for every material. We use computer codes, written in MATLAB/OCTAVE language, to show how this Gibbs energy is calculated and used to compute chemical equilibrium and find the physical properties such as density, and chemical composition. We discuss techniques for accurate calculation of chemical equilibrium and physical properties in real rocks. Finally, we use Thermolab to formulate a computer model of fluids reacting with rocks. We find that chemical composition of the fluid and rock strongly affect the speed and shape of the boundary between reacted and unreacted rock. Thermolab can be used in phase growth models to investigate the way in which rocks develop towards equilibrium. 
1 Introduction
One of the primary goals in Earth Science is to understand the physical processes that govern natural phenomena. This will facilitate prediction of potential hazardous events, such as earthquakes, volcanic eruptions, and related threats such as tsunamis (Fagents et al., 2013; Geller, 1997; Rundle et al., 2021; Ulrich et al., 2019). Predicting causes and effects of climate change, the reduction of global warming by storing CO2, or the safety of storing nuclear waste, strongly rely on the understanding of underlying coupled physical processes (Orr, 2018; X. Zhang et al., 2022). Furthermore, the exploration of fossil fuels and raw materials in economic ore deposits, and most importantly the transition to renewable energy rely on a good understanding of the physics of geological processes (Feng et al., 2021; Vehling et al., 2020; Weis et al., 2012). In many cases, numerical models that solve the mathematical equations governing the physics are the only way to predict such natural processes. Even though most coupled natural processes are non-equilibrium processes, the local equilibrium thermodynamic assumption is needed to close the system of mass, momentum, and energy equations and construct the model (De Groot & Mazur, 1984; Lebon et al., 2008). Without the knowledge of thermodynamic behavior of rocks, minerals, melts, fluids and gases involved in the process quantitative and predictive models cannot be constructed. 
Transport processes such as diffusion, advection, and deformation, play a major role in all the important topics and are nearly always coupled to chemical reactions. Thus, reactive transport models have been a subject of geoscience research for many years (Steefel, 2019; Steefel et al., 2005). A large number of reactive transport codes has been developed particularly with the focus of subsurface processes (Kulik et al., 2012; Steefel et al., 2014), and applied to relevant geological problems in the subsurface (e. g. Sonnenthal et al., 2005; Wanner et al., 2014). A thorough review of the vast amount of work on reactive transport would be too extensive for the scope of this paper. For an overview of the main reactive transport codes in use for subsurface processes see Steefel et al. (2014). 
Natural observations on, for example, exposed mantle rocks exhumed from great depth can be used to learn something about natural processes of CO2 sequestration (Kelemen & Matter, 2008) and may lead to new insights for human carbon storage. In this context, knowledge of the thermodynamic behavior of minerals is also important for industrial processes and may lead to useful discoveries for example for carbon sequestration (Glasser et al., 2016).
Large scale geodynamic processes influence processes at the Earth’s surface and play a role in the global geochemical cycles, the water budget, melt generation at ocean ridges and in collision zones, and erosion in mountain belts. In subduction zones these processes are closely interconnected as dehydration of hydrated oceanic lithosphere generates fluids that may trigger earthquakes and induce melting in the mantle wedge that may ultimately lead to volcanism at the surface, including direct effects on climate (Bebout et al., 2018). Numerical models have been useful in gaining more understanding of the physical processes of migration fluids from the subducting slab upwards (Wilson et al., 2014). Migration and melt focusing due to reaction infiltration instabilities have been studied by Aharonov et al. (1995). Connolly (1997) showed how coupling of dehydration reactions produce fluids that travel up in a visco-elastic matrix creating porosity waves as a mechanism for fluid migration. Balashov and Yardley (1998) investigated the effect of reaction on porosity structer and fluid pressure variation. More recent models further investigated fluid focusing, transport and reaction processes (Tian & Ague, 2014).
Recent progress in some of the important topics above has been made possible by coupling the local equilibrium thermodynamics to transport codes. Plümper et al. (2017) showed how the initialization of dehydration in subduction zones is dominated by chemical heterogeneities that control the thermodynamics on the micro-scale. Coupled to mass conservation and fluid flow, these local chemical heterogeneities lead from an initially formed local porosity to the development of fluid pathways. 
The time scales of geological processes can vary between milliseconds to billion of years (Beinlich et al., 2020). With the use of numerical models combined with field observations, the duration of geological processes originally thought to be on the geological time scales have been shown to be much faster (Ague & Baxter, 2007; Beinlich et al., 2020; John et al., 2012). Therefore, the prediction of the speed of reaction fronts, and elemental transport hinges on quantitative models obeying mass, momentum and energy conservation. Beinlich et al. (2020) used a reactive transport code coupled to local equilibrium thermodynamics to constrain the speed of natural CO2 sequestration in serpentinites. The details behind the thermodynamic calculations in Beinlich et al. (2020) are given in this paper. 
Nonideality of the solution models and its impact on the convexity of the flow functions (the so-called ‘isotherms’) has long been recognized as an important control on mass transport in porous reactive flows (Guy, 1993; Lichtner & Carey, 2006). However, it is underexplored mostly due to lack of transport models coupled to thermodynamically complex nonideal models including coupled substitutions, non-convex energy functions and ordering.
We present a numerical thermodynamics laboratory which we shall call “Thermolab”, to do thermodynamic calculations on rocks, minerals, melts, and fluids involving aqueous species. We further show how this can be used in reactive transport models that are based on laws of mass, momentum, and energy conservation. Code examples are written in MATLAB/OCTAVE as it provides a transparent way of translating the mathematics and documenting the algorithms. Matlab also provides a prototype coding development platform. Short matlab codes serve as ‘flow charts’ used in the past to document the algorithms. The advantage of the MATLAB/OCTAVE codes compared to the ‘flow charts’ is that those are actually working computer programs, and can be copy-pasted from the figure and executed. Once working these codes can also be easily translated to any preferred programming language for optimization and supercomputing. The focus in this contribution is entirely on the technicalities with limited example applications. We document the nonideality of the models and the impact on non-linear transport processes in open systems by showing examples of how this can be achieved with Thermolab. Future studies will be investigating the impact of the nonideality on mass transport.
2 Background and motivation
A typical set of equations that governs the physics of the reactive transport based on Beinlich et al. (2020) is shown to motivate the use of equilibrium thermodynamics in transport processes. Total mass conservation in which Darcy flux is used:
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Mass conservation of an immobile species in the solid:

[bookmark: ZEqnNum834240]		
Mass concentration balance of a mobile species in the fluid:

[bookmark: ZEqnNum911776]		
[bookmark: _Hlk69979773][bookmark: _Hlk69980349]From this set of equations, we need to compute the local solid density, fluid density, chemical potential, mobile species concentration in fluid, and in solid, and one immobile species concentration in solid. When the transport of material in the fluid is neglected, the third equation is omitted and the system reduces to the set of equations of Plümper et al. (2017). In any case, fluid and minerals have variable composition and density. This leaves a system of three equations for eight unknowns: fluid and solid density (f), and (s), weight fraction of a mobile component in fluid and solid (Cf), and (Cs), chemical composition of the component in the fluid (Cf), and the weight fraction of an immobile component in the solid (Cs,im), porosity (and fluid pressure (Pf). Background permeability (k0), fluid viscosity (f) and diffusion coefficient of mobile component Cf in the fluid (DCf) are given. Porosity, fluid pressure and either the fluid or the solid composition of each component in the system are not thermodynamically constrained and the three equations are solved for , Pf and Cs. The remaining unknown solid and fluid compositions and densities are found from thermodynamic relationships assuming local equilibrium at each point in time and in space in the model. In complex mineral, melt and fluid solutions, the non-ideal mixing behaviour leads to non-linear thermodynamic relationships. We compute these relationships with Thermolab, benchmarked with phase diagrams for rocks, fluids and melts. Using MATLAB codes, the first part of this contribution documents the technical details of the equilibrium thermodynamic calculations and the treatment of solid solutions. This is considered essential to understand the effects on non-linear transport processes. We include a description of methods to sufficiently resolve the equilibrium compositions and densities of the involved phases. This is needed to avoid numerical artefacts and instability in the transport codes. In the last part, we get back to the details of the implementation and solution of a system of transport equations in which all quantities evolve through time. For a full list of symbols and notation see Table 1. 
Table 1 List of symbols and abbreviations. Symbols in italics for scalar variables, bold font for vectors, and bold capitals to denote matrices.
	Symbol
	Meaning
	Units
	MATLAB

