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Abstract
The presence of solute concentration fluctuations at spatial scales much below the working
scale is a major challenge for modeling reactive transport in porous media. Overlooking
small-scale fluctuations, which is the usual procedure, often results in strong disagree-
ments between field observations and model predictions, including, but not limited to, the
overestimation of effective reaction rates. Existing innovative approaches that account for
local reactant segregation do not provide a general mathematical formulation for the gener-
ation, transport and decay of these fluctuations and their impact on chemical reactions. We
propose a Lagrangian formulation based on the random motion of fluid particles whose
departure from the local mean concentration is relaxed through multi-rate interaction by
exchange with the mean (MRIEM). We derive and analyze the macroscopic description
of the local concentration covariance that emerges from the model and show that mixing-
limited processes can be properly simulated. The action of hydrodynamic dispersion on
coarse-scale concentration gradients is responsible for the production of local concentra-
tion covariance, whereas covariance destruction stems from the local mixing process rep-
resented by the MRIEM formulation. The temporal evolution of integrated mixing metrics
in two simple scenarios shows the trends that characterize fully-resolved physical systems,
such as a late-time power-law decay of the relative importance of incomplete mixing with
respect to the total mixing. Experimental observations of mixing-limited reactive transport
are successfully reproduced by the model.

1 Introduction

The inherent difficulty of properly representing the interaction of reactive chemicals
occurring over multiple spatio-temporal scales in complex hydrodynamic settings renders
reactive transport modeling in porous media a major challenge in subsurface hydrology
[Dentz et al., 2011; Sanchez-Vila and Fernàndez-Garcia, 2016; Benson et al., 2017; Valoc-
chi et al., 2019]. With the exception of highly idealized settings or incredibly small sam-
ples, generally in porous media it is unfeasible to obtain a completely resolved flow field
within real porous media geometries based on the complete microscopic equations (e.g.
Navier-Stokes). This in turn limits the resolution at which a transport model can be ap-
plied. Instead one typically describes the system with macroscopic equations in an equiv-
alent continuum [Icardi et al., 2019, and references therein]. By doing so, one essentially
ignores detailed resolution of local velocity and concentration fluctuations occurring at
the pore-scale, below the scale of the equivalent continuum. The system is represented
by macroscopic variables and properties, which aim to represent subscale fluctuations in
an effective manner, obtained for instance by volume averaging [Quintard and Whitaker,
1994; Whitaker, 1999; Wood et al., 2003]. However, these effective parameters really only
aim to capture mean behaviors and processes that depend nonlinearly on subscale fluctua-
tions may often not be well described. Similarly, since macroscopic properties such as the
hydraulic conductivity can vary substantially in space within real aquifers, one may further
upscale flow and transport in heterogeneous media with a new set of effective parameters
[Dagan, 1989; Gelhar, 1993; Rubin, 2003]. This step further reduces the apparent com-
plexity of the system, but again does not contain potentially important information below
the scale of the effective model.

Among available macroscopic models, the upscaled advection-dispersion-reaction
equation (ADRE) is the most widely used for modeling reactive transport at all practi-
cal spatial scales. It is embedded as the standard in most popular reactive transport codes
[e.g., Cederberg et al., 1985; Mangold and Tsang, 1991; Yeh and Tripathi, 1991; Steefel
and Lasaga, 1994; Walter et al., 1994; Saaltink et al., 2004; De Simoni et al., 2005; Bea
et al., 2009; Steefel et al., 2015, and references therein]. However, field and laboratory ob-
servations, numerical simulations and theoretical developments have demonstrated time
and time again that the upscaled ADRE fails to adequately represent mixing and chemi-
cal reactions at all scales [Rashidi et al., 1996; Cao and Kitanidis, 1998; Gramling et al.,
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2002; Palanichamy et al., 2009; Tartakovsky et al., 2008; Fernàndez-Garcia et al., 2008;
Edery et al., 2009; Sanchez-Vila et al., 2010; de Anna et al., 2014a,b; Porta et al., 2016],
because of its disregard for the local concentration fluctuations and the use of scale-averaged
concentrations to compute reactions. In fact, the main reason why reaction rates observed
in the field tend to be much lower than those measured in laboratory experiments is the
presence of anti-correlated local fluctuations of reactant concentrations [Chiogna and Bellin,
2013; Ding et al., 2017].

Hence, in order to obtain better predictions, effective transport models should some-
how incorporate the sub-scale mixing limitation effects. Several such approaches have
been proposed in recent years, both from the Eulerian and from the Lagrangian perspec-
tive (see Porta et al. [2016] and references therein). The Eulerian approaches are typically
restricted to very specific initial and boundary conditions, corresponding to the mixing
of two reactants moving across a column-shaped porous medium, forming a sharp in-
terface at C = 0, as in the famous laboratory experiments of Gramling et al. [2002]. As
such, existing effective solutions typically contain a time-decaying term controlling either
an apparent kinetic reaction rate [Sanchez-Vila et al., 2010], a pre-defined concentration
covariance function [Chiogna and Bellin, 2013], or a mobile-mobile mass exchange rate
coefficient [Ginn, 2018]. Hochstetler and Kitanidis [2013] consider a constant, Damkohler-
dependent efficiency term multiplying the reaction rate, which accounts for the effect of
reactant segregation. While all the above-mentioned approaches provide interesting simpli-
fied interpretations of the physical process, they do not provide general differential equa-
tions governing the transport of local concentration fluctuations, and hence they might
not be applicable to broader sets of initial and boundary conditions. On the other hand,
Lagrangian approaches that have been proposed to reproduce mixing-limited reactive
transport [Edery et al., 2009; Ding et al., 2013; Benson et al., 2019a] rely on finite par-
ticle number effects to emulate the segregation of reactants. While such approaches are
equivalent to assuming a noisy initial condition [Paster et al., 2013, 2014], it is difficult to
formalize and generalize them in a rigorous manner [Bolster et al., 2016].

Here we present a novel Lagrangian approach to simultaneously account for (8)
coarse-scale advective-dispersive behavior as well as (88) the generation, transport and de-
cay of local concentration fluctuations. The model aims to offer not just a solution specific
to one setting, but rather a mathematical framework to potentially represent a broad array
of settings and transport problems. Unlike the aforementioned Lagrangian approaches, the
proposed model does not rely on low particle numbers to represent reactant segregation,
but in fact converges to the desired solution with sufficient particles (i.e., the particle num-
ber is only a numerical discretization). In fact, Eulerian implementations of the proposed
model are possible, but Lagrangian implementation is currently more natural and straight-
forward.

The paper is structured as follows. In §2 we develop the conceptual and mathemat-
ical model leading to the differential equation describing the local concentration fluctua-
tions perceived by a random-walking Lagrangian particle. In §3 we derive the resulting
Eulerian differential equation describing the transport, generation and decay of concen-
tration point-covariance; we also provide the temporal evolution of the spatial integral of
the former (or mixing state) in two simple cases of initial and boundary conditions with
pseudo-analytical solution. In §4 we implement the proposed model to reproduce the reac-
tion product concentration data corresponding to the laboratory experiments of Gramling
et al. [2002]. Finally, in §5 we summarize our main conclusions.
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Figure 1. Local concentration variability within a true physical system and its conceptual representation in
the proposed Lagrangian model, in which the coarse-scale concentrations are defined on the Eulerian space
whereas the local concentrations are defined on the Lagrangian particles. Particles are represented by dark
dots, and the colored circles around them show the corresponding local concentrations.