	ρf
	Density of fluid
	kg/m3
	rhof

	ρs
	Density of solid
	kg/m3
	rhos

	φ
	Porosity (volume fraction of fluid)
	volume fraction
	phi

	Cf
	Concentration of component in fluid
	weight fraction
	Cf

	Cs
	Concentration of component in solid
	weight fraction
	Cs

	k0
	background permeability
	m2
	k0

	µf
	fluid viscosity
	Pa s
	muf

	Pf
	fluid pressure
	Pa
	Pf

	t
	time
	s
	t

	g
	gravitational acceleration
	m/s2
	grav

	DCf
	diffusion coefficient of component in fluid
	m2/s
	DCf

	Cf
	Chemical potential of component in fluid
	J/mol
	mu_Cf

	Cs,im
	concentration of immobile component in solid
	weight fraction
	Cs_im

	g0
	Specific endmember gibbs energy 
	J/mol
	G

	s0
	Specific endmember entropy 
	J/mol
	S

	h0
	Enthalpy
	J/mol
	H

	T
	Temperature
	K
	T

	P
	Pressure
	kbar
	P

	R
	Universal gas constant
	J/mol/K
	R

	g0r
	Specific endmember gibbs energy at 1 bar, 25 °C
	J/mol
	Gr

	s0r
	Entropy at reference conditions (1 bar, 25 °C)
	J/mol
	Sr

	h0r
	Enthalpy at reference conditions (1 bar, 25 °C)
	J/mol
	Hr

	v0r
	Volume at reference conditions (1 bar, 25 °C)
	J/bar
	Vr

	a
	heat capacity coefficient
	kJ/K
	a

	b
	heat capacity coefficient
	kJ/K2
	b

	c
	heat capacity coefficient
	kJ K
	c

	d
	heat capacity coefficient
	kJ K-1/2
	d

	aMRK
	Fluid EOS coefficient
	kJ2 kbar K1/2 mol-2
	a

	bMRK
	Fluid EOS coefficient
	kJ kbar-1 mol-1
	b

	K
	bulk modulus
	kbar
	k

	K’
	derivative of bulk modulus
	kbar
	kp

	cP
	Heat capacity
	J/mol/K
	Cp

	
	Stoiciometric coefficents in chemical reaction
	mol
	v

	Gsys
	Gibbs energy of system
	J
	Gsys

	[bookmark: _Hlk87561552]gmix
	Specific gibbs energy of a mixture
	J/mol
	gmix

	gmech
	Specific gibbs energy of a mechanical mixing
	J/mol
	gmech

	gid
	Specific gibbs energy of a ideal mixing
	J/mol
	gid

	gnid
	Specific gibbs energy of a non-ideal mixing
	J/mol
	gnid

	p
	Vector of proportions of endmember in a mixture
	mol fraction
	p

	m
	Site multiplicity in ideal mixing energy
	mol
	mtpl

	z
	Vector of site fraction in a mixture
	mol fraction
	z

	St
	Site occupancy table
	mol
	st

	Zt
	Site fraction endmember matrix
	mol fraction
	zt

	Keq
	Equilibrium constant
	-
	Keq

	G0rxn
	Difference in g0 between products and reactants
	J
	dGrxn

	
	Molar amount of phase from Gibbs minimization
	mol
	alph

	phs
	Matrix of composition of phases in mol
	mol
	Nphs

	nsys
	Vector of system compositions in mol
	mol
	nsys

	Vmol
	Molar volume
	m3/mol
	Vmol

	mmol
	Molar mass of phase vector
	kg/mol
	Mmol

	molm
	Molar mass of components vector
	kg/mol
	molm

	
	Density of a phase
	kg/m3
	rho

	p
	Volume fraction of phase
	-
	phi_p

	mol
	Mole fraction of phase
	-
	phi_m

	wt
	Weight fraction of phase
	-
	phi_wt

	ss
	Vector of densities of solids
	kg/m3
	rho(solid_id)

	ss
	Vector of volume fraction of solids
	-
	phi_p(solid_id)

	tot
	Total density
	kg/m3
	rho_t

	e
	Effective compressibility
	Pa-1
	beta_e

	1
	Chemical potential of component 1
	J/mol
	mu_1

	DCs
	Diffusion coefficient in solid
	m2/s
	Dc_s

	
	Cahn-Hilliard surface energy parameter
	J/mol
	gam


3 Gibbs energy calculation
[bookmark: _Hlk69984655]The starting point of equilibrium thermodynamic calculations in Thermolab is the Gibbs energy of a mineral, melt, or fluid. All other required properties are derived from the Gibbs energy. The calculation of Gibbs energies requires in the first place an internally consistent thermodynamic dataset for pure solids, fluids, gases, or aqueous species, often referred to as endmembers. Secondly, it needs solution models that describe the energy of mixing between endmembers dissolved in a phase, also referred to as mixing models or activity-composition relationships (e.g. Ganguly, 2020; Holland & Powell, 2003). Thermolab currently has built in several internally consistent thermodynamic datasets for minerals, melts and fluids, the most extensive and up to date are the Holland and Powell endmember databases (Holland & Powell, 1998, 2011). The SUPCRT (dslop98) mineral database (Helgeson et al., 1978; Johnson et al., 1992) is implemented to allow calculations with additional minerals not included in the Holland and Powell datasets. For water (and/or CO2), several equations of state (EOS) are implemented, including the EOS of the International Association for the Properties of Water and Steam (IAPWS) (Wagner & Pruss, 2002, revised version, 2018), the EOS of Johnson and Norton (1991), Z. G. Zhang and Duan (2005), C. Zhang and Duan (2009), Pitzer and Sterner (1994), and the CORK EOS, from Holland and Powell (1991). For aqueous species, we have implemented the Holland and Powell (1998) formulation, and the Tanger and Helgeson (1988) formulation as implemented in SUPCRT92 (Johnson et al., 1992) using the 1998 database including more than 1300 aqueous species. Furthermore, it includes the Deep Earth Water (DEW) model (Sverjensky et al., 2014) with the recent updates and additional species from Huang & Sverjensky (2019), Aranovich et al. (2020) and the Miron dataset for aqueous species (Miron et al., 2016). This forms the endmember basis for use in thermodynamics of mixtures and for the local equilibrium calculations. In the future, this can be extended with additional thermodynamic endmember datasets. The following documents the main code as shown in an example in Figure 1.
3.1 Endmembers
The Gibbs energy of an endmember, e.g., a mineral, gas, fluid, or melt species with a fixed composition, is calculated from:
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An internally consistent database contains the Gibbs energy at reference conditions (g0r). Alternatively, it holds enthalpy and entropy data from which the Gibbs energy at reference conditions can be obtained:
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The entropy at constant pressure is evaluated from:

[bookmark: ZEqnNum208235]		
For every endmember, an expression for heat capacity and volume is needed to evaluate the above integrals and calculate the Gibbs energy.
3.1.1 Solids
An example of a heat capacity expression to be used in  consists of a four-parameter polynomial fit to experimental heat capacity data as used in the dataset of Holland and Powell (1998, 2011):

[bookmark: ZEqnNum641087]		
For the pressure dependence of Gibbs energy an equation of state (EOS) is used to relate volume to pressure. For example, the Murnaghan equation of state used by Holland and Powell (1998): 

[bookmark: ZEqnNum545753][image: ]		
[bookmark: _Ref87362391]Figure 1 Thermolab code example to calculate the Gibbs energies of a phase for a given composition at fixed temperature (T) and pressure (P). Here the example for the amphibole model of Green et al. (2016). This code is a possible MATLAB translation of the equations and methods documented in the Gibbs energy calculation section of the main text. The first line in the code clears MATLAB memory and figure. In line 3 and 4 T and P are defined. Line 5 and 6 specify, respectively, for which phase to calculate the Gibbs energy and the name of the Excel file in which the solution model data is stored. Line 7 specifies the name of the elements in the phase, and line 8 the corresponding composition in moles for which to calculate the Gibbs energy. Line 10 is a call to read the needed thermodynamic data. Line 12 and 13 are needed for aqueous species and compute the density and dielectric constant of water. Line 15 to 24 compute the Gibbs energy of the endmembers in the solution (e. g. eq. 4&11). Proportions and site fractions are calculated in lines 26-33. Numerical errors are removed in lines 35 and 36. In Lines 29 and 30 a grid of all possible states of order-disorder is generated for the particular composition of the phase specified in line 8. For all these compositions the mechanical, ideal and non-ideal mixing energy is calculated in lines 38, 39, and 40, respectively. The non-ideal Gibbs energy, line 40, is a call to an external function that comprises a collection of non-ideal mixing functions that can be opted. Line 43 finds the Gibbs energy that is minimum and thus finds the state of order-disorder. Line 44 displays the corresponding proportions of the endmembers.
Note that the reference pressure is added to ensure the limit of standard reference conditions. The EOS can be rearranged for volume:

[bookmark: ZEqnNum420544]		
Substituting expression , and  into , and using a suitable heat capacity formula such as , the integrals can be evaluated analytically, or numerically. Lines 18-21 in Figure 1 show a MATLAB example of using equations , , and . In the example, the integrals in equation  are evaluated in a separate function. To use a different thermodynamic database, the heat capacity equation and EOS can be replaced by the appropriate expression. A number of important endmembers such as quartz are treated with additional volume and entropy terms to account for first or second order phase transitions such as heat capacity anomalies or order-disorder in the crystal lattice (e.g. sillimanite Holland & Powell, 1996). This then requires an excess Gibbs energy contribution, which in principle can also be calculated according to equation  using different volume and heat capacities and integration limits (e.g. Berman & Brown, 1985). Alternatively, an expression for this additional energy is given (Holland & Powell, 1998). In the example in Figure 1, this is represented by a call to a MATLAB function (line 20 in Figure 1). For the specific details we refer to the original papers documenting the internally consistent databases (Berman, 1988; Holland & Powell, 1998, 2011; Johnson et al., 1992).
3.1.2 Fluids
For molecular fluids such as H2O and CO2, the EOS, e.g. equation , is replaced by an appropriate fluid EOS. As water is one of the most important fluids on our planet, extensive work has been done on the thermodynamic formulation. The main difference between solids is that the fluid EOS, especially for water, usually cannot easily be rearranged for volume as there are multiple volumes possible for a single pressure in the region of coexisting fluid and gas. An example of this is given by the Modified Redlich Kwong (MRK) EOS, on which Holland and Powell (1991) base the fluid Gibbs energies to be compatible with the extensively used thermodynamically consistent dataset of Holland and Powell (1998): 

[bookmark: ZEqnNum421291]		
Because this is a multivalued function a suitable algorithm must be used to calculate volume as function of P-T in the two-phase region (e.g. where gas and liquid coexist). In the single-phase region, the volume for the stable phase (gas or liquid) should be determined. Holland and Powell (1991) rearranged the equation as a cubic in volume after which the correct root must be found in each phase region. Rather than solving which phase (e.g. gas, liquid, or both) is stable, the different regions were predefined and the correct volume was selected based on the P-T conditions. The MRK formulation in  is extended with a virial contribution and Holland and Powell (1991), give detailed instructions how to calculate the volume as function of P-T for H2O, CO2, and several other COH species. The advantage of the CORK formulation is that it can be integrated analytically and details in the original paper of Holland and Powell (1991) are sufficient for reproducing the values for use in Thermolab. The more updated thermodynamically consistent dataset of Holland and Powell (2011), that replaces the Holland and Powell (1998) dataset, uses the EOS of Pitzer and Sterner (1994).
Calculating the Gibbs energy of fluids then follows equation  just as for solids, with an entropy integral that is consistent with the dataset for solid, melt and/or gas endmembers. The Holland and Powell (1998, 2011) datasets have parameters for heat capacity, fitted simultaneously with the minerals to ensure the Gibbs energy at room pressure and elevated temperature can be calculated consistently.
In principle, the CORK or Pitzer and Sterner (1994) EOS can be used in conjunction with the SUPCRT mineral database, however for the entropy integral in  a consistent heat capacity formulation is needed to obtain thermodynamic calculations. The SUPCRT database does not contain heat capacity values for H2O. The specific details needed for this calculation in the original papers of Johnson and Norton (1991) and Johnson et al. (1992) could not be found. Similarly, the DEW spreadsheet does not contain H2O entries and combines Helgeson and Delaney (1978) and an internal routine for use only above at least 0.1 GPa, likely as it is intended to be used for Deep Earth applications. Moreover, at low P and T, e.g. for shallow processes, the CORK EOS should not be used (Holland and Powell, 1991). We found that by using the NIST Shomate heat capacity equations (Shomate, 1954), using parameters from the NIST website for liquid water and gas the Gibbs energies retrieved from SUPCRT can be reproduced accurately. The simplicity of the formulation and up to date online documentation of the parameters is of advantage. For calculations at elevated P, the numerical integration of the IAPWS or the EOS of Johnson and Norton (1991) give satisfactory results at low T, whereas the CORK EOS can be used above 100 °C (Holland and Powell, 1991). 
3.1.3 Aqueous species
Gibbs energies of aqueous species are calculated in Thermolab following the formulation of Tanger and Helgeson (1988) as also outlined in Johnson et al. (1992). The resulting Gibbs energies have been compared to the output from SUPCRT and are reproduced within 1 Joule precision. The DEW model (Sverjensky et al., 2014) and the Miron dataset (Miron et al., 2016; Miron et al., 2017) use the same formulation, with refitted parameters for some of the endmember species. Although fundamentally the aqueous species are also calculated according to equation , there is a difference to the solid, melt and fluid endmembers because the aqueous species need the density and dielectric constant of the solvent. The contribution to Gibbs energy of solvation therefore needs the density and dielectric constant of water for the Born equation (Figure 1, Lines 12-13). This is included in the excess Gibbs energy term (Figure 1, Line 20). Note that in the example for amphibole in Figure 1, the properties of water are irrelevant, but to maintain some generality they have been left in the example. When computing the Gibbs energy of aqueous species, we change the name of the phase from Amphibole into any desired aqueous species or fluid mixture defined in the solution model file. In Thermolab, the user can choose from a number of EOS and dielectric constants to be used in the aqueous species Gibbs energy (Fernández et al., 1997; Johnson & Norton, 1991; Sverjensky et al., 2014). The aqueous species endmembers of Holland and Powell (1998) offers a restricted set of species compared to the SUPCRT data, but it has the advantage that it is fitted in the internally consistent dataset of the mineral, melt and gas endmembers of Holland and Powell (1998, 2011). Their formulation is based on the Anderson density equation (Anderson et al., 1991) and uses the CORK EOS for the water density. These aqueous species endmember data can also be used in fluid mixtures (Evans & Powell, 2006, 2007).
3.1.4 Dependent endmembers
Endmembers can also be formed from a linear combination of several other endmembers (Figure 1, Line 23): 

		
where the  holds the stoichiometric reaction coefficients. A formation energy may be associated with such a reaction and this can be captured in any functional form in the excess Gibbs energy term of . 
3.2 Gibbs energy of mixtures
The Gibbs energy of a phase (mineral, gas, fluid or melt species) that can form a mixture between several endmembers is represented by the sum of mechanical, ideal, and non-ideal mixing energies (Figure 1, Line 41):

		
The mechanical part of the mixing is the sum of the Gibbs energy of all endmembers in the mixture, weighted by their proportions (p) (Figure 1, Line 38).

[bookmark: ZEqnNum237875]		
The ideal mixing Gibbs energy is given by a linear combination of the site fractions in the mixture multiplied with their logarithm (Figure 1, Line 39):

[bookmark: ZEqnNum374421]		
The last term in equation  ensures that the ideal Gibbs energy is zero in the limit of the pure endmember.
Non-ideal Gibbs energy can be calculated in the simplest way with a binary mixing formula:

[bookmark: ZEqnNum711179]		
This is essentially a sum of multiplications of binary pairs of endmembers in the mixture multiplied with their interaction parameters. These interaction parameters can depend on composition to get an asymmetric mixing formulation, referred to as subregular mixing model (Ganguly, 2020). When p is replaced with a size parameter adjusted proportion and using the appropriate W the asymmetric formulism of Holland and Powell (2003) can be used. If the molar volumes of the endmembers are used as size parameter, it is essentially a Van Laar mixing model (Van Laar, 1906), as for example used by Aranovich and Newton (1999). The W and any size parameters are in general also temperature and pressure dependent such as also the molar volume used in Van Laar mixing models. Any other regular or subregular solution models can be used in place of  and ternary interaction terms may be added. In Thermolab, it is possible to expand the codes with a variety of mixing formulas for the non-ideality by adding the appropriate formulation to the function called in line 40 in Figure 1.
3.3 Solution models
The data for m, and Zt are retrieved from a site occupancy table, stored for example in an Excel spreadsheet. In this spreadsheet, also data for W and any size parameters for asymmetric formalism models (Holland & Powell, 2003) and the model type are stored. In Figure 1, the data is loaded in the beginning of the code (line 10, Figure 1) from a function that reads the Excel data. Site fractions z are obtained by multiplying the transpose of the site fraction speciation matrix with a column vector of proportions:

[bookmark: ZEqnNum597137]		
After specifying proportions of the endmembers in a solution, the Gibbs energy of that particular phase and composition at a given P and T can be calculated from the above.
3.3.1 Site occupancy
The site occupancy of the mixture can be represented by a table listing the occupancy of crystallographic sites for each endmember. For example a binary olivine solution with only one crystallographic site M, and a fixed silica tetrahedral site (which has composition SiO4), is shown in Table 2. It can be represented by a matrix:

[bookmark: ZEqnNum639040]		
Table 2. Binary olivine site occupancy
	[bookmark: _Hlk53953433]Site
	M
	T

	Occupancy
	Mg
	Fe
	SiO4

	
	
	
	

	Endmember
	
	
	

	Forsterite
	2
	0
	1

	Fayalite
	0
	2
	1


The columns represent occupancy of each species on a crystallographic site for the endmember in the rows of the table. Site fractions z can be retrieved from this table by dividing each site occupancy over the sum of moles of the species on that site, which gives the site multiplicity, and can be represented by a vector:

		
Elementwise division of each row in Table 2 or in matrix  with this multiplicity vector leads to a table of site fractions represented by the matrix:
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Table 3. Binary olivine site fraction table

	Site
	M
	T

	Occupancy
	Mg
	Fe
	SiO4

	Site multiplicity
	2
	2
	1

	
	
	
	

	Endmember
	
	
	

	Forsterite
	1
	0
	1

	Fayalite
	0
	1
	1



Using  and spelling this out in matrix-vector notation, it is essentially a set of equations where the coefficients in front of the proportions are directly read from the site fraction table and then transposed:

		
The site fractions become:

		
3.3.2 Ordering
In fact, in olivine, Mg and Fe can interchange on two molecular sites M1 and M2. We could rewrite the site speciation table. However using only the two endmembers, it would not lead to a different configurational entropy. There needs to be an endmember that allows different distribution of Mg and Fe on the two sites. This is the purpose of introducing an ordered endmember e.g. “Ordered Olivine”. The Gibbs energy of this endmember can be made out of two endmembers, forsterite and fayalite and an energy of reaction may be added.
After this, we get three proportions that define the Gibbs energy. In principle, the endmember could also be formulated as having all Fe on M1 and all Mg on M2, however using a negative proportion of the ordered olivine listed in the table we can also reach this result (Powell & Holland, 1999). 
Using the speciation matrix and  we get:

		
Giving the site fractions:

[bookmark: ZEqnNum117007]		
3.3.3 Worked example
Using the multiplicities and site fractions for the olivine example we get using Equation :

		
The non-ideal mixing energy becomes:

		
In case we use a Holland and Powell (1998) model for olivine, the non-ideal parameters are equal to each other and reduces to the simple binary symmetric mixing parabola:

		
For the example with order-disorder the ideal mixing Gibbs energy becomes:

		
(Note that the T-site fraction cancels due to the logarithms because the site fraction is always 1).
The non-ideal Gibbs energy becomes:

		
3.3.4 Proportions from site fractions
The proportions can be written as function of site fractions by solving the system of equations in  using the independent equations and the fact that proportions sum up to 1. This leads to:
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Which after solving for proportions gives:
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Hence, there are two independent site fractions together completely defining the composition and ordering of the olivine in this example. 
3.3.5 Proportions from composition
From the olivine table we can derive a list of compositions of each endmember by summing up the moles of each atom over the sites.
Again, this table can serve to set up a system of equations and may be added by the constraint that the sum of the proportions equals 1 (first equation):

		
However, this table only has 2 independent equations (rank = 2). We need another equation to solve for all three proportions. A simple solution could be to treat the ordered endmember as a known variable on the right hand side. Our extended system can be written:

		
Starting from the first required equation and adding equations until we have reached the rank of the matrix gives us directly the first 2 and the last equation. This means the set of independent equations becomes:
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The matrix in  can be inverted and used to find the expressions for the endmember proportions as function of composition:

		
Instead of varying the ordered endmember proportion, it is also possible to vary one of the site fractions. For example, we can have the site fraction of Fe on M2 as variable in addition to the compositional variables. This way, we can fix the bulk composition of the mineral while varying the site occupancies due to ordering. To this end, we add the equation for site fraction of Fe on M2 (from equation ), to the original system of equations: 
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Here only the first, second, and last equation are independent and so we have:

		
Solved for the three unknown proportions:

		
These equations guarantee a fixed olivine composition, while changing the distribution of Fe and Mg on M1 and M2. The site fraction equation to pick as order equation can be obtained by augmenting the system of equations in  with the site fraction equations in . Then from this complete set of equations, we pick only the independent ones by starting from the first equation in  and adding only equations that increase the rank of the system of equations. Taking as first equation that the sum of proportions add to one (first row in eq. ), is convenient as it guarantees the minimum amount of compositionally independent variables. A Matlab code that automates this procedure is used in Thermolab. This function gives the independent components for each solution model as well as the site fraction to vary as order parameter and the matrix of converting composition to proportion.
For any given composition, there are limits on the value of zM2Fe. The easiest to see that not any value between 0 and 1 is possible is to take pure forsterite, where Mg = 2. Then there is no Fe in the olivine, and therefore zM2Fe can only be 0. In Thermolab, the range of possible values for site fractions is found by generating the full range of values and discarding impossible site fractions (below 0 and above 1).
We note that it is also possible to calculate site fractions from bulk composition as is shown in the Appendix in Vrijmoed and Podladchikov (2015).
3.2.6 Aqueous fluids
For mixtures of aqueous species, an approach similar to the ideal olivine example can be taken. Treating the fluid mixture with a one-site model in which all species mix in a similar fashion the mechanical and ideal mixture is calculated as in equation  and , and for the non-ideality, the Helgeson Kirkham Flowers (HKF) extended Debye-Hückel activity is used (Dolejš & Wagner, 2008; Helgeson et al., 1981). The Gibbs energy of the fluid mixture are on a molality scale when the formulation of Johnson et al. (1992) and the HKF activity model (Helgeson et al., 1981) is used and must be converted to a molar based scale as in Dolejs (2013) to be compatible with the solids. This is taken care by adding a correction term in the non-ideal Gibbs energy.
4 Equilibrium calculations using reactions
Gibbs energies calculated with the Thermolab codes are benchmarked with THERMOCALC (Holland & Powell, 2011), SUPCRT92 (Johnson et al., 1992), the DEW spreadsheet (Sverjensky et al., 2014) or data and phase diagrams from the relevant publications (Miron et al., 2016) and Perple_X (Connolly, 2005). Additionally, comparing with experimental data is essential to increase confidence in the method.
With the Gibbs energies of endmembers, equilibrium conditions for simple reactions can be calculated. Results for several solid state and fluid-solid reactions are shown Figure 2. The curves are produced by making use of the equilibrium condition:

		
[image: Chart, diagram

Description automatically generated]For pure phases (e.g. endmembers), the equilibrium constant will be 1 and the logarithmic term disappears leaving only G0rxn = 0. Using the endmember Gibbs energies and stoichiometric coefficient of reactions the contour line of G0rxn = 0 can be plotted to visualize the reaction in P-T space (Figure 2a). In a simple dissolution reaction Keq will be equal to solubility and so we can use G0rxn to calculate the solubility of quartz (Figure 2b). An example of a single dissociation reaction is shown in Figure 2c. By varying activities in Keq and using them as axis on a diagram the contour lines where the right hand side is 0 are used to obtain an activity-activity plot (Figure (2d). 
[bookmark: _Ref69990335]Figure 2 Example equilibrium calculations using a basic chemical reaction approach. a) Examples of some well-known reactions between pure phases, by calculating G of reaction (including any metastable parts of reactions). b) Solubility of aqueous silica, by plotting the equilibrium constant of the dissolution of quartz into water using the Holland and Powell (1998) database. Comparison between data from Manning (1994) shows good agreement between model and experiment. c) Comparison between experimental data and the SUPCRT (dashed lines) and Miron (solid lines) dataset for the dissociation of KCl in water. This reproduces the figure shown by Miron et al. (2016), to demonstrate their improved fit to the data. d) Activity diagram at room pressure, temperature, for basic weathering reactions using the equilibrium constants of the reaction calculated with Thermolab using the (dslop98) SUPCRT aqueous species and minerals data and Gibbs energy of water from NIST. Here a procedure to remove metastable extensions of reactions is performed in an automated way (i.e. automated Schreinemakers analysis). Gbs= Gibbsite, Ms = Muscovite, Mic = Microcline, Kln= Kaolinite, Prl = Pyrophyllite, SiO2 (am.) = amorphous silica.
5 Gibbs minimization in MATLAB
Using the ΔG of reaction, the metastable part of individual reactions will also be plotted (e.g. Figure 2a). For an equilibrium phase diagram, a Schreinemakers analysis or similar procedure may follow to draw the stable reactions (e.g. Figure 2d). Additionally, the phases and reactions to be calculated must be known beforehand. However, in many cases it can be desired to predict which reactions may take place. Instead of predicting the equilibrium line of a chemical reaction we calculate the stable phase assemblage at a point in P-T by determining which mineral has the minimum Gibbs energy. In the example code (Figure 3A), the calculation of Gibbs energy of the endmembers is done in line 9, a call to the main Thermolab function, which includes the code in Figure 1 to focus on the minimization algorithm. If all phases have the same composition (i.e. they are polymorphs), then the “min” function can be used (Figure 3A&B). Instead of locating the coexisting phases in a reaction in P-T-X space, the Gibbs minimization delivers the stable phases everywhere except for on the reaction line. Therefore, the reaction lines reflect the resolution of the P-T grid for which the Gibbs energies of each phase are calculated. At sufficiently high resolution, the reaction lines become smooth.
Natural chemical systems, e.g., rocks, generally, are multi-component systems. In this case mass balance must be considered while finding the minimum of Gibbs energy. For a more thorough thermodynamic analysis of this see e.g. Connolly (2017). Constrained Gibbs energy minimization is employed in the majority of phase diagram calculation software (Connolly, 2009; Gordon & McBride, 1994). In MATLAB, the simplest way this can be achieved is using linear programming (function "linprog", e.g. Dantzig et al., 1955). With this function, minimization can be done under the constraints of mass balance equalities, which for completeness is shortly outlined in the following.
The function “linprog” is used to find the minimum Gibbs energy of the system by solving the following optimization problem,