2 Conceptual and mathematical model

2.1 Conservative transport and mixing

By definition, all continuum-scale models of transport in porous media assume or
solve a flow field with some degree of coarse-graining; that is, the velocity variability be-
low some threshold resolution is removed and replaced by an upscaled dispersion tensor.
We distinguish two spatial scales, above and below this aforementioned threshold, which
hereafter we refer to as coarse scale and local scale, respectively. Coarse-scale concen-
trations of species A at position x and time C, 2A (x, C), are often assumed to obey the up-
scaled advection-dispersion equation,

m2A
mC

= L(2A; v,D), L(D; v,D) B ∇ · (−vD + D∇D) (1)

where v is the coarse-scale velocity, and D is the dispersion tensor, which represents the
combined effect of velocity fluctuations at the local scale (around v) and molecular diffu-
sion. (1) assumes that the porosity (volume of fluid per unit volume of medium) is con-
stant. Hereafter, we also assume that v and D are spatially and temporally constant. These
assumptions simplify the presentation and analysis of the model, but generalization should
be readily possible.
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Figure 2. Spreading and mixing within a true physical system and their conceptual representation in the
proposed Lagrangian model, in which the coarse-scale transport is simulated by the random motion of par-
ticles (2), and the local concentration is updated through multi-rate interaction by exchange with the mean
(9). Particles are represented by dark dots, and the colored circles around them show the corresponding local
concentrations or fluctuations.

One manner for solving equation (1) is via Random Walk Particle Tracking (RWPT)
[e.g., Salamon et al., 2006], a Lagrangian approach in which particles ? = 1, . . . , # carry
solute mass of one or several chemical species, and their trajectory over small time inter-
vals [C, C + ΔC] is defined as a combination of deterministic advective displacements and a
Wiener random process emulating dispersion,

X? (C + ΔC) = X? (C) + vΔC + B�
√
ΔC, (2)

where X? is the position of particle ?, B is a matrix such that BBT = D, and � is a vector
of random numbers drawn independently from a standard normal distribution. Here, sim-
ilar to Benson and Bolster [2016a] and Engdahl et al. [2017], each particle ? is assigned
a static mass of solvent, <? , and a variable concentration of solute A, �A, ?; therefore the
mass of A carried by ? is <?�A, ? .

Given any particle attribute R? , one may define its interpolation onto the Eulerian
space [Monaghan, 2005], here referred to as local average (since the interpolation removes
any localized variability), at any point x in model domain Ω3 , where 3 is the number of
spatial dimensions,

〈R 〉(x) B
∑
?

<?

d(X?)
R?X(x − X?), (3)
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d(x) B
∑
?

<?X(x − X?), (4)

where summation is implied over all particles ? = 1, . . . , # , and X(x) is the 3-dimensional
Dirac delta function. Expression (3) is simply a weighted average of R? over particles ?
located at X? = x; however, this interpretation of the interpolated concentrations is not
smooth, other than in the limit of # → ∞, and in practice it must be replaced by some
form of small-volume average, for instance by replacing X in (3) by a kernel function ,
with nonzero support volume. More details are given in Appendix A: . For

2A (x, C) B 〈�A (C)〉(x), (5)

given particle motion equation (2) and in the limit # → ∞, ΔC → 0, the averaged con-
centrations 2A (x, C) converge to being governed by the Fokker-Planck equation [Risken,
1989], which is equivalent to the ADE (1) when D is spatially constant; otherwise a cor-
rection can be applied to the drift term, see LaBolle et al. [1996].

To summarize, in the proposed Lagrangian model, each numerical particle represents
a discrete amount of a chemical solution traveling through a porous medium, moving by
displacements representing the scale-averaged advection (deterministic) and upscaled dis-
persion (normal random). Consequently, at the coarse scale, the concentration field obeys
the advection-dispersion equation (ADE). This type of Lagrangian model is widely used
by researchers and practitioners in hydrology to simulate nonreactive transport of solutes.

While coarse-scale concentrations of non-reactive chemicals may agree reasonably
well with the ADE under certain conditions [Dagan, 1984], concentration fluctuations
may still occur at the local scale. These local-scale fluctuations, which are not explicitly
accounted for in classical formulations, may drive the outcome of nonlinear processes,
such as chemical reactions, far from what would be predicted by the ADE [Kang et al.,
2019]. Note that by using equation (2) (or similar stochastic formulations), where each
particle follows its own unique random path, it is implied that at any given time each par-
ticle is only sampling a portion of the local-scale fluid velocity field. Analogously, in the
proposed model, particle concentrations �A, ? (C) are assumed to represent the local-scale
concentrations, and may therefore be at disequilibrium with the averaged 2A (x, C). Hence,
hereafter we refer to �A, ? (C) as local concentrations. Figure 1 is a schematic represen-
tation that illustrates our proposed conceptual model. The local-scale structured spatial
variability of concentrations in the physical system is emulated by the stochastic variabil-
ity of local concentrations experienced by overlapping Lagrangian particles in the model.
Because it is defined by interpolation (see Appendix A: ), the coarse-scale concentration
is a smooth function in the Eulerian space, whereas local departures from the well-mixed
equilibrium or local fluctuations are only defined on the Lagrangian particles. In order to
represent the evolution of these local fluctuations we need to define a mixing model.

A simple representation of the local mixing as seen by a particle ? could be to as-
sume a Fickian process driven by a local diffusion �` within a fluctuation structure of
dimension 3` and characteristic mixing length ℓ`,

d�A, ?

dC
= − j

2
[�A, ? (C) − 2A (X? (C), C)], (6)

where
j B 23`�`/ℓ2

` (7)

is the mixing rate, which is equal to the inverse time scale for which a typical diffusive
displacement matches the characteristic mixing length ℓ`. The notation d/dC in (6) indi-
cates a Lagrangian time-derivative, defined as the temporal variation experienced by a
moving fluid particle. This definition is similar to the classical concept of material deriva-
tive, with the difference that here particles follow stochastic paths instead of pure deter-
ministic advection. The simple model embedded in (6) was originally suggested for mix-
ing in turbulent flows, and it is known as Interaction by Exchange with the Mean (IEM)
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[Villermaux, 1972; Pope, 2000]. Its practical numerical implementation requires some
careful consideration, related to features such as mass conservation. Implementation as-
pects, including small-volume approximations of the averaging operator, are discussed
in Appendix A: . An appealing advantage of this kind of mixing model is that a local
value’s variation in time depends only on its current degree of departure from the mean,
potentially avoiding direct particle-particle interaction. Importantly in our context, the pro-
cess is Markovian, i.e., the time-derivative (6) depends only on the current state. We note,
however, that equation (6) is overly simplistic. Previous attempts to apply the IEM model
(from an Eulerian perspective) to laminar flow and transport in heterogeneous porous me-
dia have concluded that, at the beginning of new contact between solutions with differ-
ent chemical composition, one should account for a growing stage of ℓ` before it reaches
a stable asymptotic value [Kapoor and Kitanidis, 1998; de Dreuzy et al., 2012]. That is,
a single constant value of j cannot reproduce the distinct stages of the mixing process,
and one should consider not only a slow linear mixing, but also a fast stretching-enhanced
mixing stage. Moreover, fluctuations may occur across multiple overlapping length scales.
As acknowledged by Villermaux [1983] in the context of IEM applied to turbulent mixing,
“several stages for mixing, each with their own time constants should be considered, possi-
bly in series or in parallel”. Here, we propose a parallel multi-rate interaction by exchange
with the mean (MRIEM), based on representing the mixing process as occurring within
different virtual mixing zones 8 = 1, . . . , #Z, each being sampled by a fraction [8 of the
particle (