		
where  and g are vectors of respectively, the molar amount, and the Gibbs energies of all phases. The “linprog” algorithm then searches for the components in  that make the minimum Gibbs energy of the system, while respecting the following mass balance equality:

		
Which state that the sum of the amount of each phase multiplied by the composition of a component should equal the sum of that component in the system. A final requirement is that no negative amount  is allowed as that is physically meaningless:
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Figure 3 Two examples of Gibbs minimization to calculate phase equilibrium with Thermolab. The Gibbs energy calculation shown in Figure 1 is used here as an external function to improve clarity of the algorithm. a) Code showing unconstrained Gibbs minimization used to calculate the aluminosilicate phase diagram. The Gibbs energies of the phases are obtained in line 9, using a unique identifier to distinguish them from the same phases in another database. Andalusite from the tc-ds55 THERMOCALC (Holland & Powell, 1998) dataset (and, tc-ds55), kyanite (ky,tc-ds55) and sillimanite (sill,tc-ds55) in the order in which they are specified in line 5. The result is a 3D array with T in first dimension, P in second dimension and phase in third dimension. Line 11 then finds the minimum in the 3rd dimension, which results in a value (val) and index (ind) for each P-T. The index corresponds to the list of phases in line 5. A color coded visualization of the phase index that gives the lowest Gibbs energy is shown to the right using the pcolor function in MATLAB (code: line 13). The color bar indicates that the blue area has index 1, which then means it is the first phase in the list (line 5) that is stable (i. e. 1= andalusite, 2= kyanite, 3=sillimanite). The resolution of phase diagram can be increased by decreasing the step size of temperature and pressure (line 3&4). b) Resulting plot from code in (a). c) MATLAB example to calculate chemical equilibrium using constrained Gibbs energy minimization. For the first lines see (a). In line 7-8 the system composition is specified using total moles of SiO2 and MgO. Then the phase compositions in moles is expressed in the matrix Nphs with in each column the phase corresponding to the list in line 5. Each row holds the components (SiO2, MgO). This information is used as equality constraints in the function linprog which is called in line 14. It then finds the minimum Gibbs energy of the system out of the 4 possible phases, while satisfying the equality constraints. The second and third input arguments for ‘linprog’ are empty as they are reserved for inequalities and the fourth and fifth arguments are for the matrix of coefficients and right-hand side vector, respectively. To restrict the linear programming search for the amount of each phase to positive values we input also the lower bound vector of zeros (LB), e.g. equation . Then alph will hold the amount of each phase that will make minimum system Gibbs energy while obeying system composition. The phases that have an alph above zero represent the equilibrium assemblage for the given P-T-X conditions. d) G-X diagram in which the Gibbs energy of the phases are plotted against system composition (for plotting the Gibbs energy is normalized over the sum of the moles of component in each phase: i.e. the sum over the rows of Nphs).
As a worked example we may consider the binary system SiO2-MgO. Possible phases that can be built from these components are quartz, periclase, enstatite, forsterite. Spelled out for this case the equations read in matrix form:

		
And 
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Figure 3c shows the MATLAB translation and usage of “linprog” (Figure 3c, line 14) to calculate the stable phase assemblage. The required known values for the minimization are the vector of Gibbs energies (Figure 3c, line 6), a vector of system compositions (Figure 3c, line 7) with matrix of mineral compositions (Figure 3c line 10-12) as in equation . Note that in Figure 3C single elements have been used as components instead of the oxides, which leads to the same result. After defining the lower bounds of alpha’s as zero, linprog finds the alpha’s that make the minimum of Gibbs energy. The results are plotted in Figure 3d and shows that for a system composition between enstatite and forsterite, alpha’s of enstatite and forsterite are non-zero which means that those are the stable phases and the magnitude of the alpha’s give the molar amount of each stable phase in order of definition of the list of phases in Figure 3c, line 5.
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Description automatically generated]Performing a minimization at each point in a grid of pressure and temperature and evaluating at each P-T point the stable phase assemblage leads to a phase diagram in which also the amount of each phase is known because of the mass balance constraint. Figure 4a shows that this produces the same result in case of the pure Al2SiO5 system, as in the unconstrained minimization, but that it can now be used to do multi-component systems such as dehydration of antigorite in SiO2, MgO, H2O (Figure 4b).
[bookmark: _Ref70003994]Figure 4 a) One component system phase diagram, using constrained Gibbs minimization, results in a similar diagram to the unconstrained minimization result for the aluminosilicate phase diagram in Figure 3.(ky=kyanite,sill=sillimanite,and=andalusite) b) Multicomponents system phase diagram, with pure phases, using components SiO2, MgO, H2O. The same code is used as in (a), only the composition and system components need modification (atg = antigorite,fo=forsterite,ta=talc,anth=anthophyllite).
Most minerals, fluid and melts are not just pure phases, but can form mixtures of endmembers. The basic example above is shown because essentially the Gibbs minimization approach used in Thermolab is the same for systems in which phases occur that have a variable composition. In the following we shortly outline how we approximate the equilibrium in Thermolab to a reasonable degree by using the same linear programming method.
5.1 Linearization of mixtures
We compute the Gibbs energy of a set of discrete compositions of the mixture and add them to the list of endmembers as discrete entities, being treated as a fixed composition phase. In the following, all these entities that are the consequence of discretizing a real phase that can form a thermodynamic mixture will be arbitrarily called phase-compounds. With this approach the minimization algorithm remains unchanged from the above case for pure phases in Figure 3c. Figure 5 shows a complete code example to do a calculation with mineral solid solutions using the approach described here.
[image: ]Figure 5. Complete example code for the calculation of chemical equilibrium using Gibbs energy minimization including solid solutions, aqueous species and pure phases in Thermolab for the case of serpentinite with addition of carbon (Beinlich et al., 2020). After defining a P and T of interest, the solution model Excel spreadsheet is selected (line 5). The chemical components in the system are defined in line 6 and the composition of the system is specified in line 7. The names of the phases to be considered in the calculation are specified in lines 8-10, where the tc-ds55 identifies the thermodynamic dataset to be used (here THERMOCALC dataset 55). The static thermodynamic data (td) for all phases are loaded in line 11 and stored in one structure array (this replaces the command in Figure 1, line 10). The grid of compositions to linearize the solutions is obtained in line 12. Lines 13-14 compute the density (ZD05 = Z. G. Zhang & Duan, 2005) and dielectric constant of water (S14 = Sverjensky et al., 2014). Line 15 computes the Gibbs energy and volumes of the endmembers in each solution. Line 17 is the call to the main function outlined in Figure 1, and calculates for all phases in the list the Gibbs energy (g), the composition of each phase compound (Npc), an identifier for each phase compound (pc_id. Line 20 performs the constrained Gibbs minimization and in line 22 the data is stored for postprocessing.
An important step in preparing the mixtures for Gibbs minimization is to generate a grid holding a set of discrete phase compositions representing the mineral, fluid, melt, or gas. The compositions need to cover the full range of possible site fractions or proportions that can exist for a mixture. Fixing the pressure and temperature, Gibbs energy can be calculated either by specifying the site fractions or the proportions. The simplest is to use the site fractions for grid generation because they range from zero to one. Using proportions is more complex because, although proportions sum up to one for each mixture, they can also be negative. Thus, it requires knowledge of the range of values for proportions in each different solution. The grid generation is done in the function call in Line 12, Figure 5, by varying the site fractions by default from 0 to 1, and generating a multi-dimensional cartesian grid over the correct number of independent site fractions, using the MATLAB function “ndgrid” inside. With this brutal way, many non-physical site fractions are generated, but these are removed inside the grid generation function. In summary, we just generate Gibbs energies for the full range of possible site fractions in the solution including all states of ordering and internal speciation. The resulting set of Gibbs energies and compositions is used in place of the example in Figure 3c. The call to the main code ‘tl_gibbs_energy’, in Figure 5 Line 17, now includes the complete Gibbs energy code example [image: ]Figure 1. 
Figure 6 a) T-X diagram for the binary system fo-fa, with olivine and melt as mixtures using the Holland and Powell (2011) dataset and solution model for olivine from Holland et al. (2018) and melt using the example from the text and by adapting the Margules parameters to fit the Bowen and Schairer (1935) experiments. b) T-XCO2 diagram for CaO-SiO2-H2O-CO2 system at 14 kbar. Data points from Aranovich and Newton (1999) as benchmark to the Gibbs energy and minimization approach in Thermolab. c) Benchmark KFMASH metapelite example using the composition from the code in Figure 5. Solution models: Chlorite (Holland et al., 1998), Chloritoid, Cordierite (Holland & Powell, 1998), Muscovite (Coggon & Holland, 2002), Garnet, Biotite (R. W. White et al., 2007). d) Basalt melting to benchmark the Holland et al. (2018) melting model by reproducing main topology in Fig. 5 of Holland et al. (2018), here calculated in SiO2-TiO2-Al2O3-MgO-FeO-CaO-Na2O.