∑
8 [8 = 1). Within each mixing zone 8, each particle ? sees a local concentration

�A, ?,8 (C) of each species A, possibly at disequilibrium with 2A (X? (C), C), such that

�A, ? (C) =
∑
8

[8�A, ?,8 (C), (8)

and
d�A, ?,8

dC
= − j8

2
[�A, ?,8 (C) − 2A (X? (C), C)] . (9)

The values of [8 and j8 are assumed to depend on local-scale flow and transport condi-
tions. The zone-concentration values �A, ?,8 (C) do not necessarily have a physical mean-
ing individually, but are instead intended to emulate the complex transient nature of the
mixing process. In principle, parameter sets [8 and j8 can be different for each species to
account, for instance, for different values of the local-scale diffusion coefficient.

Given any Lagrangian-defined attribute R? and its average across the particle space
〈R 〉, it can be shown (see Appendix B: ) that, if particles move according to (2), the fol-
lowing relation holds between the Eulerian and the Lagrangian time-derivatives of R :

m〈R 〉
mC

= L (〈R 〉; v,D) +
〈dR

dC
〉
. (10)

Then, by combining (10) with (8) and (9) we see that

m2A
mC
≡ m〈�A〉

mC
= L (2A; v,D) . (11)

That is, the local mixing process described by (9) does not modify the coarse-scale de-
scription of non-reactive transport, driven by the particle displacements in (2).

One of the simplest implementations would comprise only two zones, one of them
with an instantaneous mixing rate (i.e., very fast in relation to the time scale of interest),

1 − [1 = [2 ≡ [, j1 ≈ ∞, j2 ≡ j. (12)

Hereafter, we refer to this particular case as dual-rate, to [ as the slow mixing fraction,
and to j as the slow mixing rate. In this case the local concentration in zone 1 is always
at equilibrium with the coarse-scale concentration. Combining equations (8), (9) and (12)
we may write:

d�A, ?

dC
= (1 − [)

d2A, ?

dC
− j

2
[�A, ? (C) − 2A (X? (C), C)], (13)
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where for conciseness from here on, inside the derivative we use the notation 2A, ? (C) ≡
2A (X? (C), C). In the dual-rate model (12), equation (13) can be interpreted as such: While
following its random path described by (2), fluid-particle ? may experience variations in
the perceived coarse-scale concentration of A. Conceptually, these changes correspond to
the particle seeing itself involved in new mixing events, that is, in the formation of new
fluctuation structures. Only a portion 1 − [ of these variations, corresponding to the pre-
asymptotic or deformation-related mixing fraction, equilibrates instantaneously with the
new coarse-scale concentration. Hence, a local disequilibrium of the opposite sign cor-
responding to the remaining unmixed fraction [ is generated, and it will decay over time
following a stationary Fickian mixing process at rate j.

Figure 2 illustrates the conceptual decoupling of transport as a combination of spread-
ing and mixing, in the true physical system as well as in the proposed Lagrangian model
in one coarse-scale dimension. In the physical system, spreading represents the growth
of the width (variance) of a solute plume due to velocity variability, which, alone, does
not generate new contact between otherwise segregated solute molecules. Mixing, on the
other hand, is precisely the generation of new contact between formerly segregated so-
lutes, and is the result of local dispersion applied to the structure generated by spreading
(see upper-right part of Figure 2). This decoupled picture is a simplification, because there
is a continuous interplay between the two processes. The rate of spreading is influenced
non-linearly by local dispersion [e.g., van Milligen and Bons, 2012]. Similarly, mixing is
influenced by the growth of contact surfaces, which is controlled by local advection [e.g.,
Villermaux, 2012]. In the proposed Lagrangian model, spreading is represented by particle
motion (2), which controls the coarse-scale behavior of concentrations; mixing is repre-
sented by the relaxation equation (9), which mitigates local departures from equilibrium
experienced by individual particles, arising due to the aforementioned random motion.

2.2 Reactive transport

The proposed Lagrangian model can be extended to reactive transport applications
by following the premise that chemical reactions occur at the local scale and thus are con-
trolled exclusively by local concentrations defined on Lagrangian particles. We provide
a brief summary on the incorporation of kinetic transformation (§2.2.1) and equilibrium
speciation (§2.2.2). Naturally, the two may be integrated together, such as in Molins et al.
[2004].

2.2.1 Kinetic reactions

Consider multiple kinetic reactions labeled : = 1, . . . , #R, with reaction rate laws
that model reactions as a function of solute concentrations, A: (C), where C ≡ [�A, �B, . . . ]T;
and stoichiometric coefficients aA,: , aB,: , . . . , which indicate the generation/consumption
of concentration per unit extent of reaction. Equation (9) is then extended to:

d�A, ?,8

dC
= − j8

2
[�A, ?,8 (C) − 2A (X? (C), C)] + RA (C? (C)) (14)

where
RA (C) B

∑
:

aA,:A: (�A, �B, . . . ). (15)

By combining (14) with (10) we obtain the coarse-scale Eulerian description
m2A
mC

= L(2A; v,D) + 〈RA (C)〉. (16)

Equation (16) elucidates that, for nonlinear reaction systems, i.e., 〈RA (C)〉 ≠ RA (c), the
Eulerian description of reactive transport does not obey the classical form of the advection-
dispersion-reaction equation (ADRE) where reactions are computed directly from averaged
concentrations. This is in contrast with the conservative transport case, where as shown by
equation (11), coarse-scale concentrations do follow the classical ADE.
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2.2.2 Equilibrium reactions

In the case of equilibrium reactions, a common approach is to compute the transport
of chemically conservative components [e.g., Saaltink et al., 1998; Molins et al., 2004; De
Simoni et al., 2005], and then speciation is provided by solving equilibrium system,

�A, ? (C) = EA (U? (C)). (17)

where EA (U) combines the law of mass action and the different stoichiometries to find the
equilibrium concentrations, from components U ≡ {*A,*B, . . . }. In (17), U? follow the
conservative transport and mixing model presented in §2.1. By taking the particle average
on both sides of (17), we obtain the coarse-scale description of the equilibrium reaction
system

2A = 〈EA (U)〉. (18)

We note from (18) that, similar to the kinetic reaction example, 2A ≠ EA (u), as opposed
to classical well-mixed reactive transport approaches.

3 Covariance of fluctuations

Here we study the behavior of the local concentration fluctuations, in terms of the
local concentration co-variance of two chemically conservative compounds A and B (where
the particular single-compound case is implicitly included as A ≡ B). First, in §3.1, we
derive the partial differential equation describing covariance generation, transport and de-
struction. Then, in §3.2, we study integrated mixing metrics for two specific cases with
closed form solutions.

3.1 Governing equation

By defining the local fluctuation as the departure from well-mixed equilibrium on
particles,

� ′A, ? (C) B �A, ? (C) − 2A (X? (C), C) =
∑
8

[8�
′
A, ?,8 (C), (19)

� ′A, ?,8 (C) B �A, ?,8 (C) − 2A (X? (C), C), (20)

one may rewrite equation (9) as

d� ′A, ?,8

dC
= −

d2A, ?

dC
− j8

2
� ′A, ?,8 (C). (21)

By definition, 〈� ′A〉(x, C) = 0. We study the concentration covariance of species A and B,
which we denote as OAB (x, C),

OAB B 〈� ′A�
′
B〉 =

∑
8, 9

[̂8 9 〈� ′A,8�
′
B, 9〉 ≡

∑
8, 9

[̂8 9OAB,8 9 , [̂8 9 B [8[ 9 . (22)

As noted in §2.1, the assumption that the mixing dynamics of A and B can be described
by the same sets of parameters {[1, . . . , [#Z }, {j1, . . . , j#Z }, is made here only for the
sake of simplicity, and this assumption could be relaxed.

For a particle ?, following a first-order integration of equation (21) over a small
time step [C, C + ΔC], we have

� ′A, ?,8 (C + ΔC) �
′
B, ?, 9 (C + ΔC) =

(
� ′A, ?,8 (C) −

[
2A, ? (C + ΔC) − 2A, ? (C)

]
− j8

2
ΔC � ′A, ?,8 (C)

)
×

(
� ′B, ?, 9 (C) −

[
2B, ? (C + ΔC) − 2B, ? (C)

]
−
j 9

2
ΔC � ′B, ?, 9 (C)

)
.

(23)
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For jΔC � 1, this can be rewritten as

Δ (� ′A, ?,8�
′
B, ?, 9 ) = Δ2A, ?Δ2B, ? − ĵ8 9ΔC� ′A, ?,8�

′
B, ?, 9 −

(
� ′A, ?,8Δ2B, ? + � ′B, ?, 9Δ2A, ?

)
, (24)

with Δ* denoting the variaton of * in time step ΔC, and

ĵ8 9 B
j8 + j 9

2
. (25)

The first-order Taylor expansion of Δ2A, ? is

Δ2A, ? ≈ ΔXT
?∇2A + ΔC

m2A
mC

=
√

2ΔC �TBT∇2A + ΔC [vT∇2A + L(2A; v,D)]

=
√

2ΔC �TBT∇2A + ΔC ∇ · (D∇2A) ≈
√

2ΔC �TBT∇2A.

(26)

Note that in the last step of (26) we keep the lower-order term only. Considering the anal-
ogous expression for Δ2B, ? , we may rewrite (24) as

Δ (� ′A, ?,8�
′
B, ?, 9 ) = 2ΔC∇2T

AB��TBT∇2B − ĵ8 9ΔC� ′A, ?,8�
′
B, ?, 9 −

(
� ′A, ?,8Δ2B, ? + � ′B, ?, 9Δ2A, ?

)
.

(27)
Dividing both sides of (27) by ΔC, taking the limit of ΔC → 0, and taking the expected
value, we obtain: 〈d(� ′A,8

� ′B, 9 )
dC

〉
= 2∇2T

AD∇2B − ĵ8 9 〈� ′A,8�
′
B, 9〉. (28)

Finally, substituting into equation (10),
mOAB,8 9

mC
= 2∇2T

AD∇2B − ĵ8 9OAB,8 9 + L(OAB,8 9 ; v,D). (29)

We have obtained the partial differential equation describing the spatio-temporal evolution
of the “8 9” entry of the local concentration covariance of A and B in the absence of re-
actions. The total local concentration covariance can be then obtained as the sum of all
entries, as indicated by (22). Let us consider, once again, the specific case represented by
(12). Then, one may write:

mOAB
mC

= 2[2∇2T
AD∇2B − jOAB + L(OAB; v,D). (30)

It is worth remarking that, for B = A, expression (30) is mathematically equivalent to
the concentration variance conservation equation introduced by Kapoor and Gelhar [1994,
equation 56], provided a scalar proportionality in their proposed dual-dispersivity system
such that [ fulfills A = [2 (� + A), where � and A are the microdispersivity and macrodis-
persivity tensors, respectively. Hence, the two conceptual models have clear similarities
since in our case [ is the fraction of non-instantaneous mixing, and in Kapoor and Gel-
har [1994], by analogy, it is the square root of the fraction of total dispersivity that is at-
tributed to the macrodispersivity, i.e., to the non-mixed spreading. Nevertheless, there are
important nuances that distinguish the models, as will be discussed in §4.2.

In any case, determining concentration variance/covariance is not the main, or at
least not the only, purpose of our model. As outlined in §2.2, the distribution of local
concentrations represented by the particles affects local processes such as chemical re-
actions. Nevertheless, the concentration covariance is a powerful tool to assess contact
between solutions, and therefore a good proxy for the potential magnitude of incomplete
mixing effects on chemical reactions.

3.2 Mixing state evolution

This section focuses on the dual-rate (fast/slow) local mixing parametrization (12).
The results are elementary building blocks for other more complex cases. The differential
equation (30) is linked with the solution of (1) through the source term

((x, C) B 2[2∇2T
AD∇2B. (31)
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The other terms are exponential decay, advection, and dispersion. Therefore, if ((x, C) is
known, OAB (x, 0) = 0, and the domain is unbounded, the solution for the point-covariance
evolution can be obtained through the space-time convolution of the Greens function with
the source term, i.e.:

OAB (x, C) =
∫ C

0

∫
R3
� (x − �, C − g) ( (�, g) 3�dg, (32)

with
� (x, C) B

(
[2c]32|D|C

)− 1
2 exp

(
− [x − vC]TD−1 [x − vC]

4C
− jC

)
, (33)

where the operator | | applied to a tensor is its determinant. A metric that is commonly
used to characterize spatial fluctuations of solute concentrations is the so-called mixing
state [Bolster et al., 2011; de Dreuzy et al., 2012], which is defined as the spatial integral
of the squared concentrations. Here we extend this definition, for any two solutes, A and
B, as the spatial integral of the product of the two concentrations. In the present two-scale
context, this may be written as

"AB (C) B
∫
Ω3
〈�A�B〉 dx = "c

AB (C) + "
Σ
AB (C), (34)

where Ω3 is the model domain, "AB is the mixing state, "c
AB is the ideal mixing when

sub-scale fluctuations are not considered, and "Σ
AB is the contribution of the local fluctua-

tions to the mixing state (which may be either positive or negative):

"c
AB (C) B

∫
Ω3
2A (x, C)2B (x, C) dx, "Σ

AB (C) B
∫
Ω3
OAB (x, C) dx. (35)

In the particular case A = B one recovers the classical definition. Additionally, we also
quantify the relative deviation from the ideal well-mixed behavior:

WAB (C) B
"AB − "c

AB

"c
AB

=
"Σ

AB

"c
AB
. (36)

Here, quantity WAB (C) is analogous to the W(C) from de Dreuzy et al. [2012] for a single
species.

In some cases with simple boundary and initial conditions, closed-form solutions
exist for the integrals in (35). Below, we provide and discuss two such simple but repre-
sentative cases.