As an example of including solutions, we show a variety of phase diagrams, all produced with the same code for a discrete set of P-T values. The first example in Figure 6a, applies the olivine solution model as described above together with a binary melt mixing model, replacing the solid endmembers with their liquid equivalents (liquid forsterite and fayalite). For olivine, a grid is created where and vary independently and for the melt, the site fraction of forsterite liquid is varied. The Margules parameters in the melt are adjusted until they fit the experimental data (Bowen & Schairer, 1935). The T-X diagram including CO2 fluid using the mixing model of Aranovich and Newton (1999) is produced by changing the bulk CO2 in the system. When the amount of fluid components (H2O) in the calculation is orders of magnitude higher than the solid components, the diagram approximates the T-XCO2 diagram as the system is largely dominated by fluid. The results show good agreement with the experimental data from Aranovich and Newton (1999). A more complex calculation for a metapelite in KFMASH is done as a benchmark with the Perple_X and THERMOCALC diagrams and shows good agreement, improving the confidence of the method. Note that in complex systems, it becomes increasingly more demanding to get high resolution phase diagrams. For example a computation with the melt model of Holland et al. (2018) yields a low resolution diagram. Additionally, Cr2O3, Fe2O3 and K2O were omitted. However, the topology of the diagram is overall similar. In particular, the melt and pyroxene models used in the reproduction of phase diagram for basalt melting is computationally challenging with the method of linearizing the solutions with discrete hypothetical phase compounds.
5.2 Postprocessing the minimization results
To precompute a lookup table for the local equilibrium the needed unknown variables need to be retrieved from the minimization results. An example is given in Figure 7. The multi-dimensional  array (Line 20, Figure 5) and the corresponding compositions are the only variables that need to be saved along with the P-T arrays. 
Using the discrete phase compound linearization approach, mixtures (solid solutions, fluids, melts, gas mixtures) are split into individual phases having a fixed composition. The minimization algorithm will determine which of those discrete phases are stable, and for mixtures this often results in multiple discrete phase compounds with different composition of that mixture being stable. This is a mathematical consequence of solving the optimization program and the thermodynamic meaning is that we have a divariant field in which the composition of mixtures may change. Thermodynamically, it can happen that two or three phases are stable as result of a miscibility gap. However, this needs to be determined by an algorithm that distinguishes the discrete phase compound compositions from each other. If they are significantly different for a given resolution of the discretization, then they are true separate phases. In the other case the properties are obtained from a weighted average into one composition for the true stable phase. Afterwards, only the stable phase amount and the composition are retained. A clustering algorithm is used to determine if we have multiple or single phases stable for each particular mixture (Figure 7, line 10).
[image: ]To compute the molar volume of each phase we use the numerical derivative of the Gibbs energy:
Figure 7. Code example of postprocessing results to prepare a lookup table for use in non-equilibrium processes, such as reactive transport. After loading the result of the minimization in lines 2-3, the molar masses of the components needed in the postprocessing are obtained from an external function in line 4. The cluster function in line 10 checks for each stable phase if the phase compounds are numerically distinct to distinguish exsolved phases. Line 12-19 then calculate the densities and dielectric constants and Gibbs energy for the stable phase compositions at P of interest and a small deviation from P of interest for numerical derivatives. Molar volume using a numerical derivative of Gibbs energy is calculated in line 21. Lines 22-31 implement the equations in the text to calculate phase abundances, composition and densities. Line 33-45 calculate the chemical potentials for the components in the phases. From line 56-59 the results are displayed on the screen as an example.

		
Where the molar mass of each phase is found by:

		
The density of all phases can then be computed:

		

Volume fraction  each phase is then found from molar volume and mole fraction obtained from normalizing  to 1 (e.g. ): 

		
And weight fraction of each phase:

		
Composition in weight is found from:

		
Properties for total rock and fluid can be found from

		
Where the vectors hold the densities of all solid minerals including both pure phases and solid solutions, and their volume fractions. Fluid density is simply the density of the fluid mixture from equation and needs no further processing. Total solid concentrations are obtained from summing for each component the weight of all solids and dividing over the total weight.
Chemical potential is calculated following:

		
Where np is the chemical potential of the last dependent proportions (as proportions sum up to 1) and is calculated from:

		
5.3 Improving the calculations
Increasing the resolution of the P-T grid improves the smoothness of the lines in the diagram, but it does not ultimately lead to a better calculation. This is illustrated in Figure 8, where the resolution of the T-X grid for the olivine diagram is kept constant, while the number of discrete compositions for which the olivine and melt are calculated is increased. This means that the mixture is better approximated, and the result is that the compositions and modal abundances become better resolved and the step-like behavior that is present in the calculation with lower compositional grid gradually disappears. Although this is feasible for calculations that involve one or two simple mixtures, like binary olivine and melt, the computational demand required for more complex chemical systems and minerals makes such high-resolution compositional grids unpractical for computation. Even if computers with abundant memory are employed, we found that linprog will not find a solution for systems with more than 2 million discrete phases in the minimization.
Another option to improve the calculation is therefore to refine compositions in an iterative approach as also suggested and employed since decades (Connolly, 2009; Rossi et al., 2009; W. B. White et al., 1958). In Thermolab, this is open for the user to implement or improve. Here we describe a simple approach that currently is employed as a working example. First, an initial minimization is done with a suitable compositional starting grid. This initial starting grid is also subject to possible modification and improvement; however, it is possible to simply set up a coarse resolution initial grid so that each minimization is fast. Each discrete phase which has an alpha above zero is recognized as a stable phase. And the index in the list of non-zero alpha is used to find the composition of the mixture in terms of the endmember proportions and site fractions. In the next step, the proportions are used to generate a denser (i.e., higher resolution) compositional grid around the stable proportions found in the first minimization. For a binary, a simple graphical explanation of this procedure in Thermolab is illustrated in Figure 9. The new higher resolution compositional grid is added to the already existing grid and taken to the next iteration. We checked that the Gibbs energy of the system is always decreasing during the iterations. The iterations are stopped when the Gibbs energy of the system is not changing anymore within limits of machine-precision, or when the compositional spacing in the refined grid reaches this tolerance. This leads to improved calculation of compositions, modal [image: ]abundances, as shown in Figure 10 for the metapelite (KFMASH) P-T diagram from Figure 6c. 
[image: ]Figure 8 Influence of resolution of the discretization of solutions on the quality of the thermodynamic calculations. T-X resolution is kept constant at 300x300 steps. By increasing the number of compounds to discretize the mixtures, melt and olivine, the quality of the data is improved and the stepwise behaviour disappears. The melt and olivine binary mixing curves are approximated with 15, 50 and 100 discrete compounds (n). a) Fraction of melt with the melt and solid discretized with 15 compounds. b) Melt composition (Xfo) corresponding to (a). c) As in (a), for n = 50 compounds. d) Melt composition corresponding to (c). e) As in (a) with n = 100 compounds. f) Melt composition corresponding to (e). g,h) One-dimensional profiles for melt fraction and composition at Xsys=0.5, (dashed lines in a-f). Improvement of calculation with higher number of compounds clearly visible by smoothening of the lines as resolution increases. 
Figure 9. Conceptual diagrams showing two steps in the refinement of the composition of mixtures. a) Shows an initial minimization result which is then zoomed in and refined around the solution in step one. b) Here the refined compositions are used for a second minimization with smaller compositional spacing between the discretized mixture, without increasing the number of discrete compounds, thereby avoiding using too much computer memory. 
6 Investigating non-linear transport processes in open systems
Coupling local equilibrium thermodynamics to transport processes such as the system of equations introduced above has been discussed previously (e.g. Malvoisin et al., 2015). The method described here follows the approach employed in recent studies of Malvoisin et al, 2015, Plümper et al, 2017, Beinlich et al. 2020). For the transport models a complete set of equilibria for all possible external conditions, T, P, X, may be pre-computed and stored in a lookup table. To this end, loops over P, T, and X can be programmed around the linprog minimization and stored in a database. As an example, we show the soapstone formation in serpentinite from Beinlich et al. (2020). To the initial bulk serpentinite composition carbon (C) is added to produce a lookup table of 150 different bulk compositions at fixed T, and P. Employing the refinement method above, the Beinlich et al (2020), thermodynamic calculations can be improved in smoothness and computation speed (Figure 12b,d,f). However, the main results are the same. The important aspect is that the Beinlich et al. (2020) calculation was more robust, because no iterative refinement was used and hence any chance of reaching a local-minimum rather than the true minimum was avoided. Thus, the results of Beinlich et al. (2020) serve as benchmark for the [image: ]refinement algorithm described above.
Figure 10. Example of a phase diagram after refinement. The mineral modes in a)-e) show smooth variations within the phase fields due to sufficiently resolving the compositions of mixtures in a iterative refinement procedure. The final phase diagram in f) shows also improvement, but the general topology was also captured in Figure 6c.
6.1 Reactive transport example
After retrieving the density of solid, fluid, and concentration of fluid and solid, and the chemical potential, the system of equations described above can be solved. Here a possible numerical implementation in MATLAB is shown, using explicit finite differences. The purpose is to focus on the concept of coupling the transport processes to the precomputed local equilibrium lookup table and to show the effect of the non-ideal solution models on reactive transport. 
As stated above, there are three equations and 8 unknowns. The first equation is the rearranged total mass balance equation in which the only assumption is that solid is not deforming. The fluid velocities have been substituted by the Darcy flux. This equation is used to find the unknown fluid pressure. The second equation is a mass concentration balance of an immobile component in the solid. This equation can be integrated analytically in case of non-deforming solid and used to calculate the unknown porosity (e. g. Appendix Malvoisin et al. 2015). The last equation is the total mass concentration balance for a component that is mobile, (in Beinlich et al. 2020 this is carbon). From this equation the total mass concentration is found which subsequently can be used to find the solid concentration.
Equation  can be written as:

		
With:

		
and (Figure 11, Line 49):
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When assuming a relation between total density and fluid pressure using an effective compressibility, we can write the above (Figure 11, line 55):

[bookmark: ZEqnNum157563]		
 And with the porosity equation (Figure 11, Line 56):
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using the concentration of magnesium in solid as immobile species and specifying the initial density, porosity and concentration. Total concentration of mobile species carbon, is solved by rearranging the total mass concentration balance (Figure 11, Line 57):

[bookmark: ZEqnNum422069][image: ]		
Figure 11 Reactive transport code using precomputed equilibrium approach. After loading the precomputed thermodynamic equilibrium data (line 3), the physical parameters are defined in lines 8-19, the numerical parameters (e.g. number of time steps and nodes in the model) are defined (lines 21-23). Preprocessing and initialization including setup of the grid and initial conditions are done in lines 28-33. Here an incoming fluid and fluid pressure increase is setup as left boundary to initialize reactive fluid flow from left to right. In lines 36-40 all properties retrieved from local equilibrium are found by interpolating on the precomputed thermodynamic equilibrium data. Line 41 stores the initial condition for the non-mobile solid and the initial porosity distribution is set to a constant value (phi0 in line 12). Line 43 is the definition of total concentration in the system (Eq. ). Averaging values used in fluxes defined between the nodes are calculated in line 44-46. Lines 48-49 are the driving forces for the reactive transport, flux of diffusion (qC) and Darcy flux Eq. . Adaptive time steps, approximately following Courant Friedrichs-Lewy stability criterium, are calculated in lines 51-53 to constrain numerical error propagation and maintain stability of the numerics. Line 55-57 are most fundamental governing physics in the reactive transport, the main equations , , and , by reformulating it to the equations , , and . The solid concentration is found from the definition of total system mass concentration ). Plotting takes place during model run every ‘nout’ time steps. The phase abundances can be visualized when desired as they are interpolated from the lookup table and do not enter any of the physics equations. Plotting of the mineralogical evolution is done in lines 61-63. 

With (Figure 11, Line 43):
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Then solid concentration is found by rearranging the above (Figure 11, Line 58):

		
The remaining unknowns, f, s ,CsMg, and Cf are found from interpolation in the lookup table at each time step (Figure 11, Line 36-40). Details of the coding example are found in the caption of Figure 11 and results of the transport code are shown in Figure 12. The non-linearity of the thermodynamic relationship between solid and fluid composition is demonstrated in Figure (12,c,d,f), this is a result of both the non-ideality of solution models as well as changes in the phase assemblage. Depending on the function of solid composition versus fluid composition, the reaction fronts behave very differently in terms of shape and velocity (Figure 12, a, c,e).
6.2 Cahn-Hilliard exsolution
Natural processes usually are not in equilibrium and do not strictly follow the path that can be followed from a phase diagram. Instead, there will be a process that develops towards the state of global equilibrium depicted on a phase diagram although it may never reach it (e.g. due to thermal closure). With Thermolab, the Gibbs energies can be directly used instead of first calculating thermodynamic equilibrium and the process towards equilibrium can be modelled. A demonstration of this is given by solving the Cahn-Hilliard equations in which driving force for 
[image: ]Figure 12. Snapshot of reaction fronts produced by influx of three different incoming CO2 fluid compositions from the left boundary into a serpentinite using the code in Figure 11. For comparison all runs were stopped after the same duration. In all cases, the starting rock consists primarily of serpentine (here antigorite), with minor amounts of talc, magnesite and dolomite. a) If the incoming fluid composition lies below ~0.005 antigorite never completely disappears and a gradual reaction front forms transforming the serpentinite to ophimagnesite (magnesite-talc-serpentinite). b) The equilibrium relation between Cf and Cs (i.e. the isotherm) shown in blue with the transient (current) Cf and Cs compositions plotted as red dots. c) With an incoming fluid composition between 0.01-0.015, the pristine serpentinite to the right transforms into soapstone with a sharp reaction front when antigorite has reacted out. d) The equilibrium relation between Cf and Cs (i.e. the isotherm). The steep slope at Cs between ~0.045-0.052 is enlarged in the inset. Here antigorite disappears (the soapstone on the left in Figure c), and the steepness of the slope on the isotherm causes a sharp soapstone front. The shallow slopes below Cs=0.045 correspond to the transitional front where serpenitinite is partially transformed to soapstone. e) Development of an additional reaction front, forming listvenite (quartz-magnesite rock), as incoming fluid composition is now higher, ~ 0.086 weight fraction dissolved carbon. f) As the incoming fluid composition lies on anorther steep part of the isotherm, the listvenite front is also sharp. Inset shows the curvature of the isotherm corresponding to the listvenite stable assemblage. Endmember data from the tc-ds55 dataset (Holland & Powell, 1998), solution models: CO2-H2O Fluid (Aranovich & Newton, 1999), Antigorite (Padron-Navarta et al., 2013), Chlorite (Holland et al., 1998), Talc (Holland & Powell, 1998), Magnesite, Dolomite (R. W. White et al., 2003). t* = dimensionless time. Concentration units are in elemental carbon weight fraction.
diffusion is chemical potential and an uphill diffusion process causes an initial random homogeneous system to develop into an equilibrium phase assemblage (Cahn & Hilliard, 1958). A simplified version of the Cahn-Hilliard equation consists of a balance of mass concentration and a flux equation for the diffusion. Assuming a system without fluid, and assuming constant densities a basic mass concentration balance can be written (Figure 13, line 35): 