3.2.1 Continuous injection

Consider a mean-uniform stationary flow in an infinitely long domain, which at the
coarse scale can be considered as one-dimensional. At C = 0, the concentrations of two
solutes A and B are represented by Heaviside-step functions, forming a sharp interface at
G = 0:

2A (G, 0) = 2oH(−G), 2B (G, 0) = 2oH(G), (37)

where H(G) is the Heaviside step function. Additionally, OAB (G, 0) = 0.

The solution of the ADE (1) in this case is

2A (G, C) = 2o − 2B (G, C) =
2o
2

erfc
(
G − EC
2
√
�C

)
. (38)

Then, the ideal mixing term is

"c
AB (C) =

∫ ∞

−∞
2A (G, C)2B (G, C) dG = c−

1
2 22

o
√

2�C ≡ c− 1
2 22

oℓ
√
jC, (39)
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with the characteristic coarse-scale mixing length ℓ, defined as

ℓ B
√

2�/j, (40)

which is the typical distance traveled by the solute by dispersion within one characteristic
mixing time.

For this case, the source term of the covariance (eq. (31)) is:

((G, C) = −
[222

o e−
(G−EC )2

2�C

2cC
, (41)

and then the covariance, obtained through equation (32), is

OAB (G, C) = −
[222

o
2c

∫ C

0
[g(2C − g)]− 1

2 exp
(
− (G − EC)

2

2� (2C − g) − j(C − g)
)

dg. (42)

To our knowledge, the resulting time-integral in (42) does not have an exact analytical
solution. Nevertheless, a (pseudo-)closed form does exist for its integral in space (i.e., the
local mixing term):

"Σ
AB (C) =

∫ ∞

−∞
OAB (G, C) dG = −c−

1
2 [222

o

√
2�
j
�

(√
jC

)
≡ −c− 1

2 [222
oℓ �

(√
jC

)
, (43)

where � (D) is the Dawson integral:

� (D) B e−D
2
∫ D

0
eA

2
dA ≈

{
D, for D � 1,
1
2D
−1, for D � 1.

(44)

From (43) and (44), we see that there is an early-time regime where concentration covari-
ance generation dominates ("Σ

AB ∝ C1/2) followed by a late-time regime where concen-
tration covariance destruction dominates ("Σ

AB ∝ C−1/2). "Σ
AB is negative meaning that

the local covariance reduces the contact between A and B with respect to the ideal value
"c

AB. The maximum negative magnitude of "Σ
AB (C) is achieved for C = 0.854j−1.

We study the relative deviation from ideal “well-mixed” behavior through WAB (eq.
(36)). From (39) and (43)

WAB (C) = [2W∗AB (jC), (45)

W∗AB (C
∗) B − 1

√
C∗
�

(√
C∗
)
, (46)

where C∗ B jC is a dimensionless time.

Figure 3 shows the evolution in time of the mixing metrics. Higher values of the
slow-mixing fraction [ in the dual-rate model accentuate the departure of the actual mix-
ing state (continuous lines) from the ideal well-mixed case (dotted line). The relative dif-
ference between these two quantities, quantified by WAB = [

2W∗AB, is highest at the begin-
ning, and decays for jC � 1 as C−1, as can be observed on the log-log scale plot. The
actual mixing scales with C1/2 for jC � 1. Taking the modeled mixing state "AB, de-
picted in Figure 3(b), as a proxy for the amount of reaction, we see that it does reproduce
trends observed in mixing-limited systems such as simple Poiseuille flows [e.g., Perez
et al., 2019, Figure 7].

As outlined at the beginning of §3.2, the summation in (22) allows us generalize
the solution for any choice of mixing parameters as a summation of elementary solutions
given by (46):

WAB (C) =
∑
8, 9

[̂8 9W
∗
AB ( ĵ8 9 C). (47)
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Figure 3. Temporal evolution of various mixing metrics for the dual-rate model (12), according to the solu-
tion of equations (1) and (30), for two solutes A and B initially forming a sharp interface perpendicular to the
flow direction, shown in (a) linear and (b) logarithmic scale.

3.2.2 Pulse injection

Now let us consider the same simple uniform flow in an infinite-length medium, but
with a different initial condition. In this case, there is only one solute A, of which a mass
(per cross-section unit area) <o is injected over a small region around the origin with a
Gaussian distribution characterized by a length _o:

2A (G, 0) =
<o√
2c_o

e
− G2

2_2
o . (48)

Here we study the mixing state of A, "AA (C). Note that it has the opposite intuitive mean-
ing than the "AB (C) analyzed in §3.2.1: A more advanced mixing process will be charac-
terized by lower values of "AA (C), and viceversa. Once again, we assume that the initial
condition for the fluctuations is OAA (G, 0) = 0.

The resulting time-dependent mean-concentration profile is also a Gaussian:

2A (G, C) =
<o

2
√
c� (C + Co)

e−
(G−EC )2
4� (C+Co ) , (49)

with Co B _2
o/2�. Then, the ideal mixing term is

"c
AA (C) =

∫ ∞

−∞
22

A (G, C) dG =
<2

o√
8c� (C + Co)

≡
<2

o

2ℓ
√
cj(C + Co)

. (50)

Here, the source term of the variance (eq. (31) with B = A) is:

((G, C) = 2[2�

(
m2A
mG

)2
=
[2<2

o (G − EC)2

8c�2 (C + Co)3
e−

(G−EC )2
2� (C+Co ) , (51)

and expression (32) gives the evolution of the variance:

OAA (G, C) =
[2<2

o
8c�2

∫ C

0

2� (C − g) (2C − g + Co) + (G − EC)2 (g + Co)
(2C − g + Co)2.5 (g + Co)1.5

× exp
(
− (G − EC)2

2� (2C − g + Co)
− j(C − g)

)
dg.

(52)
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Figure 4. Temporal evolution of various mixing metrics for the dual-rate model (12), according to the so-
lution of equations (1) and (30), for one solute A initially placed as a Gaussian pulse of longitudinal standard
deviation 0.26ℓ, shown in (a) linear and (b) logarithmic scale.

Like in the continuous injection case (42), we could not find a closed-form solution to
the time-integral in (52). But again, its spatial integral (the local mixing term) can be ex-
pressed in terms of the Dawson function (or more precisely, its derivative):

"Σ
AA (C) =

∫ ∞

−∞
OAA (G, C) dG =

[2<2
o√

8c� (C + Co)

[
5
(√
jCo

) (√
1 + C/Co

)
e−jC − 5

(√
j(C + Co)

)]
≡

[2<2
o

2ℓ
√
cj(C + Co)

[
5
(√
jCo

) (√
1 + C/Co

)
e−jC − 5

(√
j(C + Co)

)]
,

(53)

with 5 (D) defined as the derivative of � (D),

5 (D) B d�
dD

= 1 − 2D � (D) ≈
{

1, for D � 1,
− 1

2D
−2, for D � 1.

(54)

Once again, we characterize the relative deviation from the well-mixed behavior:

WAA (C) B
"Σ

AA

"c
AA

= [2W∗AA (jC; jCo), (55)

W∗AA (C
∗; C∗o) B 5

(√
C∗o

) (√
1 + C∗/C∗o

)
e−C

∗ − 5
(√
C∗ + C∗o

)
, (56)

with C∗o B jCo.