		
Flux of concentration in solid of a component can be defined as a function of gradients in chemical potential differences or a single chemical potential in conjuction with the Gibbs-Duhem relation (e.g. p. 80 in Lebon et al., 2008; Nauman & He, 2001), here the former is used (Figure 13, line 34):

		
The chemical potential difference can be conveniently expressed by:

[bookmark: ZEqnNum592541]		
where the last term in  is the interfacial free energy contribution as introduced by Cahn-Hilliard (1958). Similar to Figure 7, the chemical potential can be calculated with numerical differentiation of the Gibbs energy (see Figure 13, line 31-32).
[image: ]These equations describe the spinodal decomposition of a phase with strong non-ideal behaviour, such as feldspar, due to non-linear diffusion driven by chemical potential gradients. A useful review is found in Nauman & He (2001). See also caption Figure 14 for details.
Figure 13 Cahn-Hilliard example code for 1D binary exsolution. The length of the domain and diffusion coefficient, assumed constant for simplicity here, are defined in line 3-4, after which the thermodynamic data is loaded for a given P-T. The phase for which Gibbs energy is calculated is input in line 8, and the components in the system can be given in line 9. Line 10 initializes static thermodynamic data as in Figure 5. Line 11 calculates the Gibbs energy of the endmembers in the solution (this is done to increase performance as they do not vary here). Numerical parameters are setup in lines 13-17, followed by preprocessing for generating the grid and the time step. An initial setup consists of a homogeneous concentration with small random perturbations. The physical process is modelled in a time loop from line 26-43. Line 27-30 shows how Thermolab is used without precomputed lookup tables. A small increment of proportions of the endmembers is used to make a numerical derivative to calculate the chemical potential in line 31, with Cahn-Hilliard addition of energy regularization (line 32). The chemical potential gradients drive diffusion in the system via the diffusion flux in line 34 and line 35 is the mass [image: ]concentration balance in simplified form. Line 36-37 are boundary conditions that ensure total concentration in the system remains constant. Line 39-42 are plotting the results as the model runs.

Figure 14 Example of using Thermolab without precomputed thermodynamic data. Physical processes develop towards thermodynamic equilibrium using the Cahn-Hilliard model at 500 °C, 0.1 GPa. The 1D example code for a binary system is given in Figure 13. An initially homogenous concentration distribution in a single phase develops into a two phase system due to uphill diffusion as a result of the non-linearity of solution models (the non-ideality that leads to exsolution of phases). a) Snapshot of a 1D model during exsolution of binary feldspar (concentration corresponds to albite component in albite-sanidine mixture). Red line shows initial concentration distribution developing into separate phases represented by the blue line. b) Comparing the concentrations in the physical domain to the Gibbs energy-composition (X) curve (for clarity only the mixing energy, ideal + non-ideal is shown). Plotting the transient concentrations on the equilibrium curve shows that the system develops towards the tangent construction (i.e. equilibrium condition) shown with the yellow line and calculated with ‘linprog’ following methods described in the main text. c) Albite concentration in a 2D feldspar model after exsolving for some time from a homogeneous initial distribution. d), and e) represent the corresponding compositions of respectively, components anorthite, orthoclase (using sanidine endmember here). f) transient compositions of the feldspar for all nodes in the 2D domain plotted on the equilibrium mixing Gibbs-energy ternary represented by the contours. These compositions form a continuous yellow line (as there are many overlapping symbols). Dashed line corresponds to solvus computed with ‘linprog’, and yellow open circle corresponds to average concentration in the system. Red symbols are equilibrium compositions of the two stable phases from Gibbs minimization.   
7 Discussion
The motivation befind the development of Thermolab is to study the effects of the non-ideality of solution models in reactive transport processes in open systems. Most natural materials including minerals, rocks, melt, fluids and gases display some degree of non-ideal mixing behaviour (e.g. Ganguly, 2020). We showed that for the case study of the soapstone formation studied by Beinlich et al. (2020) both the shape and the velocity of the reaction front vary strongly depending on the non-linearity of the partitioning of carbon between fluid and solid (Figure 12). For evaluating potential risks during transport of nuclear waste material understanding this non-linear behaviour is crucial and a study of Shao et al. (2009) is line with this conclusion.
[bookmark: _Hlk89951879]For mathematical analysis the formulation of complex solution models is important to show in a transparent manner such that non-linearities in transport processes can be studied. Therefore we presented the linear algebraic approach that is used in Thermolab to compute Gibbs energy of mixing for arbitrary multi-component phases (Figure 1). The starting point was a crystallographic or structural model of a solution and a predefined set of endmembers as developed by previous workers (e.g. Green et al., 2016; Palin et al., 2016). More in depth discussion on how to newly define crystallographic and speciation models for solid solutions is given by Myhill & Connolly (2021), after which the model should then be fitted to experimental data. 
Complex solution models are almost exclusively used for phase diagram calculations (e.g. Connolly, 2005, 2009; de Capitani & Brown, 1987; Ghiorso et al., 2002; Holland & Powell, 1998, 2011; Johnson et al., 1992), but usually not for the transport codes. To ensure the reliability of the Gibbs energy calculation and equilibrium calculation methods, Thermolab is benchmarked versus phase diagrams and exemplified in use for reactive transport projects. Constrained Gibbs energy minimization is discussed following existing approaches (Connolly, 2005; W. B. White et al., 1958) and the results are then used to calculate equilibrium compositions and retrieve the so-called isotherm that can be used in a transport code. 
The isotherm, introduced in chromatographic studies of metasomatism, is a relation between fluid and solid composition at fixed P-T (Hofmann, 1972). An approach in which the system is divided in solid and fluid and for which the mass conservations equations have been summed up to eliminate reaction source terms has proven very useful for reaction front propagation studies (Orr, 2005).  Shape and velocity of propagating reaction fronts strongly depend on the non-linearity of solutions models (Guy, 1993). The approach of pre-computing the equilibrium compositions and using the results as an isotherm in the transport codes is useful to study the effects of the non-linearity of solution models on reactive transport. As the studies of Hofmann (1972) and Guy (1993) focus on single phases, our results shows this is functioning similarly on multi-phase systems such as rocks. The steep reaction fronts act similar to isotherms with miscibility gaps (Fletcher & Hofmann, 1974), but the solid solutions are responsible for the continuity of the isotherm across the ‘jump-like’ curves. Previous studies usually introduced simple isotherms, also called flow functions, to study the behaviour during transport. Thermolab has been motivated by the need to generate realistic flow functions using complex solution models.
Solid solutions with strong non-ideal behaviour result in phase separation due to non-linear diffusion when combined with transport models. The Cahn-Hilliard model (Cahn & Hilliard, 1958) is used to stabilize the numerical solutions by introducing an energy penalty for generating surfaces between phases introduced by a surface energy parameter. This method is widely applied in material science (Nauman & He, 2001) and also some geological appliciations have been studied (Abart et al., 2009; Petrishcheva & Abart, 2009). For geological materials other than feldspar, the behaviour of such non-linear diffusion systems can be further investigated with Thermolab.
Mixing of databases is possible in a flexible framework like Thermolab, however it may not be recommended since internally consistent databases are not necessarily consistent amongst each other. Nevertheless, to use aqueous species in fluids together with most up to date solution models of minerals, the only possibility to date is to combine for example SUPCRT databases with Holland and Powell (1998, 2011). It has been argued that such a combination may serve as a good approximation (Dolejš, 2013), when appropriate equations of state and dielectric constant for water are used. However, refitting the aqueous species databases from SUPCRT in conjunction with mineral database of Holland and Powell (1998) is likely the more reliable approach to combine datasets (Miron et al., 2016; Miron et al., 2017).
8 Conclusions
With thermolab it is possible to reproduce published phase diagrams involving complex solution models and these solution models can then be used in transport codes to investigate the effects of non-linearity on the open system processes. Complex flow functions can be retrieved from Thermolab and used in mathematical analysis and numerical models of reactive transport. Gibbs energy can be directly used to construct chemical potentials as driving force for non-linear diffions leading to phase separation.
The modelling framework provided by Thermolab allows users to add custom functions, include new databases, design solution models but also improve procedures to calculate equilibrium. Limits of the discretization of solutions approach are due to computer memory restrictions, which for complex solution models increases computation time to unpractical durations. Computers with increased memory would be a solution, however, we found that the linprog algorithm will stop to converge when about 2 million discrete phases or more in systems with more than six components are used. Refinement strategies are a potential solution to this problem; however, these compromise the robustness of the result by possibly missing the global minimum of the Gibbs energy. Thus, Thermolab leaves the door open for development of faster and more robust future algorithms by a transparent open source coding environment, which due to the compactness of MATLAB example code can be translated to other programming languages with minimum effort.
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