Figure 4 depicts the evolution of the mixing metrics in dimensionless time, for a
small value of initial pulse size, with Co = (15j)−1. Similar to the case in §3.2.1, higher
values of [ result in reduced mixing, as exhibited here by higher values of the actual mix-
ing state (continuous lines) compared to the ideal mixing state (dotted line). The ratio be-
tween these two quantities, WAA = [2W∗AA, is zero at C = 0, since there is no incomplete
mixing, and it starts to grow as the spreading process generates local concentration fluctu-
ations. This increasing trend peaks at jC ≈ 0.785 (for the specific value of jCo = 1/15).
After that, fluctuation destruction dominates and WAA decreases as C−1 for jC � 1. At
these long times, the actual mixing tends to approach the ∝ C−1/2 trend of ideal mixing.
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These features agree with semi-analytical [Bolster et al., 2011] and numerical [de Dreuzy
et al., 2012] calculations of the mixing state evolution in fully-resolved porous media flows
for a pulse injection of solute.

As in §3.2.1, elementary solution (56) is a building block for generalizing (55) to
more complex mixing parametrizations than the dual-rate form:

WAA (C) =
∑
8, 9

[̂8 9W
∗
AA ( ĵ8 9 C; ĵ8 9 Co). (57)

4 Reproducing results of a reactive transport experiment

4.1 Experimental setup and background

In this Section we use the proposed model to reproduce results from the now well
known experiments of Gramling et al. [2002]. In these experiments, performed in a col-
umn with a saturated granular material, a solution of EDTA4−, initially occupying all the
pore space with concentration 2o, was displaced longitudinally by an invading solution
of CuSO4 with the same molar concentration 2o. As these two solutes moved through
the porous medium, the combination of hydrodynamic dispersion and molecular diffu-
sion allowed them to mix and react forming CuEDTA2−, among other reaction products.
Hereafter, for simplicity and consistency with the original work, we refer to the three cited
compounds as A, B, and AB, respectively. The reaction can be expressed as

A + B
 AB, (58)

with equilibrium equation,
:eq B

2A2B
2AB

� 1, (59)

and a reaction rate that can be assumed instantaneous given the time scales of the experi-
ment. Because equilibrium constant :eq is very small (practically zero), 2A and 2B will al-
ways be instantaneously consumed when in contact, until one of them is exhausted locally
(i.e., they cannot coexist). Hence, if we define the following conservative components,

DA B 2A + 2AB, DB B 2B + 2AB, (60)

then the reaction product concentration will be given by

2AB = EAB (DA, DB) = min (DA, DB) . (61)

The fully-resolved (pore-scale) transport of DA and DB follows the conservative form of the
advection-diffusion equation,

mDA
mC

= L(DA; v`, �`), (62)

with operator L defined as in (1), v` being the heterogeneous velocity field within the sat-
urated pore geometry, and �` being the molecular diffusion coefficient. The analogous
of (62) applies to DB; however, in this particular case, because of the initial condition,
DA (x, C) + DB (x, C) = 2o, hence we have that DB (x, C) = 2o − DA (x, C) and the transport
is fully described by just one of the two equilibrium components.

However, in practice, a simple and complete solution is rarely obtainable, because
of (8) the lack of detailed information on the pore geometry and (88) high computational
demands, which is why this problem requires an upscaled approach. As an approximation,
we ignore the boundary effect at the inlet, i.e., we assume an infinite medium. Then, the
upscaled one-dimensional description of the transport of DA and DB, under the assumption
of Fickian hydrodynamic dispersion, is identical to (38),

DA (G, C) = 2o − DB (G, C) =
2o
2

erfc
(
G − EC
2
√
�C

)
, (63)
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where the constants E and � are the cross-section averaged vertical velocity and the up-
scaled longitudinal hydrodynamic dispersion coefficient, respectively. These constants were
quantified by the authors of the cited experiment as E = 1.21 × 10−2 cm/s and � = 1.75 × 10−3 cm2/s.
In the classical well-mixed upscaled ADRE approach, in which coarse-scale concentrations
govern the chemical reactions, the combination of (63) with (61) would lead to the follow-
ing equation for the concentration of AB:

2AB (G, C) =
2o
2

erfc
(
|G − EC |
2
√
�C

)
. (64)

However, the experimental observations of Gramling et al. [2002] do not agree with (64).
Instead, the latter tends to overestimate the amount of reaction product generation, because
of the incorrectness of the underlying assumption of full local mixing.

4.2 Model implementation and results

The proposed Lagrangian model is implemented as follows. Particles carry local
concentrations of just one of the two conservative components, *A, ? (C), because the other
is defined by *B, ? (C) = 1 − *A, ? (C). Equal volumes (weights) are assigned to # = 106

particles, which are initially distributed in space uniformly over an interval [−!/2, !/2],
with ! = 15 cm, and

*A, ? (0) = H(−-? (0)). (65)

As detailed in §2.1, transport and mixing of *A, ? (C) are decoupled and reproduced by
equations (2) and (9), respectively. In the latter, the local averaging operator is imple-
mented through binning (see Appendix A: ), with a bin size !/300. We use a simple
dual-rate mixing model like (12), parameterized by a slow mixing fraction [ and a slow
mixing rate j. Note that one does not need to explicitly simulate the evolution of the lo-
cal concentration fraction corresponding to the fast mixing zone, *A, ?,1 (C), which is al-
ways in equilibrium with the average at -? (C). The coarse-scale reaction product concen-
tration is given by the combination of (61) and (18),

2AB (G, C) = 〈min(*A (C),*B (C))〉(G) =
2o
2
+

〈 ���2o
2
−*A (C)

��� 〉(G). (66)

The code implementing this is written in Matlab (version 2016b) and the simulation runs
in less than 5 minutes on a conventional laptop computer (Intel® Core™ i7-6700HQ, 2.60GHz).

An alternative approach to implement the proposed model is also tested, which we
refer to as the Eulerian approach since it does not require to explicitly simulate the La-
grangian particles. In this specific case, we have an analytical solution for DA (G, C) = 1 −
DB (G, C), given by (63), as well as a semi-analytical solution for OAB (G, C) = −OAA (G, C) =
−OBB (G, C), given by (42). These quantities are, in fact, entries of the mean and the co-
variance matrix of a bivariate distribution (i.e., probability density function) of local con-
centrations of components A and B at any (coarse-scale) position and time, F (*A,*B, G, C).
By assuming that F is multiGaussian, it is then fully defined by its mean and covariance
matrix, and the local average (66) becomes

2AB (G, C) =
∫ 2o

0

∫ 2o

0
min(*A,*B)F (*A,*B, G, C)d*Ad*B

=
2o
2
−

√
2OAA
c

exp
(
− (2o/2 − DA)2

2OAA

)
− (2o/2 − DA) erf

(
2o/2 − DA√

2OAA

)
,

(67)

where we use equation (63) for DA and the numerical time-integration of (42) for OAA =

−OAB. Note that the multiGaussianity assumption may introduce inaccuracies, including
the fact that a portion of F may fall outside the physically meaningful interval [0, 2o].

Similar to Sanchez-Vila et al. [2010], the dispersion coefficient is set to � = 1.3 ×
10−3 cm2/s, slightly lower than the value of � = 1.75×10−3 cm2/s estimated by Gramling
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Figure 5. (a) Comparison of various models’ predictions of reaction product coarse-scale concentration,
2AB, to the experimental observations of Gramling et al. [2002], at four different times, and (b) corresponding
point-covariance of*A and*B, OAB. The local mixing model is given by (9) and (12), with [ = 0.5 and
j = 10−3 s−1. The curves labeled as Lagrangian correspond to small-volume average (66) performed on
particles in a Lagrangian simulation, whereas the curves labeled as Eulerian are drawn using equations (42),
(63) and (67). The curves labeled as Well-mixed correspond to equation (64).

et al. [2002] from the results of non-reactive experiments. The results of the Lagrangian
approach display close agreement with the experimental observations, as shown in Figure
5(a), for manually-adjusted values [ = 0.5 and j = 10−3 s−1. A possible interpretation
is that in the pore-scale flow and transport conditions of the experiment, pre-asymptotic
fast mixing controlled about half of the mixing process, whereas diffusive mixing across
stable fluctuation structures was responsible for the other half. Assuming that the latter
is essentially two-dimensional (dominated by transverse diffusion between concentration
filaments), and approximating both reactants’ bulk diffusion coefficients as the value for
AB reported by the authors of the experiment, �` = 7.02 × 10−7 cm/s, then according to
(7),

ℓ` =

√
4�`/j = 0.53 cm ≈ 0.41, (68)

where 1 = 0.13 cm is the mean grain size of the granular medium. That is, ℓ` is approx-
imately the typical size of a pore, considering the reported porosity of 0.36. This suggests
that the slow mixing process captured by the model corresponds indeed to the diffusive re-
laxation of pore-scale concentration fluctuations. The inferred value of [ = 0.5 shows that
a single-rate local mixing model (i.e, [ = 1) would not be able to reproduce the experi-
mental results. Neither would the high value of [ =

√
1 − �`/� ≈ 1 that would render our

model’s local covariance behavior equivalent to Kapoor and Gelhar [1994] (see discussion
below equation (30)). This is consistent with previous studies on mixing in porous media,
both at pore and Darcy scales [e.g., Kapoor and Kitanidis, 1998; de Anna et al., 2014b;
Le Borgne et al., 2013, 2015], which show that, after first encounter between two solu-
tions with different composition, the mixing rate is higher at the beginning and decreases
with time. In other words, the dynamics of mixing are subjected to aging, a feature which
is effectively reproduced in our model by a parallel multi-rate process (9), without intro-
ducing any time-dependent parameters. Although the dual-rate simplification appears to
capture the general behavior for this case-study, allowing us to reproduce the experimen-
tal results, more complicated forms may be needed depending on the characteristics of the
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flow field, especially for highly heterogeneous porous media. This should be the subject of
future research and as future experimental datasets in such settings become available.

Looking closely at Figure 5, the main discrepancy between the data and the well-
mixed solution (64) is the notable decrease in the peak of reaction product concentrations
at the coarse-scale mixing interface. In the Lagrangian simulation, this reduction is caused
by the anti-correlated fluctuations of *A, ? and *B, ? on particles with respect to the local
average, which is also reflected by the negative values of OAB, depicted in Figure 5(b).
As expected, the spatiotemporal description of the covariance in the Eulerian and in the
Lagrangian approach are identical, which ratifies the validity of the expressions given in
§3.1. However, the reaction product concentration prediction is slightly different, because
of the multiGaussian approximation used in the Eulerian approach.

5 Summary and conclusions

We have proposed a Lagrangian mathematical model to represent the transport and
mixing of solutes in a dual-scale (coarse/local) framework. Local concentrations carried
by individual particles evolve by relaxation towards the coarse-scale concentration val-
ues that they perceive along their random path (described by (2)). This relaxation or mix-
ing process is characterized by (9) as a parallel multi-rate interaction by exchange with the
mean (MRIEM). We derived the differential equation describing the corresponding evolu-
tion of the (Eulerian) concentration point-covariance (29), and found solutions correspond-
ing to the mixing state evolution for two simple generic cases. Finally, the proposed model
(in its dual-rate form) was successfully implemented to reproduce reaction product con-
centration data from a well-known laboratory experiment that displays incomplete mixing
effects. Below, we enumerate additional findings and conclusions:

1. The partial differential equation describing the behavior of the local concentration
covariance becomes nearly equivalent to the concentration variance conservation
equation suggested by Kapoor and Gelhar [1994], given a dual-rate (fast/slow)
parametrization of the mixing process.

2. The temporal evolution of the mixing state for a pulse injection shows similar trends
to those observed in previous studies of mixing in porous media within fully-resolved
systems [Bolster et al., 2011; de Dreuzy et al., 2012], suggesting that the model may
be able to accurately upscale local mixing limitations. Both for a pulse and for a
continuous injection, the ratio between the mixing state components corresponding
to the fluctuating and the averaged concentration terms decays at late times as the
inverse of time.

3. The Gramling et al. [2002] results would not be explicable, from our model’s per-
spective, through a single-rate local mixing process. This agrees with previous
knowledge on the complexity of mixing dynamics in porous media [de Anna et al.,
2014b; Le Borgne et al., 2013], which establish the need to somehow include a tem-
poral decrease of the mixing rate from the time of first coarse-scale contact be-
tween reactants.

4. Along the same vein, the [ = 0.5 value for the dual-rate model that fits the cited
experimental results does not agree with Kapoor and Gelhar’s model, that is, with
the restriction [2 = 1 − �`/� ≈ 0.9995, if �` is assumed to be the molecular dif-
fusion. This discrepancy can be attributed to the pre-asymptotic stage where mix-
ing is enhanced by fluid deformation dynamics, as noted by Kapoor and Kitanidis
[1998].

5. Considering the characteristic local mixing distance ℓ` =
√

4�`/j, the fitted value
of j = 10−3 s−1 yields ℓ` ≈ 0.05 cm, which is approximately equal to the typical
pore size. This consistency of scale suggests that the model is properly capturing
the physics underlying the mixing process.
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Several future avenues for research arise due to this work, including (8) identifying
methods to readily estimate parameter values in (8) and (9) to upscale mixing within dif-
ferent local-scale heterogeneity patterns of velocity and dispersion, thus making the model
scalable and translatable to the diverse range of hydrogeologic settings out there (88) ex-
ploring the use of motion equations other than (2) [e.g. Berkowitz et al., 2006; Le Borgne
et al., 2008], which are well-known to better describe coarse-scale transport in complex
heterogeneous settings (888) extending the model to incorporate heterogeneous reactions,
and (8E) using the model to study the effects of local concentration fluctuations on realistic
complex geochemical reaction systems.

A: Aspects of numerical implementation

A.1 Smooth local average

As outlined in §2.1, the numerical implementation of (9), as well as the reactive ex-
tensions described in §2.2, entails the definition of a smooth small-volume approximation
for the local average operator 〈 〉(x) (equation (3)), which is used to compute the averaged
concentrations 2A (x, C) from overlapping local concentrations defined on particles. Here
we discuss two possible approaches, and their respective advantages and disadvantages.

A.1.1 Binning

A straightforward approach to compute the averaged concentrations is to discretize
the spatial domain into a set of bins. The Dirac Delta X(x − X?) in (3) and (4) is then
replaced by an indicator function � (x,X?) that has a value of 1 when x and X? belong
to the same bin, and a value of 0 otherwise. Compared to other smoothing techniques,
this approach has very low computational demands. Another advantage is that it does not
present any mass conservation issues. This is because the sum of all differences with re-
spect to the mean within each individual bin is zero by definition, and therefore so is the
sum of all exchanges with the mean given by (9). The main potential disadvantage of bin-
ning is that, compared to other smoothing techniques, it tends to require higher particle
numbers (here, a finer Lagrangian discretization of the fluid mass) in order to converge to
a smooth solution [Fernàndez-Garcia and Sanchez-Vila, 2011]. This approach is used in
the Lagrangian implementation described in §4.2.

A.1.2 Kernel smoothing

An alternative to binning is to use kernel smoothing on particles, that is, to replace
the Dirac Delta X(x − X?) in (3) and (4) with a radially symmetric kernel , (x − X?; ℎ),
where ℎ is the smoothing bandwidth. This interpolation method is commonly used in
smoothed particle hydrodynamics [Monaghan, 2005]. This approach may offer better con-
vergence rates with particle number than binning. On the other hand, in this case, exact
mass conservation for (9) is not guaranteed by default, and a correction strategy is re-
quired. One mass-conserving approach can be obtained by considering symmetric pair-
wise particle interactions. Let us first define a smooth interpolator to approximate (3) that
is pair-wise symmetric

〈R 〉(x) B
∑
?

<?

d̃(x,X?)
R?, (x − X?). (A.1)

Here, d̃(x,X?) is some average of d(x) and d(X?). We redefine (9) by inserting �A, ?,8

inside the local average operator

d�A, ?,8

dC
= − j8

2
〈�A, ?,8 − �A,8〉(X?) = −

j8

2

∑
@

<@

d̃(X@ ,X?)
[�A, ?,8 − �A,@,8], (X@ − X?). (A.2)

The right-hand side of (A.2) clearly shows that a symmetric and therefore consistent mass
exchange between each pair of particles ?, @, is imposed [Herrera et al., 2009; Sole-Mari
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et al., 2019]. This expression may also be rewritten as

d�A, ?,8

dC
= − j8

2
[�A, ?,8 〈1〉(X?) − 2A (X?)], (A.3)

which elucidates that mass conservation can be achieved in the kernel-based MRIEM
through multiplication of �A, ?,8 by a correcting factor 〈1〉(X?), which converges to 1 as
# → ∞ and ℎ → 0. However, this approach does come at higher computational cost than
binning.

A.2 Numerical dispersion and relation with other formulations

Smoothing tends to artificially spread out particle masses, which may generate some
numerical dispersion in the Lagrangian numerical implementation. This can be straightfor-
wardly quantified by comparing the right-hand side of (A.2) to the SPH formulation used
to simulate a diffusion �SPH with a multiGaussian , [Sole-Mari et al., 2019, eq. 8]. Both
expressions become equivalent by setting

�SPH =
1
4
j8ℎ

2. (A.4)

That is, the identity (A.4) quantifies the numerical diffusion involved in the numerical sim-
ulation of a MRIEM mixing with rate j8 using a Gaussian smoothing kernel with band-
width ℎ for computing the averaged concentrations. The same quadratic scaling should
be expected for the bin size when binning is the chosen smoothing approach. Fortunately,
as explained in §4.2, the high or virtually instantaneous fraction of mixing rates in the
MRIEM formulation do not need to be explicitly simulated, and therefore only the small
values of j8 may produce numerical dispersion, which can be controlled by choosing a
small-enough smoothing bandwidth ℎ, or by slightly reducing the value of � used in the
particle motion such that the added total dispersion has the correct value. The latter strat-
egy, in fact, is tightly related to previous works [Benson and Bolster, 2016b; Herrera et al.,
2017; Sole-Mari et al., 2019; Engdahl et al., 2019; Benson et al., 2019a,b] in which the to-
tal dispersion results from the sum of (8) random walks and (88) some form of exchange
between particles. In particular, if we look at the approach suggested by Benson and Bol-
ster [2016b, eq. 7], with mass transfers based on probabilities of collision between parti-
cles, we see that it is equivalent to the kernel form of the MRIEM as given by (A.2) for
the specific case of a single mixing zone 8 = 1 with mixing rate j1 = 1/dC, and a multi-
Gaussian , with bandwidth ℎ2 = 4�MTdC. That is, the mass transfer approach by Benson
and Bolster [2016b] is equivalent to a Gaussian kernel-based single-rate IEM with instan-
taneous full mixing and “numerical” dispersion (see (A.4)) �SPH = �MT.

B: Relation between local averages of Eulerian and Lagrangian derivatives

In this Appendix we provide the derivation for expression (10) given in §2.1. We
start from the definition of local average (3). Note that, for incompressible flow, the fluid
density d(X?) is proportional to the porosity – amount of fluid per unit volume of medium.
Hence, maintaining the assumption of constant porosity, the particle estimate of fluid den-
sity given by (4) must converge to a constant value d as # → ∞, # being the number of
particles. The time-derivative of expression (3) is then

m〈R 〉
mC

=
∑
?

<?

d
R?

dX(x − X?)
dC

+
∑
?

<?

d

dR?

dC
X(x−X?) =

∑
?

<?

d
R?

ΔX(x − X?)
ΔC

+
〈dR

dC
〉
. (B.1)

where the time-derivative of the Dirac delta function has been written as the variation
ΔX(x − X?) over ΔC, where ΔC → 0. A second-order Taylor expansion over the corre-
sponding small particle displacement ΔX? writes:

ΔX(x − X?) ≈ ΔXT
?X
′(x − X?) +

1
2
ΔXT

?X
′′(x − X?)ΔX? , (B.2)
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where X′ and X′′ are, respectively, the gradient and the Hessian matrix of X. Then, using
expression (B.2), knowing that the weighted summation is equivalent (in the limit # →
∞) to an integral over the particle space, and given the evaluation properties of the Dirac
delta distributional derivatives, we may rewrite the summation in (B.1) as∑

?

<?

d
R?

ΔX(x − X?)
ΔC

≈
∑
?

<?

d

[
−∇ ·

(
R?

ΔX?

ΔC

)
+ 1

2
∇∇ :

(
R?

ΔXT
?ΔX?

ΔC

)]
X(x − X?)

= −∇ · 〈R?

ΔX?

ΔC
〉 + 1

2
∇∇ : 〈R?

ΔXT
?ΔX?

ΔC
〉

= −v∇ · 〈R?〉 + D∇∇ : 〈R?〉 = L (〈R 〉; v,D) ,

(B.3)

where we applied well-known identities associated to (2) [Risken, 1989; Salamon et al.,
2006], 〈ΔX?〉 = vΔC and 〈ΔXT

?ΔX?〉 = 2DΔC (for ΔC → 0), and assumed that v and
D are spatially constant. Finally, introducing the result from (B.3) in (B.1), we obtain the
expression given by (10),

m〈R 〉
mC

= L (〈R 〉; v,D) +
〈dR

dC
〉
, (B.4)

which states that the Eulerian temporal variation of 〈R 〉 comprises a contribution from the
flux of particles (Fokker-Planck) plus a local contribution from variations on particles.
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